
Programming and Data Structures

Chittaranjan Mandal

Dept of Computer Sc & Engg
IIT Kharagpur

November 9, 2011

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 1 / 495

Table of Parts I

Part I: Introduction

Part II: Routines and scope

Part III: Operators and expression evaluation

Part IV: CPU

Part V: Branching and looping

Part VI: 1D Arrays

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 2 / 495

Table of Parts II

Part VII: More on functions

Part VIII: Strings

Part IX: Searching and simple sorting

Part X: Runtime measures

Part XI: 2D Arrays

Part XII: Structures and dynamic data types

Part XIII: File handling

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 3 / 495

Part I

Introduction

1 Outline

2 Simple programming exercise

3 Simple printing and reading data

4 Preprocessor

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 4 / 495

Outline

Section outline

1 Outline
Resources
Course objectives

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 5 / 495

Outline Resources

Resources

Web site http://cse.iitkgp.ac.in/courses/pds/

Books The C Programming Language, Brian W. Kernighan
and Dennis M. Ritchie, Prentice Hall of India
Programming with C, Byron S. Gottfried, Schaum’s
Outline Series, 2nd Edition, Tata McGraw-Hill, 2006
The Spirit of C by Henry Mullish and Herbert Cooper,
Jaico Publishing House, 2006
Any good book on ANSI C
How to solve it by computer, R G Dromey,
Prentice-Hall International, 1982

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 6 / 495

http://cse.iitkgp.ac.in/courses/pds/

Outline Course objectives

Course objectives

‘C’ programming
Problem solving

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 7 / 495

Outline Course objectives

‘C’ programming

Easier part of the course
Programs should be grammatically correct (easy)
Programs should compile (easy)
Good programming habits
Know how to run programs
What do we write the program for?
Usually to solve a problem

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 8 / 495

Outline Course objectives

Problem solving

Harder part of the course
Requires creative thinking
One writes a program to make the computer carry out the steps
identified to solve a problem
The solution consists of a set of steps which must be carried out in
the correct sequence – identified manually (by you)
This is a “programme” for solving the problem
Codification of this “programme” in a suitable computer language,
such as ‘C’ is computer programming
Solution to the problem must precede writing of the program

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 9 / 495

Simple programming exercise

Section outline

2 Simple programming exercise
Sum of two numbers
A few shell commands

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 10 / 495

Simple programming exercise Addition

Summing two numbers

Let the two numbers be a and b
Either Assign some values to a and b

Example: a = 6 and b = 14
Or Read in values for a and b

Let the sum be s = a + b
How to know the value of s – display it?

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 11 / 495

Simple programming exercise Addition

Sum program

We should do each program in a separate directory.
Open first terminal window and do the following:

Command shell:
$ mkdir sum
$ cd sum
$ gvim sum.c &

Enter the following lines in a text file sum.c using your preferred editor
such as: vi, gvim, emacs, kwrite, etc.

Editor:
a=6;
b=14;
s=a+b;

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 12 / 495

Simple programming exercise Addition

Sum program (contd.)

We first need to compile the program using the cc command

Compile it:
$ cc sum.c -o sum
sum.c:1: warning: data definition has no type or storage class
sum.c:2: warning: data definition has no type or storage class
sum.c:3: warning: data definition has no type or storage class
sum.c:3: error: initializer element is not constant
make: *** [sum] Error 1

A few more things need to be done to have a correct ‘C’ program

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 13 / 495

Simple programming exercise Addition

Sum program (contd.)

Edit sum.c so that it as
follows:

Editor:
int main() {
int a=6;
int b=14;
int s;

s=a+b;

return 0;
}

Compile it and run it:
$ cc sum.c -o sum
$ $./sum
$

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 14 / 495

Simple programming exercise Addition

Sum program (contd.)

There is no output!
We need to add a statement to print s
Edit sum.c so that it as follows:

Editor:
int main() {
int a=6;
int b=14;
int s;

s=a+b;
printf ("sum=%d\n", s);

return 0;
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 15 / 495

Simple programming exercise Addition

Sum program (contd.)

Compile it:
$ cc sum.c -o sum
sum.c: In function ‘main’:
sum.c:7: warning: incompatible implicit declaration of built-in function ‘printf’

The printf ‘C’-function is not being recognised in the correct way.

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 16 / 495

Simple programming exercise Addition

Sum program (contd.)

Edit sum.c so that it as follows:

Editor:
#include <stdio.h>
int main() {
int a=6;
int b=14;
int s;

s=a+b;
printf ("sum=%d\n", s);

}

Files with suffix ‘.h’ are meant to contain definitions, which you will see
later.

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 17 / 495

Simple programming exercise Addition

A glimpse of stdio.h (contd.)

Usually located under /usr/include/

Editor:
// ...
#ifndef STDIO H

#if !defined need FILE && !defined need FILE
define STDIO H 1
include <features.h>

BEGIN DECLS

define need size t
define need NULL
include <stddef.h>

// ...

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 18 / 495

Simple programming exercise Addition

A glimpse of stdio.h (contd.)

Editor:
// ...
/* Write formatted output to stdout.

This function is a possible cancellation point and
therefore not
marked with THROW. */

extern int printf (const char * restrict format, ...);
/* Write formatted output to S. */
extern int sprintf (char * restrict s,

const char * restrict format, ...) THROW;
// ...

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 19 / 495

Simple programming exercise Addition

Sum program (contd.)

Earlier commands...
$ mkdir sum
$ cd sum
$ gvim sum.c &

Compile it:
$ cc sum.c -o sum
$

Run it:
$./sum
sum=20

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 20 / 495

Simple programming exercise Addition

Sum program (contd.)

This program is only good for adding 6 and 14
Not worth the effort!
Let it add two integer numbers
We will have to supply the numbers.
The program needs to read the two numbers

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 21 / 495

Simple programming exercise Addition

Sum program (contd.)

Edit sum.c so that it as follows:

Editor:
#include <stdio.h>
// program to add two numbers
int main() {
int a, b, s;

scanf ("%d%d", &a, &b);
s=a+b; /* sum of a & b */
printf ("sum=%d\n", s);

return 0;
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 22 / 495

Simple programming exercise Addition

Sum program (contd.)

Compile it:
$ cc sum.c -o sum
$

Run it:
$./sum
10 35
sum=45

Is this programm easy to use?
Can the programme be more interactive?

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 23 / 495

Simple programming exercise Addition

Sum program (contd.)

Editor:
#include <stdio.h>
// program to add two numbers
int main() {
int a, b, s;

printf ("Enter a: "); // prompt for value of a
scanf ("%d", &a); // read in value of a
printf ("Enter b: "); // prompt for value of b
scanf ("%d", &b); // read in value of b
s=a+b; /* sum of a & b */
printf ("sum=%d\n", s);

return 0;
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 24 / 495

Simple programming exercise Addition

Sum program (contd.)

Earlier commands...
$ mkdir sum
$ cd sum
$ gvim sum.c &

Compile it and run it:
$ cc sum.c -o sum
$./sum
Enter a: 10
Enter b: 35
sum=45

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 25 / 495

Simple programming exercise A few shell commands

A few shell commands

When a new terminal window is opened, a command shell is run
inside it
This command shell usuall provides a (shell) prompt which is
often a short string ending with ‘$’ or ‘>’
The command shell can run shell commands, such as “ls”, “mkdir
dirName”, “cd targetDir”, “cd ..”, “rm fileName”
It can also run other programs, such “gvim fileName.c &”, “gcc
fileName.c -o fileName”
The ‘&’ at the end of the command causes the command to run in
the background and the shell prompt re-appears so that a new
command can be executed

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 26 / 495

Simple programming exercise A few shell commands

Sum program (contd.)

Can this program add two real numbers?

Run it:
$./sum
Enter a: 4.5
Enter b: sum=-1077924036

Representation of data in computers is an important issue.
“Integer” numbers and “real” numbers have different (finite)
representations in computers
Different computers (computer architectures) may have
incompatible representations
It is important that programs written in high-level languages be
architecture independent (as far as possible)

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 27 / 495

Simple programming exercise A few shell commands

Variables

Variable names are formed out of letters: a..z, A..Z; digits: 0..9
and the underscore: ‘ ’
A variable name may not start with a digit
a a_b, a5, a_5, _a
Variable names should be sensible and intuitive – no need for
excessive abbreviation – smallest, largest, median,
largest_2

Convenient to start variable names with lower case letters – easier
to type
Upper case letters or ‘ ’ may be used for multi-word names –
idxL, idxR, idx_left, idx_right, idxLeft, idxRight

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 28 / 495

Simple programming exercise A few shell commands

Typing of variables

In ‘C’ variables hold data of a particular type, such as int.
We will see more on types later. Common base types are as follows:

int for storing “integers” – actually a small subset of integers
float for storing “real numbers” – actually a small subset thereof
char for storing characters – letters, punctuation marks, digits

as “letters”, other characters

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 29 / 495

Simple programming exercise A few shell commands

Example of variable declarations

Editor
int count, idx, i=0;
float avg=0.0, root 1, root 2;
char letter=’a’, digit=’0’, punct=’:’;
char name[30]; // for a string of characters

Storage of strings require use of arrays, to be seen later
User defined are possible, also to be seen later

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 30 / 495

Simple printing and reading data

Section outline

3 Simple printing and reading data
Printing
Reading data

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 31 / 495

Simple printing and reading data Printing

Use of printf

printf ("sum=%d\n", s);

It is actually a ‘C’-function, that takes a number of parameters
‘C’-functions are to be discussed later, in detail
For now, we only learn to use printf and scanf

The parameters taken by the above call to printf are as follows:
"sum=%d\n"

s

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 32 / 495

Simple printing and reading data Printing

Use of printf (contd.)

