INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR
 Department of Computer Science \& Engineering
 Programming and Data Structures (CS11001)
 Midsem (Autumn, $1^{\text {st }}$ Year)

Date: Tue, Sep 27, 2011
Time: 09:00-11:00am
Students: 660

Answer ALL the questions.

Do all rough work on separate rough sheets which you should not submit.
Answer on the question paper itself in the spaces provided.

Roll no: \qquad Section: \qquad Name:

1. A vector \vec{X} may be expressed in terms of its components as: $\vec{X}=X_{x} \vec{i}+X_{y} \vec{j}+X_{z} \vec{k}$, where $\left\langle X_{x}, X_{y}, X_{z}\right\rangle$ are the Cartesian co-ordinates of X and $\vec{i}, \vec{j}, \vec{k}$ are the unit vectors. It may be represented using an array as: float $\mathrm{x}[3]=\left\{X_{x}, X_{y}, X_{z}\right\}$ (substituting X_{x}, X_{y}, X_{z} with their actual numerical values in the ' C ' code). Assume that $\vec{A}, \vec{B}, \vec{C}, \vec{P}$, etc are similarly declared/defined (with initialisation, if necessary).
The dot product $\vec{A} \cdot \vec{B}$ may be computed and returned via the following ' C ' function vecDP () defined as:
```
float vecDP(float A[3], float B[3]) {
    return A[0]B[0] + A[1]B[1] + A[2]B[2] ;
}
```

Also, the cross product $\vec{C}=\vec{A} \times \vec{B}$ may be computed and stored in C[] via the following 'C' function vecCP () as:

```
void vecCP(float A[3], float B[3], float C[3]) {
    __ // extra
    C[0] = A[1]*B[2] - B[1]*A[2];
} // C[1]=...; C[2]=...; /* computed similarly to C[0] */
```

Suppose you are given two vectors \vec{A} and \vec{B} corresponding to the endpoints of the line segment $\overline{A B}$, the vector $\overrightarrow{A B}$ (float $\mathrm{AB}[3]$) may be computed as:

```
AB[0]= B[0] - A[0] ; // AB[1]=...; AB[2]=...; /* done similarly */
```

1	2	3	4	5	T

You are also given the vector \vec{P} for another point P. The vector $\overrightarrow{A P}$ (float AP [3])may be computed as:
$\mathrm{AP}[0]=\mathrm{P}[0]-\mathrm{A}[0]$; // AP[1]=...; AP[2]=...; /* done similarly */
 function as: $\operatorname{vec} C P\left(A B, A P, \quad Z _P _A B\right)$; 1
Suppose that A, B, C are vertices of a triangle which are co-planer to P. The vector $\overrightarrow{A C}$ (float AC[3]) may be computed as:

AC[0]=C[0]-A[0] ; AC[1]=...; AC[2]=...; /* done similarly */
The cross product $\vec{Z}_{C, A B}=\overrightarrow{A B} \times \overrightarrow{A C}$ (float z_C_AB[3]) may be computed using an above defined function as: $\operatorname{vecCP}\left(A B, A C, Z _C _A B\right)$;
The dot product $d_{P, C, A B}=\vec{Z}_{P, A B} \cdot \vec{Z}_{C, A B}$ (float d_z_PC_AB) may be computed using an above defined function as: $d _Z _P C _A B=\operatorname{vec} D P(P, A B)$;

The condition that P and C are on the same side of $\overline{A B}$ is: (
d_Z_PC_AB $>=0$)
Similarly, let $\vec{Z}_{B, A C}=\overrightarrow{A C} \times \overrightarrow{A B}, d_{P, B, A C}=\vec{Z}_{P, A C} \cdot \vec{Z}_{B, A C}$ (d_z_PB_AC), $\vec{Z}_{A, B C}=\overrightarrow{B C} \times \vec{A}$ and $d_{P, A, B C}=\vec{Z}_{P, B C} \cdot \vec{Z}_{A, B C}\left(\mathbf{d _ z _ P A _ B C)}\right.$ be available.
Now the condition to determine whether P is inside $\triangle A B C$ is:

$$
\left(d_{-} Z _P C _A B>=0 \quad \& \& \quad \text { d_Z_PB_AC }>=0 \quad \& \& \quad \text { d_Z_PA_BC }>=0 \quad\right. \text {) }
$$

