INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR Department of Computer Science & Engineering

Programming and Data Structures (CS11001)

Midsem (Autumn, 1st Year)

Date: Tue, Sep 27, 2011 *Students:* 660

Time: 09:00-11:00am *Marks:* 55

Answer ALL the questions. Do all rough work on separate rough sheets which you should not submit. Answer on the question paper itself in the spaces provided.

Roll no: _____ Section: ____ Name: ___

1. A vector \vec{X} may be expressed in terms of its components as: $\vec{X} = X_x \vec{i} + X_y \vec{j} + X_z \vec{k}$, where $\langle X_x, X_y, X_z \rangle$ are the Cartesian co-ordinates of X and \vec{i} , \vec{j} , \vec{k} are the unit vectors. It may be represented using an array as: float X[3]={ X_x , X_y , X_z } (substituting X_x , X_y , X_z with their actual numerical values in the 'C' code). Assume that $\vec{A}, \vec{B}, \vec{C}, \vec{P}$, etc are similarly declared/defined (with initialisation, if necessary).

The dot product $\vec{A} \cdot \vec{B}$ may be computed and *returned* via the following 'C' function **vecDP**() defined as:

float vecDP(float A[3], float B[3]) {
 return A[0]B[0] + A[1]B[1] + A[2]B[2] ;
}

5

Also, the cross product $\vec{C} = \vec{A} \times \vec{B}$ may be computed and stored in C[] via the following 'C' function **vecCP()** as:

```
void vecCP(float A[3], float B[3], float C[3]) {
    _____ // extra
    C[0] = A[1]*B[2] - B[1]*A[2];
} // C[1]=...; C[2]=...; /* computed similarly to C[0] */
```

Suppose you are given two vectors \overrightarrow{A} and \overrightarrow{B} corresponding to the endpoints of the line segment \overline{AB} , the vector \overrightarrow{AB} (float AB[3]) may be computed as:

AB[0]= B[0] - A[0] ; // AB[1]=...; AB[2]=...; /* done similarly */ 1

1	2	3	4	5	Т	
						— 1 of 4 pages —

Sec:

You are also given the vector \overrightarrow{P} for another point P. The vector \overrightarrow{AP} (float AP[3])may be computed as: AP[0] = P[0] - A[0] ; // AP[1] = ...; AP[2] = ...; /* done similarly */ 1 The cross product $\overrightarrow{Z}_{P,AB} = \overrightarrow{AB} \times \overrightarrow{AP}$ (float Z_P_AB[3]) may be computed using an above defined vecCP(AB, AP, <u>Z_P_AB</u>) function as: 1 Suppose that A, B, C are vertices of a triangle which are co-planer to P. The vector \overrightarrow{AC} (float AC[3]) may be computed as: AC[0] = C[0] - A[0] ; AC[1] = ...; AC[2] = ...; /* done similarly */ 1 The cross product $\overrightarrow{Z}_{C,AB} = \overrightarrow{AB} \times \overrightarrow{AC}$ (float Z_C_AB[3]) may be computed using an above defined vecCP(AB, AC, Z_C_AB) function as: 1 The dot product $d_{P,C,AB} = \overrightarrow{Z}_{P,AB} \cdot \overrightarrow{Z}_{C,AB}$ (float d_Z_PC_AB) may be computed using an above defined function as: $d_Z_PC_AB = vecDP(P, AB)$ 1 The condition that P and C are on the same side of \overline{AB} is: ($d_Z_PC_AB \ge 0$) 1 Similarly, let $\overrightarrow{Z}_{B,AC} = \overrightarrow{AC} \times \overrightarrow{AB}$, $d_{P,B,AC} = \overrightarrow{Z}_{P,AC} \cdot \overrightarrow{Z}_{B,AC}$ (d_Z_PB_AC), $\overrightarrow{Z}_{A,BC} = \overrightarrow{BC} \times \overrightarrow{A}$ and $d_{P,A,BC} = \overrightarrow{Z}_{P,BC} \cdot \overrightarrow{Z}_{A,BC} (\mathbf{d_Z_PA_BC})$ be available. Now the condition to determine whether P is inside $\triangle ABC$ is: $(d_ZPCAB \ge 0 \& d_ZPBAC \ge 0 \& d_ZPABC \ge 0)$ 3

2. Given a polynomial of degree n, $p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x^1 + a_0$, $a_n \neq 0$, it can be rewritten as: $p(x) = (((a_n x + a_{n-1})x + \ldots + a_1)x + a_0)$. This is the Horner's scheme for evaluating p(x). The advantage of this method of evaluation is that explicit exponentiation is avoided. Let the coefficients for the various powers of x of p(x) be stored in an array (say) P[], as float P[]={ $a_n, a_{n-1}, \ldots, a_1, a_0$ }. An iterative function based on the above scheme is as follows:

hornerPoly(float P[], int n, float x) {	1
<pre>float sum=0; int i;</pre>		_ // declarations	2
for (i=0; i<=n; i++) { // loop	2
sum = sum * x	<pre>x + P[i];</pre>		2
} // end of loop			
<pre>return sum; }</pre>			

(CS11001)		Roll:	
A recursive function based	on the above scheme is as foll	ows:	
hornerPoly(float P[], int	n, float x) {
if (n==0) ret	curn P[0];		
return horner	rPoly(P, n-1, x) * x	+ P[n];	
}			
The digits of a given decin significant digit of n , let n' non-zero) (<i>iii</i>) required res comments and computing	that integer n may be rotated right represent the number after d is sult is $10^k d + n'$. Complete the $10^k d$ in steps as you determine	ght (e.g. $123 \rightarrow 312$) as follows s removed from n (<i>ii</i>) let n' hav e function rotRight() given k (rather than compute $10^k d$ s	: (<i>i</i>) let <i>d</i> be the lease k digits (k th digit i below, following the parately).
int rotRight (int	n)	{ // function o	leclaration
int d, nDash; _	int t;	// any more dec	larations
<u>d = n % 10;</u>		// extra	act d
nDash = n / 10;		// compt	ite nDash
// stepwise com	putation of k and 10	`k * d	
for (t=nDash; t	;) {		
$d = d \star 10;$			
d = d*10; t = t/10;			
<u>d = d*10;</u> <u>t = t/10;</u> }			
<u>d = d*10;</u> <u>t = t/10;</u> } return d + nDas	h;		

4. A perfect number is a positive integer n that is equal to the sum of its proper positive divisors (positive divisors excluding the number itself); e.g. 6=1+2+3 is a perfect number. It is only necessary to test whether numbers in the range $1 \cdot \lfloor \sqrt{n} \rfloor$ divide n (easily done without computing \sqrt{n}) to find the divisors; e.g. numbers in 1..5 are enough to find all divisors of 26. Complete the function **isPerfect()**, given next, following the comments.

Roll: Sec: int isPerfect (int n) { // return values: 1 if perfect, 0 otherwise int d=1, q, s=1; // declarations with initialisations 2 5 repeat { // stepwise computation of dvisors of n d = d + 1;q = n / d;if (q * d == n) s = s + d + q;_____ // extra return n == s ; } // final result is computed and returned, in the last step 1 5. (a) Representation of **NaN** in IEEE floating point 754 format is: 2 (b) Representation of ∞ in IEEE floating point 754 format is: 0 11111111 00000000000000000000000 1 (c) Representation of $(1.4)_{10}$ in IEEE floating point 754 format is: 0 01111111 01100110011001100110011 3 (d) Decimal value of the IEEE floating point 754 number 0 10000101 10111100000000000000 is 111 .