The argument "sum=%d\n" is the format argument, it says
the string sum= is to be printed, then
and integer is to be printed in place of %d, in decimal notation, and
finally
\n is to be printed, resulting in a newline
%d is a place holder for an integer,
the second argument s takes the place of that integer
In the example the value of s was 45
Suppose that 45 is internally represented as 0101101
Because of the %d, the value gets printed as 45, in decimal
notation
Other notations are also possible

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 33 / 495

Simple printing and reading data Printing

Also hexadecimal and octal

Editor: sum2.c
int main() {
int a=10, b=35, s;

s=a+b;
printf ("sum: %d(dec), %x(hex), %X(HEX), %o(oct)\n",
s, s, s, s);

return 0;
}

Compile and run:
$ cc sum2.c -o sum2
$./sum2
sum: 45(dec), 2d(hex), 2D(HEX), 55(oct)

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 34 / 495

Simple printing and reading data Printing

Printing real numbers

The ‘C’ terminology for real numbers is float
The conversion specifier for a “real” number is f,
commonly used as %f
The result of dividing 5345652.1 by 3.4 may be printed as:
printf("%f\n", 5345652.1/3.4);

Output: 1572250.617647
Number of places after the decimal point (radix character)
(precision) can be changed
printf("%.8f\n", 5345652.1/3.4);

Output: 1572250.61764706
Length (field width) can be changed
printf("%14.4f\n", 5345652.1/3.4);

Output: 1572250.6176

More details: man 3 printf

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 35 / 495

Simple printing and reading data Printing

More conversion specifiers (in brief)

d,i The int argument is converted to signed decimal
notation

o,u,x,X The unsigned int argument is converted to unsigned
octal (o), unsigned decimal (u), or unsigned hexadecimal
(x and X) notation

f,F The double argument is rounded and converted to
decimal notation in the style [-]ddd.ddd

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 36 / 495

Simple printing and reading data Printing

More conversion specifiers (contd.)

e,E The double argument is rounded and converted in the
style [-]d.ddde±dd where there is one digit before the
decimal-point character and the number of digits after it is
equal to the precision; if the precision is missing, it is
taken as 6; if the precision is zero, no decimal-point
character appears. An E conversion uses the letter E
(rather than e) to introduce the exponent. The exponent
always contains at least two digits; if the value is zero, the
exponent is 00.

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 37 / 495

Simple printing and reading data Printing

More conversion specifiers (contd.)

c The int argument is converted to an unsigned char,
and the resulting character is written.

s Characters from the array are written up to (but not
including) a terminating NUL character. A length
(precision) may also be specified.

p The void * pointer argument is printed in hexadecimal
% To output a %

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 38 / 495

Simple printing and reading data Reading data

Revisiting earlier call to scanf

scanf ("%d", &a); differs from a similar call to printf

printf ("sum=%d\n", s); – the ‘&’
In case of printf, the decimal value contained in s is to be
printed
In the call printf ("sum=%d\n", s);, the value of s (say, 45)
was passed on for printing
In case of scanf, (as in the call above) there is no question of
passing on the value of a, instead
we want to receive a value of a
How is that to be achieved?

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 39 / 495

Simple printing and reading data Reading data

An analogy to scanf

Suppose that you wish to place an order to purchase a sack of
rice from a shop
You supply the shop keeper the address of your house for
delivering (or putting) the product there
How about supplying scanf the address of a so that it can put an
integer there
&a is simply the address of the variable a, which is supplied to
scanf for reading in an integer into a

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 40 / 495

Simple printing and reading data Reading data

Simple view of (little endian) (int) data storage

...
address
v_1 00000000 00011110 00111000 11001011
address 3071 3070 3069 3068
a 00000000 00010100 00101110 11101011
address 3075 3074 3073 3072
...
address
s 00000000 00000000 00000000 00101101
address 3875 3874 3873 3872
...
address

Value of s is 45, address of s is 3872 and address of a is 3072
Garbage in a. NB: Addresses are divisible by 4 (why?)

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 41 / 495

Simple printing and reading data Reading data

Simple use of scanf

scanf ("%d", &int_variable); – to read an integer – for
converting a number given in decimal notation to the internal
integer representation a pointer to an int should be supplied
scanf ("%f", &float_variable); – to read a float – for
converting a “real number” given in decimal form or in scientific
notation to the internal “real number” representation a pointer to a
float should be supplied
scanf ("%c", &char_variable); – to read a single
character – for converting a character to the internal character
representation
scanf ("%s", string_variable); – to read a string of
characters, note the missing &

to be seen latter – string variables are addresses rather than
values

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 42 / 495

Simple printing and reading data Reading data

More on scanf

The format string consists of a sequence of directives which
describe how to handle the sequence of input characters
If processing of a directive fails, no more input is read, and scanf
returns
A directive can be:

WS space, tab, etc.; results in skipping any amount (0 or
more) of white space (used to skip white space)

ordinary (not WS or %); which should be matched exactly (not
commonly used)

conversion heavily used
man 3 scanf for more details
options are rich to enable reading of data from formatted outputs
few of those options to be visited later

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 43 / 495

Simple printing and reading data Reading data

Illustrating scanf

Editor:
#include <stdio.h>
// program to add two numbers
int main() {
int z; char c;
printf("Enter an int: ");scanf("%d", &z);
printf("You entered %d\n", z);
printf("Enter a char: ");scanf("%c", &c);
printf("You entered ‘%c’\n", c);
printf("Enter another char: ");scanf(" %c", &c);
printf("You entered ‘%c’\n", c);

return 0;
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 44 / 495

Simple printing and reading data Reading data

Illustrating scanf

Compile and run:
$ cc scan.c -o scan
$./scan
Enter an int: 5
You entered 5
Enter a char: You entered ‘
’
Enter another char: w
You entered ‘w’

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 45 / 495

Compiler preprocessor directives

Section outline

4 Preprocessor
Including files
Macros
Conditional compilation

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 46 / 495

Compiler preprocessor directives Including files

Including files

I #include <stdio.h>

The <> braces indicate that the file must be included from the
standard compiler include paths, such as /usr/include/

I #include "listTyp.h"

Search path is expanded to include the current directory if double
quotes are present
Error if file is absent
Entire text of the file replaces the #include directive

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 47 / 495

Compiler preprocessor directives Macros

Macro definition and expansion

I #define PI 3.14159

... area = PI * r * r;

Occurrence of PI is replaced by its definition, 3.14159
I #define RADTODEG(x) ((x) * 57.29578)

deg = RADTODEG(PI);

This is a parameterised macro definition, expanded to
((PI) * 57.29578), in turn expanded to
((3.14159) * 57.29578)

I #define NUM1 5+5

#define NUM2 (5+5)

What is the value of NUM1 * NUM2 ?

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 48 / 495

Compiler preprocessor directives Conditional compilation

Conditional compilation
Generic:
#ifdef NAME
// program text
#else
// more program
text
#endif

Specific:
#define DEBUG 1
// above line to be
// dropped if not debugging
#ifdef DEBUG
printf("x=%d, y=%d(dbg)\n",
x, y); // y is extra

#else
printf("x=%d\n", x);
// only the essential
// matter is printed

#endif

Part between #ifdef DEBUG and #else compiled only is DEBUG
is defined (as a macro)
Otherwise part between #else and #endif is compiled

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 49 / 495

Compiler preprocessor directives Conditional compilation

Conditional compilation (contd)

Editing of files to supply definition of DEBUG can be avoided, but
defining via the command line: gcc -D DEBUG ... to define
DEBUG

In this case compilation will happen for the situtation where DEBUG
is defined
Regular command line (without -D DEBUG) will not define DEBUG
and result in compilation for the situtation where DEBUG is
undefined

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 50 / 495

Compiler preprocessor directives Conditional compilation

Syllabus (Theory)

Introduction to the Digital Computer;
Introduction to Programming – Variables, Assignment; Expressions;
Input/Output;
Conditionals and Branching; Iteration;
Functions; Recursion; Arrays; Introduction to Pointers; Strings;
Structures;
Introduction to Data-Procedure Encapsulation;
Dynamic allocation; Linked structures;
Introduction to Data Structure – Stacks and Queues; Searching and
Sorting; Time and space requirements.