2. Given a polynomial of degree $n, p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x^{1}+a_{0}, a_{n} \neq 0$, it can be rewritten as: $p(x)=\left(\left(\left(a_{n} x+a_{n-1}\right) x+\ldots+a_{1}\right) x+a_{0}\right.$. This is the Horner's scheme for evaluating $p(x)$. The advantage of this method of evaluation is that explicit exponentiation is avoided. Let the coefficients for the various powers of x of $p(x)$ be stored in an array (say) $\mathrm{P}\left[\right.$], as float $\mathrm{P}\left[\mathrm{l}=\left\{a_{n}, a_{n-1}, \ldots, a_{1}, a_{0}\right\}\right.$. An iterative function based on the above scheme is as follows:
hornerPoly(\qquad float $P[]$, int n, float x) \{
\qquad // declarations
\qquad sum $=$ sum $* x+P[i] ;$
```
    } // end of loop
    return sum;
}
```

A recursive function based on the above scheme is as follows:

```
hornerPoly( float P[], int n, float x ) {
```

 if \((\mathrm{n}==0)\) return \(\mathrm{P}[0]\);
 return hornerPoly \((P, n-1, x) * x+P[n]\);
 $\}$
3. The digits of a given decimal integer n may be rotated right (e.g. $123 \rightarrow 312$) as follows: (i) let d be the least significant digit of n, let n^{\prime} represent the number after d is removed from n (ii) let n^{\prime} have k digits ($k^{\text {th }}$ digit is non-zero) (iii) required result is $10^{k} d+n^{\prime}$. Complete the function rotRight () given below, following the comments and computing $10^{k} d$ in steps as you determine k (rather than compute $10^{k} d$ separately).
int rotRight (int n)
\{ // function declaration

```
int d, nDash; int t; // any more declarations
```

$\mathrm{d}=\mathrm{n}$ \% 10; $/ /$ extract d
$\underline{n D a s h}=n / 10 ;$
// compute nDash
// stepwise computation of k and $10^{\wedge} k$ * d
for (t=nDash; t; $\{$
$d=d * 10 ;$
$t=t / 10 ;$
\}
return d + nDash;
\} // final result is computed and returned, in the last step
4. A perfect number is a positive integer n that is equal to the sum of its proper positive divisors (positive divisors excluding the number itself); e.g. $6=1+2+3$ is a perfect number. It is only necessary to test whether numbers in the range $1 . .\lfloor\sqrt{ } n\rfloor$ divide n (easily done without computing $\sqrt{ } n$) to find the divisors; e.g. numbers in $1 . .5$ are enough to find all divisors of 26 . Complete the function isPerfect (), given next, following the comments.

```
int isPerfect (int n) { // return values: 1 if perfect, 0 otherwise
```

\qquad // declarations with initialisations
repeat $\{$ // stepwise computation of dvisors of n
\qquad
$\mathrm{q}=\mathrm{n} / \mathrm{d}$;
if ($q * d==n$) $s=s+d+q$;
\qquad // extra
\} until (\qquad d $>=q$) ;
return $\mathrm{n}=\mathrm{s}$;
\} // final result is computed and returned, in the last step
5. (a) Representation of NaN in IEEE floating point 754 format is:
$\mathrm{b}^{\prime} 11111111$ bbbbbbbbbbbbbbbbbbbbbbb, at least one $\mathbf{b} \neq 0$.
(b) Representation of ∞ in IEEE floating point 754 format is:

01111111100000000000000000000000
(c) Representation of $(1.4)_{10}$ in IEEE floating point 754 format is:
(d) Decimal value of the IEEE floating point 754 number 01000010110111100000000000000000 is .

