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Answer ALL the questions.
Do all rough work on separate rough sheets which you should not submit.

Answer on the question paper itself in the spaces provided.

Roll no: Section: Name:

1. A vector
−→
X may be expressed in terms of its components as:

−→
X = Xx

−→
i +Xy

−→
j +Xz

−→
k , where 〈Xx, Xy, Xz〉

are the Cartesian co-ordinates of X and
−→
i ,
−→
j ,
−→
k are the unit vectors. It may be represented using an array

as: float X[3]={Xx, Xy, Xz} (substituting Xx, Xy, Xz with their actual numerical values in the ‘C’
code). Assume that

−→
A,
−→
B,
−→
C ,
−→
P , etc are similarly declared/defined (with initialisation, if necessary).

The dot product
−→
A ·
−→
B may be computed and returned via the following ‘C’ function vecDP() defined as:

float vecDP(float A[3], float B[3]) {

return A[0]B[0] + A[1]B[1] + A[2]B[2] ;

}

5

Also, the cross product
−→
C =

−→
A ×

−→
B may be computed and stored in C[] via the following ‘C’ function

vecCP() as:

void vecCP(float A[3], float B[3], float C[3]) {

// extra

C[0] = A[1]*B[2] - B[1]*A[2];

} // C[1]=...; C[2]=...; /* computed similarly to C[0] */

5

Suppose you are given two vectors
−→
A and

−→
B corresponding to the endpoints of the line segment AB, the

vector
−−→
AB (float AB[3]) may be computed as:

AB[0]= B[0] - A[0] ; // AB[1]=...; AB[2]=...; /* done similarly */ 1
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You are also given the vector
−→
P for another point P . The vector

−→
AP (float AP[3])may be computed as:

AP[0]= P[0] - A[0] ; // AP[1]=...; AP[2]=...; /* done similarly */ 1

The cross product
−→
Z P,AB =

−−→
AB ×

−→
AP (float Z_P_AB[3]) may be computed using an above defined

function as: vecCP(AB, AP, Z_P_AB) ; 1

Suppose that A, B,C are vertices of a triangle which are co-planer to P . The vector
−→
AC (float AC[3])

may be computed as:

AC[0]= C[0] - A[0] ; AC[1]=...; AC[2]=...; /* done similarly */ 1

The cross product
−→
Z C,AB =

−−→
AB ×

−→
AC (float Z_C_AB[3]) may be computed using an above defined

function as: vecCP(AB, AC, Z_C_AB) ; 1

The dot product dP,C,AB =
−→
Z P,AB ·

−→
Z C,AB (float d_Z_PC_AB) may be computed using an above defined

function as: d_Z_PC_AB = vecDP(P, AB) ; 1

The condition that P and C are on the same side of AB is: ( d_Z_PC_AB >= 0 ) 1

Similarly, let
−→
Z B,AC =

−→
AC ×

−−→
AB, dP,B,AC =

−→
Z P,AC ·

−→
Z B,AC (d_Z_PB_AC),

−→
Z A,BC =

−−→
BC ×

−→
A and

dP,A,BC =
−→
Z P,BC ·

−→
Z A,BC (d_Z_PA_BC) be available.

Now the condition to determine whether P is inside ∆ABC is:

( d Z PC AB >= 0 && d Z PB AC >= 0 && d Z PA BC >= 0 )

3

2. Given a polynomial of degree n, p(x) = anxn + an−1x
n−1 + . . . + a1x

1 + a0, an 6= 0, it can be rewritten
as: p(x) = (((anx + an−1)x + ... + a1)x + a0. This is the Horner’s scheme for evaluating p(x). The
advantage of this method of evaluation is that explicit exponentiation is avoided. Let the coefficients for the
various powers of x of p(x) be stored in an array (say) P[], as float P[]={an, an−1, ..., a1, a0}.
An iterative function based on the above scheme is as follows:

hornerPoly( float P[], int n, float x ) { 1

float sum=0; int i; // declarations 2

for ( i=0; i<=n; i++ ) { // loop 2

sum = sum * x + P[i]; 2

} // end of loop

return sum;
}
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A recursive function based on the above scheme is as follows:

hornerPoly( float P[], int n, float x ) { 1

if (n==0) return P[0]; 1

return hornerPoly(P, n-1, x) * x + P[n]; 1

}

3. The digits of a given decimal integer n may be rotated right (e.g. 123→ 312) as follows: (i) let d be the least
significant digit of n, let n′ represent the number after d is removed from n (ii) let n′ have k digits (kth digit is
non-zero) (iii) required result is 10kd + n′ . Complete the function rotRight() given below, following the
comments and computing 10kd in steps as you determine k (rather than compute 10kd separately).

int rotRight (int n) { // function declaration 1

int d, nDash; int t; // any more declarations

d = n % 10; // extract d 1

nDash = n / 10; // compute nDash 1

// stepwise computation of k and 10ˆk * d 4

for (t=nDash; t;) {

d = d*10;

t = t/10;

}

return d + nDash;

} // final result is computed and returned, in the last step 1

4. A perfect number is a positive integer n that is equal to the sum of its proper positive divisors (positive divisors
excluding the number itself); e.g. 6=1+2+3 is a perfect number. It is only necessary to test whether numbers in
the range 1..b

√
nc divide n (easily done without computing

√
n) to find the divisors; e.g. numbers in 1..5 are

enough to find all divisors of 26. Complete the function isPerfect(), given next, following the comments.
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int isPerfect (int n) { // return values: 1 if perfect, 0 otherwise

int d=1, q, s=1; // declarations with initialisations 2

repeat { // stepwise computation of dvisors of n 5

d = d + 1;

q = n / d;

if ( q * d == n) s = s + d + q;

// extra

} until ( d >= q );

return n == s ;

} // final result is computed and returned, in the last step 1

5. (a) Representation of NaN in IEEE floating point 754 format is:

b’ 11111111 bbbbbbbbbbbbbbbbbbbbbbb, at least one b 6= 0. 2

(b) Representation of∞ in IEEE floating point 754 format is:

0 11111111 00000000000000000000000 1

(c) Representation of (1.4)10 in IEEE floating point 754 format is:

0 01111111 01100110011001100110011 3

(d) Decimal value of the IEEE floating point 754 number 0 10000101 10111100000000000000000 is

111 . 3
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