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 51 / 495

Part II

Routines and scope

5 Routines and functions

6 Scope

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 52 / 495

Routines and functions

Section outline

5 Routines and functions
Routines
Examples of routines
Main routine
Parameterised routines
Formal and actual parameters
Function anatomy
Functions and macros

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 53 / 495

Routines and functions Routines

Routines

An important concept – a sequence of steps to perform a specific
task
Usually part of a bigger program
While programs are run, routines are invoked – from within the
program or from other routines
Routines are a often invoked with parameters
Recursive routines may even invoke themselves, either directly or
via other routines
Routines often return a value after performing their task
Routines accepting parameters and returning values are called
functions in ‘C’
In ‘C’ routines are also recursively callablrecursively callableitem
In ‘C’, the program is treated as the “main” routine or function

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 54 / 495

Routines and functions Examples of routines

Examples of routines

A routine to add two numbers and return their sum
A routine to find and return the greatest of three numbers
A routine to reverse the digits of a number and return the result
A routine to find and return the roots of a quadratic equation
A routine to find a root of a function within a given interval
A routine to find the number of ways to choose r of n distinct items
A routine to check whether a given number is prime

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 55 / 495

Routines and functions The main routine

Summing two numbers in the main routine

Steps placed directly in
the main routine

Read two numbers
Add them and save
result in sum

Print the value of
sum

Editor:
#include <stdio.h>
// program to add two numbers
int main() {

int a, b, s;

scanf ("%d%d", &a, &b);
s=a+b; /* sum of a & b */
printf ("sum=%d\n", s);

return 0;
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 56 / 495

Routines and functions Parameterised routines

Parameterised routines

Consider the routine to add two given numbers
The routine is identified by a name, say sum(), the parentheses
help to distinguish it from the name of a variable
Numbers to be added are the parameters for the summation
routine, say x and y
Parameters play a dual role:

at the time of developing the routine
at the time of invoking the routine

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 57 / 495

Routines and functions Parameterised routines

Summation as a parameterised routine

The routine sum() takes
two parameters: int x1,
int x2, which are to be
added
These are formal
parameters
Sum x1+x2 is saved in s

Finally, s is returned
sum() is invoked from
main() with actual
parameters

Editor:
int sum(int x1, int x2) {

int s;
s=x1+x2;
return s;

}

int main() {
int a=6;
int b=14;
int s;
s=sum(a, b);
return 0;

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 58 / 495

Routines and functions Formal and actual parameters

Formal and actual parameters

At the time of developing a routine, the actual values to be worked
upon are not known
Routine must be developed with placeholders for the actual values
Such placeholders are called formal parameters
When the routine is invoked with placeholders for values to be
added, say as sum (4, 5+3) or sum (a, b), where a and b
are variables used in the routine from where sum() is called, e.g.
main()

Parameters actually passed to the function at the time of
invocation are called actual parameters
For ‘C’ programs, values resulting from evaluation of the actual
parameters (which could be expressions) are copied to the formal
parameters
This method of parameter passing is referred to as call by value

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 59 / 495

Routines and functions Function anatomy

Function anatomy

Function name main, sum
Parameter list (), (int x1, int x2)

Return type int
Function body { statements }
Return statement return 0;

main() should return an int:
0 indicates regular

(successful) termination
of program

1 or any non-zero
indicates faulty
termination of program

Formal parameters x1, x2

Actual parameters a, b+5

Editor:
int sum(

int x1, int x2) {
int s;
s=x1+x2;
return s;

}

int main() {
int a=6;
int b=14;
int s;
s=sum(a, b+5);
return 0;

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 60 / 495

Routines and functions Function anatomy

About using functions

Coding becomes more structured – separation of usage and
implementation
Repetition of similar code can be avoided
Recursive definitions are easily accommodated
Avoid non-essential input/output inside functions

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 61 / 495

Routines and functions Function anatomy

Parameter passing

Editor:
int sum fun (int a, int b) {
return a + b;

}
...
int x=5;
sum fun(x++, x++) ;

...

What are the actual parameters to sum_fun ?
If the first parameter is evaluated first, then invocation takes place as
sum_fun(5, 6)
If the second parameter is evaluated first, then invocation takes place as
sum_fun(6, 5)
The language standard does not specify the order of parameter
evaluation
Bad practice to use function calls that are sensitive to the order of
parameter evaluation

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 62 / 495

Routines and functions Functions and macros

Functions and macros

Example
#define isZero(x) (x < EPSILON && x > -EPSILON)
int isZero(x) {
return (x < EPSILON && x > -EPSILON) ;
}

A function is called, as already explained
A macro is expanded where it is used,

the call is replaced by its definition
text of the parameters, if any, gets copied wherever they are used

Example
isZero(2+3) → (2+3 < EPSILON && 2+3 > -EPSILON)

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 63 / 495

Scope of declarations

Section outline

6 Scope
Function scope
Block scope
Global variables
Static variables

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 64 / 495

Scope of declarations Function scope

Function scope
Editor:
#include <stdio.h>
float sq x plus2 (float x) {
x += 2; // increment x by 2
x *= x; // now square
return x;

}
main() { float x=5.0;
printf("sq x plus2(%f)=%f\n",

x, sq x plus2(x));
printf("x=%f\n", x);

}

Compile and run:
$cc sq x plus2.c -o sq x plus2
$./sq x plus2
sq x plus2(5.000000)=49.000000
x=5.000000

Scope of a declaration is
the part of the program to
which it is applicable
The variables named x in
sq_x_plus2() and
main() are independent
Scope of a variable is
restricted to within the
function where it is
declared
Scope of a function
parameter extends to all
parts within the function
where it is declared

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 65 / 495

Scope of declarations Block scope

Block scope

Simple example
#include <stdio.h>
float sq x plus2 (float x) {

x += 2; // increment x by 2
x *= x; // now square
return x;

}
main() {
float x=5.0;
printf("sq x plus2(%f)=%f\n",

x, sq x plus2(x));
printf("x=%f\n", x);
{ // new sub-block
int x;
// scope of x

}
}

Scope in blocks
fun(int test) {
int test; // invalid
// clash with test

}
main() {
int test;
// scope of test
{ // new sub-block
int test;
// scope of test
}
{ // another sub-block
int test;
// scope of test
}

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 66 / 495

Scope of declarations Global variables

Global variables

File 1
int varA; // global
// scope, normal memory
// allocation is done

File 2
extern int varA;
// no allocation
// of memory

Scope of variable declaration outside a function is global to all
functions
Declaration is overridden by a variable of the same name in a
function or a block therein
A global variable in one file can be linked to the declaration of the
same variable (matching in type) in another file via the extern
keyword
Declaration with extern does not lead to memory allocation for
declared item – instead linked to original declaration

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 67 / 495

Scope of declarations Static variables

Static variables

File 1
static int varA; // global
// but only in this file
void funA() {
static int callCntA;

// local to this function, value
// retained across function calls
callCntA++; // keeps count of
// calls to funA()
}
void funB() {
int varD;

// local and value not retained
// across function calls
}

static variables
have linkage
restricted to
declarations and
definitions within
local file
static variables
declared wthin
functions retain
value across
function calls
Conflicts with
re-entrant nature of
functions

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 68 / 495

Scope of declarations Static variables

Usage of static

Except for special applications, where static is convenient, it
should not be used
Unlike “normal” variables within functions, which are allocated
fresh with every function call, static variables are not
extern and static do not mix (oxymoron)
Non-re-entrant nature of static can be a problem if used
carelessly in functions

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 69 / 495

Part III

Operators and expression evaluation

7 Operators and expression evaluation

8 Examples

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 70 / 495

Expressions

Section outline

7 Operators and expression evaluation
Operators
Associativity and Precedence Relationships

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 71 / 495

Expressions Operators

Arithmetic operators

Binary + Add int and float
int + int is int
any other combination, eg int + float is float

Binary - Subtract int and float
int - int is int
any other combination, eg float - int is float

Binary * Multiply int and float
int * int is int
any other combination is float

Binary / Divide int and float
int / int is int (quotient)
any other combination, eg float * float is float
(result is as for “real division”)

Binary % Remainder of dividing int by int
No exponentiation ‘C’ does not provide an exponentiation operation

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 72 / 495

Expressions Operators

Assignments

variable = expression
int a ; a = 10 / 6 ; value of a ? 1; integer division
float x ; x = 10 / 6 ; value of x ? 1.0; division is still
integer only value is stored in a float

float x ; x = 10.0 / 6.0 ; value of x ? 1.666666; “real
division”
int b ; x = 10.0 / 6.0 ; value of b ? 1; still “real
division” but result is assigned to int after truncation
int a ; float x ; a = (int) x ;
the float value is cast into an int and then that value is
assigned to a

int a ; float x ; x = a ;
type casting still happens, but is done automatically

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 73 / 495

Expressions Operators

Short hands

variable = variable operator expression may be written as
variable op= expression
a = a + 14.3 ; is equivalent to a += 14.3 ;

Distraction for new programmers, better avoid (for now), but
Need to know to understand programs written by others

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 74 / 495

Expressions Operators

Short hands (contd.)

a += b ; /* equivalent to a = a + b */
a -= b ; /* equivalent to a = a - b */
a *= b ; /* equivalent to a = a * b */
a /= b ; /* equivalent to a = a / b */
a &= b ; /* equivalent to a = a & b (bit wise AND) */
a |= b ; /* equivalent to a = a | b (bit) wise OR */
a ˆ= b ; /* equivalent to a = a ˆ b (bit) wise XOR */

A useful syntax for small if constructions is the expression

b ? c : d /* evaluates to c if b is true, and d otherwise */

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 75 / 495

Expressions Operators

++ --

int a, b ;

a = b ; b = b + 1 ; may be written as
a = b++ ; post-increment ; know, but avoid (for now)
b = b + 1; a = b ; may be written as
a = ++b ; pre-increment
a = b ; b = b - 1 ; may be written as
a = b-- ; post-decrement
b = b - 1; a = b ; may be written as
a = --b ; pre-decrement
Not an aid to problem solving!

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 76 / 495

Expressions Operators

Side effects

Consider the two statements: x=a+1; and y=a++;

Both x and y have the same value
Now consider the statements: a+1; x=a+1; a++; y=a++;

x and y now have different values
This is because the ++ (every pre/post – increment/decrement
operator) changes the value of their operand
This is called a side effect
Thus these operators should be used only when this side effect is
desired

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 77 / 495

Expressions Associativity and Precedence Relationships

Associativity

1 + 2 + 3 = (1 + 2) + 3 = 5

1 - 2 - 3 = (1 - 2) - 3 = -4

1 - (2 - 3) = 2 (not -4), associativity matters!

When ⊕ is left associative:
a⊕ b ⊕ c = (a⊕ b)⊕ c

When ⊕ is right associative:
a⊕ b ⊕ c = a⊕ (b ⊕ c)

2+3-4*5/6 ? 2 or 5, result is 2, BODMAS applies, but set of
operators in ‘C’ is richer

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 78 / 495

Expressions Associativity and Precedence Relationships

Bit operators (to be covered later)

~ complement
« variable « n, left shift n bits
» variable » n, right shift n bits
& bit wise AND
| bit wise OR

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 79 / 495

Expressions Associativity and Precedence Relationships

Precedence

() [] -> . left to right
! ~ (bit) ++ -- - (unary) * (indirection) &
(address-of) sizeof casts right to left
* / % binary, left to right
+ - (subtraction) binary, left to right
« » binary (bit), left to right
< <= >= > binary, left to right
== != binary, left to right
& (bit) binary, left to right
ˆ (bit) binary, left to right
| (bit) binary, left to right
&& binary, left to right
|| binary, left to right
?: binary, right to left
= += -= *=, etc. binary, right to left
, binary, left to right

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 80 / 495

Examples

Section outline

8 Examples
Digits of a Number
Area computations
More straight line coding

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 81 / 495

Examples Digits of a Number

Extracting units and tens values from a decimal
number

Let the number be n
Units: n mod 10
Hundreds: (n/10) mod 10

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 82 / 495

Examples Digits of a Number

Program

Editor:
#include <stdio.h>

main() {
int n, units, tens;

printf ("enter an integer: ");
scanf ("%d", &n);
units = n % 10;
tens = (n/10) % 10;
printf ("number=%d, tens=%d, units=%d\n",
n, tens, units);

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 83 / 495

Examples Digits of a Number

Results

Compile and run:
$ cc digits.c -o digits
$./digits
enter an integer: 3453
number=3453, tens=5, units=3

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 84 / 495

Examples Area computations

Computing the area of a circle

Let the radius be n
Area: πr2

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 85 / 495

Examples Area computations

Program

Editor:
#include <stdio.h>
#include <math.h>

main() {
float r, area;

printf ("enter the radius: ");
scanf ("%f", &r);
area = M PI * r * r;
printf ("radius=%f, area=%f\n", r, area);

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 86 / 495

Examples Area computations

Results

Compile and run:
$ cc circle.c -o circle
$./circle
enter the radius: 3.6
radius=3.600000, area=40.715038

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 87 / 495

Examples Area computations

Computing the area of an equilateral triangle

Let the side be s
Area: s2sin(π/3)

2

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 88 / 495

Examples Area computations

Program

Editor:
#include <stdio.h>
#include <math.h>

main() {
float s, area;

printf ("enter the side: ");
scanf ("%f", &s);
area = 1.0/2.0 * s * s * sin(M PI/3);
printf ("side=%f, area=%f\n", s, area);

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 89 / 495

Examples Area computations

Results

Compile and run:
$ cc eqTri.c -o eqTri -lm
$./eqTri
enter the side: 10.0
side=10.000000, area=43.301270

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 90 / 495

Examples More straight line coding

More straight line coding

Simple interest
Compound interest
Mortgage computation
Solving a pair of linear simultaneous equations
Finding the largest positive integer representable in the CPU

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 91 / 495

Examples More straight line coding

Syllabus (Theory)

Introduction to the Digital Computer;
Introduction to Programming – Variables, Assignment; Expressions;
Input/Output;
Conditionals and Branching; Iteration;
Functions; Recursion; Arrays; Introduction to Pointers; Strings;
Structures;
Introduction to Data-Procedure Encapsulation;
Dynamic allocation; Linked structures;
Introduction to Data Structure – Stacks and Queues; Searching and
Sorting; Time and space requirements.

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 92 / 495

Part IV

CPU

9 Programmer’s view of CPU

10 Integer representation

11 Real number representation

12 Elementary data types

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 93 / 495

Programmer’s view of CPU

Section outline

9 Programmer’s view of CPU
Programming
ISA
Storage
Assembly
CPU operation
Instruction sequencing
Around the CPU

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 94 / 495

Programmer’s view of CPU Programming

High-level versus low-level languages

We have mentioned that ‘C’ is a high-level programming language, also
Java, C++, FORTRAN, and others
High-level because they keep us away from then nitty-gritty details of
programming the computer (its central processing unit)
Computer has its own set of instructions that it understands – machine
language – just a sequence of 0’s and 1’s
Compiler translates high-level language programs to machine language,
usually via the corresponding assembly language – little better for us
cc: ‘C’ – compile→ assembly language – assemble→ machine
language
One-to-one correspondence (nearly) between assembly language of the
machine (CPU) and the machine language of the CPU
To understand, how a computer (CPU) works, we shall try to understand
its working at the assembly language level
The programmer’s view of the CPU with its registers, memory and
register addressing schemes and its instructions make up its Instruction
Set Architecture (ISA)

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 95 / 495

Programmer’s view of CPU ISA

Instruction set architecture (ISA) – Not for exams

The Instruction Set Architecture (ISA) is the part of the processor that
is visible to a programmer – an abstract view of it

Registers What registers are available for keeping data in the CPU
(apart from the main memory, outside the CPU)?
Can store integers, floating point numbers (usually) and other
simple types of data
How can data be addressed?
We can usually refer to the registers as R1, R2, etc.
We can usually refer to memory locations directly (such as 3072)
Can we store an addresses in a register and then use it “indirectly”
– put 3072 in R1 and use it via R1? – and so on
What can be done within the CPU (by way of CPU instructions) –
add data, move data between places, make decisions, jump to
some instruction, etc

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 96 / 495

Programmer’s view of CPU Storage

[Storage of variables]

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 97 / 495

Programmer’s view of CPU Storage

Sum of two numbers revisited

Editor:
main() {
int a=6;
int b=14;
int s;
s=a+b;

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 97 / 495

Programmer’s view of CPU Storage

What is there in the variables?
...
address
a(=6) 00000000 00000000 00000000 00000110
address 3075 3074 3073 3072
b(=14) 00000000 00000000 00000000 00001110
address 3079 3078 3077 3076
s 01010011 11001010 10101111 11010010
address 3083 3082 3081 3080
...
address

Usual for declared to be allocated space in the (main) memory

Allocated memory locations for a, b and s are depicted

Locations for a and b are shown to contain their initial values

Location for s is shown to contain a “garbage” value

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 98 / 495

Programmer’s view of CPU Assembly

Translated to assembly language

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 99 / 495

Programmer’s view of CPU Assembly

Sum of two numbers revisited (contd.)

Editor:
main() {
int a=6; // LDI R1, 06; STM R1, 3072;
int b=14; // LDI R1, 14; STM R1, 3076;
int s; // Nothing to do
s=a+b; // LDM R1, 3072; LDM R2, 3076;

// ADD R3, R1, R2; STM R3, 3080;
}

Suppose a, b and s are located in the main memory at addresses
3072, 3076 and 3080, respectively.
LDI: LoaD Immediate operand
STM: STore operand in Memory
LDM: LoaD operand from Memory
ADD: ADD last two registers and store in first

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 99 / 495

Programmer’s view of CPU CPU operation

[Working of the ADD instruction]

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 100 / 495

Programmer’s view of CPU CPU operation

How was the ADD done?

The CPU has a component (Arithmetic Logic Unit (ALU)) that can
perform arithmetic operations such as: addition, subtraction,
multiplication and division
Multiplication and division are more complex than addition and
subtraction
Not all CPUs have ALUs capable of multiplication and division
ALU can also perform logical operations such a comparing two
numbers and also performing bit wise operations on them
Bit wise operations will be considered later

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 100 / 495

Programmer’s view of CPU Instruction sequencing

Which instruction to execute?

We knew which instruction was to be executed, but how does the
CPU know?
Instructions are also stored in memory in sequence – each
instruction has an address
A special CPU register, the program counter (PC) keeps tract of
the instruction to be executed
After an instruction at the memory location pointed to by the PC is
fetched, the PC value is incremented properly to point to the next
instruction
JMP instructions cause new values to be loaded into the PC

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 101 / 495

Programmer’s view of CPU Instruction sequencing

Test yourselves – Not for exams

06, 14 ? immediate operands
R1, R2, R3 ? CPU registers
3072, 3076, 3080 ? addresses of memory locations (for a, b and
s)
LDI ? LoaD Immediate operand – CPU instruction
STM ? STore operand in Memory – CPU instruction
LDM ? LoaD operand from Memory – CPU instruction
ADD ? ADD last two registers and store in first – CPU instruction
LDI, STM, LDM, ADD – instruction pnemonic codes (instruction
short forms)
Contemporary CPUs have lots of instructions
PC ? Program counter

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 102 / 495

Programmer’s view of CPU Around the CPU

Beyond the main memory

Program was magically there in the main memory
How does it get there?
How does the program receive user inputs?– those are not
available in the main memory
How does data appear on the screen? – not enough to store data
in the main memory
Additional “helper hardware” is needed – peripheral devices,
which help the CPU to do input/output (i/o)
Important i/o operations: reading and writing from the hard disk,
receiving keystrokes from the keyboard, displaying characters on
the terminal and others

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 103 / 495

Programmer’s view of CPU Around the CPU

Peripheral devices – Not for exams

But how does the CPU communicate with peripheral devices?
Special memory locations reserved to work with peripheral devices
These locations are outside the main memory but are accessed by
memory operations!
These locations have special meaning associated with them
For example, to print a character, the CPU could

check a specially designated memory location (1) to know that the
device is ready to receive a character
then write the character to be output to another specially
designated memory location (2)
Write a special code at the specially designated location (1) to
indicate that there is new data to be output
The device would then know that it should now output the character
and do its job
Note that “hand shaking” with the peripheral device is involved in
this case

I/O operations are involved, but this is the basic principle
Efficient mechanisms have been evolved to conduct i/o operations

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 104 / 495

Programmer’s view of CPU Around the CPU

A classroom CPU design – Not for exams

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 105 / 495

Integers

Section outline

10 Integer representation
Valuation scheme
Decimal to binary
Negative numbers
Summary of NS
Hexadecimal and octal

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 106 / 495

Integers Valuation scheme

Representation of Integers

Mathematically, an integer can have an arbitrarily large value
Representation on a computer is inherently finite
Only a subset of integers can be directly represented
We shall consider binary representation, using 0’s and 1’s
A sequence of n binary bits will be numbered as
bn−1bn−2 . . . b2b1b0

Its value will be defined as
bn−12n−1 + bn−22n−1 + . . .+ b222 + b121 + b020

Value of 0 1 1 0 1 0 1 0 ?
0× 27 + 1× 26 + 1× 25 + 0× 24 + 1× 23 + 0× 22 + 1× 21 + 0× 20

0×127+1×64+1×32+0×16+1×8+0×4+1×2+0×1 = 106
Binary number system is of base 2 or radix 2
Bit position i has a weight of 2i

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 107 / 495

Integers Decimal to binary

Decimal to binary

Binary of 106? 0 1 1 0 1 0 1 0

By repeated division
106 Remainder

After division by 2 53 0 (b0)
After division by 2 26 1 (b1)
After division by 2 13 0 (b2)
After division by 2 6 1 (b3)
After division by 2 3 0 (b4)
After division by 2 1 1 (b5)
After division by 2 0 1 (b6)
After division by 2 0 0 (b7)

Divide k times for a binary representation in k -bits (0..(k − 1))

Maximum value of a binary number of k -bits: 2k − 1 (255, if k = 8)

What if original number is larger than 2k − 1 (say 1000, for k = 8)?

Coverted value of binary number = (Original number) modulo 2k

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 108 / 495

Integers Decimal to binary

Simple view of modulo 2k

N ≡ bn−1bn−2 . . . bk . . . b2b1b0 has value

N = bn−12n−1 + bn−22n−1 + . . .+ bk 2k + . . .+ b222 + b121 + b020

= 2k [bn−12n−1−k + bn−22n−1−k + . . .+ bk] + b222 + b121 + b020

N mod 2k = bk−12k−1 + . . .+ b222 + b121 + b020

Simple view: just disregard all bits from position k and beyond
(k , k + 1, k + 2, . . .)

Only consider the bits at positions 0..(k − 1)

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 109 / 495

Integers Decimal to binary

Decimal to binary (contd.)

Binary of 1000? 1 1 1 0 1 0 0 0 ≡ 232

By repeated division
1000 Remainder

After division by 2 500 0 (b0)
After division by 2 250 0 (b1)
After division by 2 125 0 (b2)
After division by 2 62 1 (b3)
After division by 2 31 0 (b4)
After division by 2 15 1 (b5)
After division by 2 7 1 (b6)
After division by 2 3 1 (b7)

1000 modulo 28 (remainder of dividing 1000 by 256) = 232

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 110 / 495

Integers Negative numbers

Negative numbers

Only positive numbers represented, so far
Possible to designate one bit to represent sign
0 1 1 0 1 0 1 0 ≡ +106, 1 1 1 0 1 0 1 0 ≡ -106 –
intuitive!
Sign bit does not contribute to the value of the number
“Eats up” one bit, out of the k bits for representing the sign, only
the remaining k − 1 bits contribute to the value of the number
Binary arithmetic on signed-magnitude numbers more complex
How many distinct values can be represented in the
signed-magnitude of k -bits? 2k − 1 (why?)
Because zero has two representations

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 111 / 495

Integers Negative numbers

1’s complement operation

Definition is as follows:
Given number: N ≡ bn−1bn−2 . . . b2b1b0

1’s complement: b′n−1b′n−2 . . . b
′
2b′1b′0

(1− bn−1)(1− bn−2) . . . (1− b2)(1− b1)(1− b0)

Its value will be: (1− bn−1)2n−1 + (1− bn−2)2n−1 + . . .+ (1−
b2)22 + (1− b1)21 + (1− b0)20

2n−1 + 2n−1 + . . .+ 22 + 21 + 20 − (bn−12n−1 + bn−22n−1 + . . .+
b222 + b121 + b020)

2k − 1− N
106 ≡ 0 1 1 0 1 0 1 0

1’s complement of 106 ≡ 1 0 0 1 0 1 0 1

Possible to get rid of the (-1) in 2k − 1− N?

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 112 / 495

Integers Negative numbers

2’s complement operation

Definition (2’s complement)
The two’s complement of a binary number is defined as the value
obtained by subtracting that number from a large power of two
(specifically, from 2n for an n-bit two’s complement)

Given number: N ≡ bn−1bn−2 . . . b2b1b0

2’s complement: 1’s complement, then increment
b′n−1b′n−2 . . . b

′
2b′1b′0 + 1

2n − 1− N + 1 = 2n − N
106 ≡ 0 1 1 0 1 0 1 0

2’s complement of 106 ≡ 1 0 0 1 0 1 1 0

The MSB indicates the sign, anyway

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 113 / 495

Integers Negative numbers

Subtraction of numbers

Let the numbers be M and N (represented in k -bits), M − N=?
Let’s add 2’s complemnent of N to M: M + 2k − N
Since the representation is in k -bits, the result is inherently
modulo 2k

Hence, M + 2k − N ≡ M − N mod 2k (why?)
Subtraction is achieved by adding the 2’s complement of the
subtrahend (N) to the minuend (M)

106 - 106 =
0 1 1 0 1 0 1 0

+ 1 0 0 1 0 1 1 0
0 0 0 0 0 0 0 0 (modulo 28)

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 114 / 495

Integers Summary of NS

[Summary of number systems]

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 115 / 495

Integers Summary of NS

Comparison of the representations (8-bit)

Dec s/m 1’s cmp 2’s cmp
+127 01111111 01111111 01111111

...
+1 00000001 00000001 00000001
0 00000000 00000000 00000000
0 10000000 11111111 00000000
-1 10000001 11111110 11111111
...

-127 01111111 10000000 10000001
-128 --- --- 10000000

2k − 1 2k − 1 2k

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 115 / 495

Integers Summary of NS

Example of subtraction

106-11 (in 8-bits)
Binary of 11: 0 0 0 0 1 0 1 1

2’s complement of 11: 1 1 1 1 0 1 0 0 + 1
2’s complement

representation of -11: 1 1 1 1 0 1 0 1
Binary of 106: 0 1 1 0 1 0 1 0

+ 2’s complement of
11:

1 1 1 1 0 1 0 1

106 - 11 = 95: 0 1 0 1 1 1 1 1

NB
2’s complement represenation: It is scheme for representing 0,
+ve and -ve numbers
2’s complement of a given number: It is an operation (bitwise
complementation followed by addition of 1 (increment)) defined on
a given number represented in 2’s complement form

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 116 / 495

Integers Summary of NS

Example of adding two 2’s complement numbers

(-106) + (-11) (in 8-bits)
Binary of 106: 0 1 1 0 1 0 1 0

2’s complement of 106: 1 0 0 1 0 1 0 1 + 1
2’s complement

representation of -106: 1 0 0 1 0 1 1 0
Binary of 11: 0 0 0 0 1 0 1 1

2’s complement of 11: 1 1 1 1 0 1 0 0 + 1
2’s complement

representation of -11: 1 1 1 1 0 1 0 1
2’s complement of 106: 1 0 0 1 0 1 1 0

+ 2’s complement of 11: 1 1 1 1 0 1 0 1
(-106) + (-11) = -117: 1 0 0 0 1 0 1 1

Check the result:
2’s complement of -117: 0 1 1 1 0 1 0 0 + 1

2’s complement
representation of 117: 0 1 1 1 0 1 0 1 (okay)

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 117 / 495

Integers Summary of NS

Problems with Represenation

8-bit 2’s complement representation of -128? 10000000

2’s complement of -128 (8-bit representation)?
01111111 + 1 = ? 10000000 (inconsistent)
256 - 128 = 128
(256 - 128) % 256 = 128
8-bit 2’s complement representation of 127? 01111111

127 + 1 (in 8-bits) ?
10000000 ≡ -128
Addition of positive and negative numbers never result in a wrong
answer
If sum of two positive numbers is less than zero, then there is an
error (overflow)
If sum of two negative numbers is greater than zero, then also
there is an error (overflow)

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 118 / 495

Integers Hexadecimal and octal

Decimal to hexadecimal (base 16)

Hexadecimal of 106? 0x6A: 6(0110) A(1010)

By repeated division
106 Remainder

After division by 24 6 10 (A/1010)
After division by 24 0 6 (6/0110)

Relationship between binary and hexadecimal (hex): just group four
binary bits from the right (least significant bit position – LSB)

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 119 / 495

Integers Hexadecimal and octal

Decimal to octal (base 8)

Octal of 106? 0152: 1(001) 5(101) 2(010)

By repeated division
106 Remainder

After division by 23 13 2 (2/010)
After division by 23 1 5 (5/101)
After division by 23 0 1 (1/001)

Relationship between binary and octal (oct): just group three binary bits
from the right (least significant bit position – LSB)

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 120 / 495

Integers Hexadecimal and octal

Sum program revisited

Edit sum.c so that it as follows:

Editor: Dangers of a leading 0
#include <stdio.h>
main() {
int a=006; // octal of 6
int b=014; // octal of 12
int s;

s=a+b;
printf ("sum=%d\n", s);

}

Compile and run:
$ cc sum.c -o sum
$./sum
sum=18

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 121 / 495

Reals

Section outline

11 Real number representation
Valuation
Converting fractions
IEEE 754
Non-associative addition
Special IEEE754 numbers

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 122 / 495

Reals Valuation

(Approximate) representation of real numbers

Suppose we have: 01101010.110101
01101010 ≡ 106
.110101
≡ 1× 1

21 + 1× 1
22 + 0× 1

23 + 1× 1
24 + 0× 1

25 + 1× 1
26 = .828125

01101010.110101 ≡ 106.828125

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 123 / 495

Reals Converting fractions

(Approximate) representation of real numbers
(contd.)

Binary of 0.2? 0.0 0 1 1 0 0 1 1

By repeated multiplication
fractional
part

integral
part

0.2
After multiplication by 2 0.4 0 (b−1)
After multiplication by 2 0.8 0 (b−2)
After multiplication by 2 0.6 1 (b−3)
After multiplication by 2 0.2 1 (b−4)
After multiplication by 2 0.4 0 (b−5)
After multiplication by 2 0.8 0 (b−6)
After multiplication by 2 0.6 1 (b−7)
After multiplication by 2 0.2 1 (b−8)

Representation of 0.2 is non-terminating

Several representation options, normalised representation required
Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 124 / 495

Reals IEEE 754

IEEE 754

106.828125 = 1.06828125× 102

01101010.110101 ≡ 1.101010110101× 26

Since a 1 is always present in the normalised form, it need not be
represented explicitly – it is implicitly present

A standardised approximate 32-bit representation of real numbers is the
IEEE754 standard

s e7e6 . . . e1e0 m22m21 . . .m1m0

Its value is: (1− 2× s)× (1.m22m21 . . .m1m0)2 × 2[(e7e6...e1e0)2−127]

Exponent is in excess 127 form, exponent of 0 is represented as 127 (in
binary)

Storing a biased exponent before a normalized mantissa means we can
compare IEEE values as if they were signed integers.

When all the exponent bits are 0’s, the numbers are no longer
normalized

Denormal value: (1− 2× s)× (0.m22m21 . . .m1m0)2 × 2−126

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 125 / 495

Reals IEEE 754

A Sample Conversion

What is the decimal value of the following IEEE number?
10111110011000000000000000000000
Work on the fields individually

The sign bit s is 1.
The e field contains 01111100 = 124.
The mantissa is 0.11000... = 0.75.

Plug these values of s, e and f into our formula:
(1− 2× s)× (1.m22m21 . . .m1m0)2 × 2[(e7e6...e1e0)2−127]

This gives us
(1− 2) ∗ (1 + 0.75) ∗ 2124−127 = (−1.75× 2−3) = −0.21875.

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 126 / 495

Reals Non-associative addition

A Pitfall: Addition is not Associative

x = −2.5× 1040

y = 2.5× 1040

z = 1.0

x + (y + z) = −2.5× 1040 + (2.5× 1040 + 1.0)

= −2.5× 1040 + 2.5× 1040

= 0

(x + y) + z = (−2.5× 1040 + 2.5× 1040) + 1.0
= 0 + 1.0
= 1.0

Requires extreme alertness of the programmer
Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 127 / 495

Reals Special IEEE754 numbers

Special IEEE754 numbers

+ infinity 0 11111111 000 0000 00000000 00000000 +Inf

- infinity 1 11111111 000 0000 00000000 00000000 -Inf

Not a number ? 11111111 nnn nnnn nnnnnnnn nnnnnnnn
NaN

nnn nnnn nnnnnnnn nnnnnnnn is any non-zero
sequence of bits

Syllabus Details of IEEE754, excess 127 exponent, implicit 1 in mantissa

Special IEEE754 numbers should be known

Advanced Denormal forms

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 128 / 495

Reals Special IEEE754 numbers

Comparison of real numbers

Real numbers, as they are represented, often have errors in them

Equality test of real numbers is risky – we had done it while making
decisions on the sign of the discriminant, earlier

Better way: Define a suitably small constant with a sensible name (say
EPSILON) and then carry out the check

#define EPSILON 1.0E-8

Faulty: if (d==0) { ... }

Better: if (d<EPSILON && d>-EPSILON) { ... }

Likely to make mistakes on repeated use, better define a macro

#define isZR(x) (x)<EPSILON && (x)>-EPSILON

With macro: if (isZR(d)) { ... }

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 129 / 495

Reals Special IEEE754 numbers

Caution with macros

#define isZR(x) (x)<EPSILON && (x)>-EPSILON

What will be the expansion of isZR(y++) ?

(y++)<EPSILON && (y++)>-EPSILON

y is incremented twice

A safer version of the isZR macro?

#define isZR(x) {int _y=x; \
(_y<EPSILON && _y>-EPSILON)}

Scope of _y is restricted to the block

What will be the expansion of isZR(y++) now?

Try it out to check if it works!

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 130 / 495

Elementary data types

Section outline

12 Elementary data types
Integer variants
Size of datatypes
Portability

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 131 / 495

Elementary data types

Elementary data types

Integers in 32-bits or four bytes:int
Reals in 32-bit or four bytes: float
Characters in 8-bits or one byte:char
Real variants: float, double, long double

precision(long double) ≥ precision(double) ≥
precision(float)
Printing: float, double: %f; long double: %lf

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 132 / 495

Elementary data types Integer variants

Integer variants

Integer variants: unsigned short int, unsigned int,
unsigned long int, signed short int, signed int,
signed long int

The keyword signed is redundant and can be dropped
Printing: signed int, short, char: %d
unsigned int, unsigned short, unsigned char: %u
int, short, char: %x or %o
signed long int: %d
unsigned long int: %lu
long int: %lx or %lo

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 133 / 495

Elementary data types Size of datatypes

sizeof

sizeof(typeName)
sizeof(varName)
Not exactly a function call – handled by compiler to substitute
correct value
int s;

sizeof(int) is 4
sizeof(s) is 4

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 134 / 495

Elementary data types Portability

Portability

High-level languages are meant to be portable – should compile
and run on any platform
Strong and machine independent datatypes help to attain program
portability
Unfortunately, the ‘C’ language is not the best example of a
portable high-level programming language
Functional programming languages such as SML have better
features, but these are not commercially successful

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 135 / 495

Elementary data types Portability

Syllabus (Theory)

Introduction to the Digital Computer;
Introduction to Programming – Variables, Assignment; Expressions;
Input/Output;
Conditionals and Branching; Iteration;
Functions; Recursion; Arrays; Introduction to Pointers; Strings;
Structures;
Introduction to Data-Procedure Encapsulation;
Dynamic allocation; Linked structures;
Introduction to Data Structure – Stacks and Queues; Searching and
Sorting; Time and space requirements.

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 136 / 495

Part V

Branching and looping

13 Decision Making

14 Iteration

15 More on loops

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 137 / 495

Decision Making

Section outline

13 Decision Making
Conditionals
Dangling else
Condition evaluation
Comma operator
Switching
Simple RDs

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 138 / 495

Decision Making

Roots of a quadratic equation

Equation: ax2 + bx + c = 0,a 6= 0,a,b, c are real

Formula for roots: −b ±
√

b2 − 4ac
2a

Discriminant: b2 − 4ac
The roots are classified as one of the following three cases, depending
on the value of the discriminant:

zero Roots are equal
positive Roots are distinct and real

negative Roots are complex conjugates
Depending on the particular condition, (slightly) different computations
need to be performed

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 139 / 495

Decision Making

Program

Editor:
#include <stdio.h>
#include <math.h>
main() {
float a, b, c, d;
printf ("enter a, b, c: "); scanf("%f%f%f", &a, &b, &c);
d = b*b - 4*a*c ; // the discriminant
if (d == 0) { // roots are equal
float r = -b/(2*a) ;
printf ("equal roots: %e\n", r);
} else if (d > 0) { // roots are real
float d root = sqrt(d);
float r 1 = (-b + d root) / (2*a) ;
float r 2 = (-b - d root) / (2*a) ;
printf ("real roots: %e and %e\n", r 1, r 2);
} else { // roots are complex
float d root = sqrt(-d);
float r = -b / (2*a) ;
float c = d root / (2*a) ;
printf ("complex roots:\n %e+i%e and\n %e-i%e\n", r, c, r, c);
}
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 140 / 495

Decision Making

Results

Compile and run:
$ cc quadratic.c -o quadratic -lm
$./quadratic
enter a, b, c: 1 2 1
equal roots: -1.000000e+00
$./quadratic
enter a, b, c: 1 2 0
real roots: 0.000000e+00 and -2.000000e+00
$./quadratic
enter a, b, c: 1 1 1
complex roots:
-5.000000e-01+i8.660254e-01 and
-5.000000e-01-i8.660254e-01

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 141 / 495

Decision Making

Greater of two numbers

Numbers are: a and b
Let m be max(a,b) (in a mathematical sense)

Computation of m = max(a,b)

if (a >= b) { // a is greater (or equal to)
m = a ;
} else { // b is greater
m = b ;
}

Shorthand for m = max(a,b)

m = (a>=b) ? a : b ;

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 142 / 495

Decision Making

Greatest of three numbers

Numbers are: a,b and c
Let m be max(a,b) (in a mathematical sense) ,
then max(m, c) will be the greatest of the three numbers

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 143 / 495

Decision Making

Program

Editor:
#include <stdio.h>
main() {
int a, b, c, max now;
printf("enter a, b and c: ");
scanf ("%d%d%d", &a, &b, &c);
max now = a >= b ? a : b ; // greater of a and b
max now = c >= max now ? c : max now ; // it is now max
printf ("greatest of a, b, c: %d\n", max now);

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 144 / 495

Decision Making

Results

Compile and run:
$./greatest
enter a, b and c: 32 -45 36
greatest of a, b, c: 36

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 145 / 495

Decision Making Conditionals

Syntax – if

If-statement
statement ::= if (expression) statement
| if (expression) statement else statement

Expression
expression ::= [prefix operators] term [postfix operators]
| term infix operator expression

Expressions

A variable (or constant): a or 1, true if non-zero, otherwise false

An expression a+b or 5+3, true if non-zero, otherwise false

A comparison a==5, true if, comparison is true, otherwise false

An assignment a=b, true if non-zero, otherwise false

Repeated assignments a=b=c, true if non-zero, otherwise false

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 146 / 495

Decision Making Conditionals

Smallest of three numbers

Classroom assignment

Numbers are: a,b and c
Let m be min(a,b) (in a mathematical sense) ,
then min(m, c) will be the smallest of the three numbers

Short hand code for min(a,b) ?

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 147 / 495

Decision Making Conditionals

Quadratic revisited

Editor: Note the different branching structure
...
if (d >= 0) { // roots are real
float r 1, r 2; // the roots
if (d==0) { // roots are identical
r 1 = r 2 = -b/(2*a) ;
printf ("equal roots: ");
} else { // roots are real
float d root = sqrt(d);
r 1 = (-b + d root) / (2*a) ;
r 2 = (-b - d root) / (2*a) ;
printf ("real distinct roots: \n");
} printf ("%e and %e\n", r 1, r 2);
} else { // roots are complex
float d root = sqrt(-d);
float r = -b / (2*a) ;
float c = d root / (2*a) ;
printf ("complex roots:\n %e+i%e and\n %e-i%e\n", r, c, r, c);
}
...

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 148 / 495

Decision Making Dangling else

Dangling else

An else clause binds to the nearest preceeding if clause
Consider: if (C1) if (C2) S2 else S3

This is equivalent to: if (C1) {if (C2) S2 else S3}
because else S3 must bind to if (C2) S2, as that is the
nearest preceeding if clause
Using this rule, if (C1) if (C2) S2 else S3 else S4
works out as: if (C1) {if (C2) S2 else S3} else S4,
which is what we would intuitively expect

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 149 / 495

Decision Making Condition evaluation

Condition evaluation

Expressions are often evaluated from left to right
(a+b) * (c+d)

Either (a+b) or (c+d) may be evaluated first
Does not conflict with associativity
That is not a requirement by the language standard
In some cases the evaluation order matters
if (a!=0 && b/a>1)

if (a && c/b>1)

if (a==0 || b/a>1)

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 150 / 495

Decision Making Comma operator

Comma operator

A comma separated list of expresions, evaluated from left to right
expression-1 , expression-2 , expression-3
expression-1, then expression-2 and finally expression-3 gets
evaluated
Value of a comma separated list of expresions is the value of the
last (rightmost) expression

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 151 / 495

Decision Making Branching repeatedly

Branching on multiple case values

Editor:
printf ("enter choice (1..3): "); scanf("%d", &choice);
if (choice==1) {
// do something for choice==1

} else if (choice==2) {
// do something for choice==2

} else if (choice==3) {
// do something for choice==3

} else {
// do something default

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 152 / 495

Decision Making Branching repeatedly

switch statement

Editor:
printf ("enter choice (1..3): "); scanf("%d", &choice);
switch (choice) {

case 1: // do something for choice==1
break ; // will go to next case if break is missing

case 2: // do something for choice==2
break ; // will go to next case if break is missing

case 3: // do something for choice==3
break ; // will go to next case if break is missing

default: // do something default
break ; // recommended to put this break also

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 153 / 495

Decision Making Branching repeatedly

Syntax of switch statement

statement ::= switch (expression) {
{ case integer constant expression : statement [break ;] }
[default : statement]
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 154 / 495

Decision Making Branching repeatedly

Class room assignment

Initialize a (used as an accumulator) to zero
Initialize r (used as a working area – a register) to zero
Read choice

If choice==1 Read a new number into the accumulator
If choice==2 Add the register value to the accumulator
If choice==3 Subtract the register value to the accumulator
If choice==4 Multiply the accumulator with the value of the
register
If choice==5 Divide the accumulator with the value of the register

Print the value in the accumulator and the register

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 155 / 495

Decision Making Recursive definitions using conditionals

Recursive definitions

Recursive definitions (RD) are a powerful mechanism to describe
objects or a procedure elegantly.

An RD has three types of clauses:
Basis clauses (or simply basis) indicates the starting items/steps
Inductive clauses establishes the ways by which elements/steps
identified so far can be combined to produce new elements/steps
An extremal clause (may be implicit) rules out any item/step not
derived via the recursive defintion (either as a basis case or via
induction)

RDs can often be stated only using conditionals

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 156 / 495

Decision Making Recursive definitions using conditionals

Examples of recursive definitions

Example (Day-to-day use)
John’s ancestors

Basis John’s parents are ancestors of John
Induction Any parent of an ancestor of John is

an ancestor of John
Extremality No one else is an ancestor of John

Identification of royalty
Basis A monarch is a royal

Induction A descendent of a royal is a royal
Extremality No one else is a royal

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 157 / 495

Decision Making Recursive definitions using conditionals

Examples of recursive definitions (contd)

Example (Mathematical examples)
Factorial Basis factorial(0) = 1

Induction factorial(N) = N × factorial(N − 1), if (N > 0)
Fibonacci Basis fib(0) = 0

Basis fib(1) = 1
Induction fib(N) = fib(N − 1) + fib(N − 1), if (N > 1)

Modular exponention (slow) an mod m
Basis a1 mod m = a mod m

Induction ap+1 mod m = (q ∗ a mod m), where
q = ap mod m

Greatest common divisor gcd(a, b), 0 < a < b
Let r = b mod a

Basis gcd(a, b) = a, if r = 0
Induction gcd(a, b) = gcd(r , a), if r 6= 0

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 158 / 495

Decision Making Recursive definitions using conditionals

Divide and conquer done recursively

This is a very important problem solving scheme stated as follows:

You are given a problem P
1 Divide P into several smaller subproblems, P1, P2, . . ., Pn

In many cases the number of such problems is small, say two
2 Somehow (may be recursively – in the same way) solve (or

conquer), each of the subproblems to get solutions S1, S2, . . ., Sn

3 Use S1, S2, . . ., Sn to construct a solution to the original problem,
P (to complete the conquer phase)

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 159 / 495

Decision Making Recursive definitions using conditionals

Examples of divide and conquer

Example (Fast modular exponention to compute an mod m)

Basis a1 mod m = a mod m
Induction a2p mod m = (q ∗ q mod m), where q = ap mod m

Divide Original problem (a2p mod m) divided into two identical
sub-problems (q = ap mod m)

Conquer 1 Recursively solving (q = ap mod m)
2 Using the result to compute a2p mod m = (q ∗ q

mod m)

Induction a2p+1 mod m = ((q ∗ q mod m) ∗ a mod m), where
q = ap mod m

Divide and conquer Similar to above case, with the additional
multiplication by a, resulting from n = 2p + 1

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 160 / 495

Decision Making Recursive definitions using conditionals

Examples of divide and conquer (contd)

Example (Choose r items from n items: nCr)
Basis When r = 0: nC0 = 1
Basis When r = n: nCn = nCn−n = nC0 = 1

Induction When r > 0:
I let a particular item be chosen

n− 1 items left, r − 1 items to be chosen, i.e. n−1Cr−1
this is an inductive step

I let a particular item not be chosen
n − 1 items left, r items to be chosen, i.e. n−1Cr
this is another inductive step
total ways: n−1Cr−1 +n−1 Cr

Divide The sub-problems: n−1Cr−1 and n−1Cr

Conquer 1 Solving these two sub-problems recursively
2 Adding the results to get the value of nCr

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 161 / 495

Iteration

Section outline

14 Iteration
For Loop
Syntax – for
Examples – ‘for’
While Loops
Syntax – while

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 162 / 495

Iteration For Loop

Average of some numbers

Let there be n numbers: xi , i = 0..(n − 1)

Let s be the sum of the n numbers:

s =
i=n−1∑

i=0

xi

Computation of s:
1 Initialise s=0
2 Looping n times, add xi to s each time

Average is
s
n

Key programming feature needed: a way to do some
computations in a loop n times
More generally, do some computations in a loop while or until
some condition is satisfied
‘C’ provides several looping constructs

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 163 / 495

Iteration Syntax –for

Syntax/grammar – for

for
statement ::= for (expression-1 ; expression-2 ; expression-3)

statement

Meaning
expression-1 ;
FTEST: if (expression-2) {

statement
expression-3 ;
goto FTEST ;

}

expr-1expr-1

expr-2

statementstatement

expr-3expr-3

6= 0 = 0

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 164 / 495

Iteration Examples – ‘for’

Examples – ‘for’

Editor:
#include <stdio.h>
main() {
float s=0, x, avg;
int i, n;
printf ("enter n: ");
scanf ("%d", &n);
for (i=0; i<n; i++) {
// note: i starts at 0 and leaves after reaching n
printf ("enter x: ");
scanf("%f", &x);
s = s + x;
}
avg=s/n;
printf("average of the given %d numbers is %f\n",
n, avg);

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 165 / 495

Iteration Examples – ‘for’

Results

Compile and run:
$ cc average.c -o average
$./average
enter n: 5
enter x: 2
enter x: 3
enter x: 4
enter x: 5
enter x: 6
average of the given 5 numbers is 4.000000

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 166 / 495

Iteration Examples – ‘for’

Standard deviation of some numbers

Let there be n numbers: xi , i = 0..(n − 1)

Let their average be x̄
The variance

σ2 =
1
n

(∑
i

(xi − x̄)2

)

=
1
n

∑
i

(x2
i)− x̄2

The standard deviation is σ
Need to compute both

∑
i xi and

∑
i x2

i

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 167 / 495

Iteration Examples – ‘for’

Program

Editor: Compilation should be with -lm
#include <stdio.h>
#include <math.h>
main() {
float s=0, sq=0, x, avg, var, std;
int i, n;
printf ("enter n: "); scanf ("%d", &n);
for (i=0; i<n; i++) {
printf ("enter x: "); scanf("%f", &x);
s = s + x; sq = sq + x*x;
}
avg=s/n;
var = sq/n - avg*avg ; std = sqrt(var) ;
printf("avg. & st. dev. of the %d numbers: %f, %f\n",
n, avg, std);

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 168 / 495

Iteration Examples – ‘for’

Computation of ex

ex =
∑

i>=0 Ti , where Ti =
x i

i!
Ti may be recursively defined as:

T0 = 1

Tj =
x
j

Tj−1, if j > 0

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 169 / 495

Iteration Examples – ‘for’

Program

Editor:
#include <stdio.h>
main() {
int n, i;
float x, T=1.0, S=0.0;
printf ("enter number of terms to add: ");
scanf ("%d", &n);
printf ("enter value of x: ");
scanf ("%f", &x);
for (i=1; i<n ; i++) {
S = S + T; // add current term to sum
T = T*x/i; // Compute T(i+1)
}
printf ("x=%f, e**x=%f\n", x, S);
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 170 / 495

Iteration While Loops

Computation of ex accurate to some value

ex =
∑

i>=0
x i

i!
ex =

∑
i>=0 Ti , where

Ti = 1 if (i = 0)

=
x
i

Ti−1 otherwise

How long should we keep adding terms?
Let the acceptable error be r
We can stop when the contribution of the current term is less than
r

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 171 / 495

Iteration While Loops

Program

Editor:
#include <stdio.h>
main() {
int i=0;
float x, r, T=1.0, S=0.0;
printf ("enter value of x: ");
scanf ("%f", &x);
printf ("enter value of error: ");
scanf ("%f", &r);
while (T>r) { // while loop
S = S + T; // add current term to sum
i++; // increment i within the loop body
T = T*x/i; // Compute T(i+1)
}
printf ("x=%f, e**x=%f\n", x, S);
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 172 / 495

Iteration Syntax –while

Syntax/grammar – while

while
statement ::= while (expression) statement

Meaning
WTEST: if (expression) {
statement
goto WTEST ;

}

expr

statementstatement

6= 0 = 0

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 173 / 495

Iteration Syntax –while

Syntax/grammar – do-while

while
statement ::= do statement while (expression) ;

Meaning
DWTEST: {
statement

} if (expression) goto
DWTEST ; expr

statementstatement

6= 0

= 0

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 174 / 495

Iteration Syntax –while

An alternate program for ex

Editor:
#include <stdio.h>
main() {
int i=0;
float x, r, T=1.0, S=0.0;
printf ("enter value of x: ");
scanf ("%f", &x);
printf ("enter value of error: ");
scanf ("%f", &r);
do { // do-while loop
S = S + T; // add current term to sum
i++; // increment i within the loop body
T = T*x/i; // Compute T(i+1)
} while (T>r)
printf ("x=%f, e**x=%f\n", x, S);
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 175 / 495

Other loop control constructs

Section outline

15 More on loops
Breaking out
Continue

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 176 / 495

Other loop control constructs Breaking out

Average, when size is not known in advance

Let s be the sum of the numbers, initially, s = 0
Let n be the numbers seen so far, initially, n = 0
Loop as follows:

Try to read a number
If end of input is detected, then quit the loop
After reading each number x , s = s + x , n = n + 1

if n > 0, then average is s
n

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 177 / 495

Other loop control constructs Breaking out

Infinite for, while and do-while loops

for (expr-1 ; ; expr-3) ;

for (expr-1 ; ; expr-3) { statements }

while (1) { statements }

do { statements } while (1) ;

Caution
for (expr-1;;expr-3) ;
{ statements }

Unwanted infinite loop
for (expr-1;;expr-3) ;
{ statements }

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 178 / 495

Other loop control constructs Breaking out

Diagrammatic view of infinite loop with break

statementstatement

? break ; ?? break ; ?

statementstatement

Breaks out only from current loop

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 179 / 495

Other loop control constructs Breaking out

Program

Editor:
#include <stdio.h>
main() {
float s=0, x, avg;
int i, n;
for (n=0 ; ; s=s+x, n++) {
printf ("enter x: ");
scanf("%f", &x);
// how to detect end of input ?
if (feof(stdin)) break; // details of feof, stdin,

later
}
if (n>0) { // avoid division by 0!
avg=s/n;
printf("average of the given %d numbers is %f\n",
n, avg);

}
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 180 / 495

Other loop control constructs Breaking out

Program for ex using break

Editor:
#include <stdio.h>
#define ERROR 1.0e-8
main() {
int n, i;
float x, T=1.0, S=0.0;
printf ("enter value of x: ");
scanf ("%f", &x);
for (i=1; ; i++) {
S = S + T; // add current term to sum
T = T*x/i; // Compute T(i+1)
if (T < ERROR) break;
}
printf ("x=%f, e**x=%f\n", x, S);
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 181 / 495

Other loop control constructs Continuing with the next iteration

Average, dropping -ve numbers, also unknown
input size

Let s be the sum of the numbers, initially, s = 0
Let n be the numbers seen so far, initially, n = 0
Loop as follows:

Try to read a number
If end of input is detected, then quit the loop
After reading each number x ,
if x is negative, then skip to next iteration
s = s + x , n = n + 1

if n > 0, then average is s
n

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 182 / 495

Other loop control constructs Continuing with the next iteration

Diagrammatic view of (infinite) loop with continue

statementstatement

? break ; ?? break ; ?

? continue ; ?? continue ; ?

statementstatement

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 183 / 495

Other loop control constructs Continuing with the next iteration

Program

Editor:
#include <stdio.h>
main() {
float s=0, x, avg; int i, n;
for (n=0 ; ;) {
printf ("enter x: "); scanf("%f", &x);
// how to detect end of input ?
if (feof(stdin)) break; // feof, stdin, later
if (x<0) continue; // skip the rest of the processing
s=s+x ; n++ ; // skipped if x is negative
}
if (n>0) { // avoid division by 0!
avg=s/n;
printf("average of the %d numbers: %f\n", n, avg);
} else printf ("too few numbers!\n");
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 184 / 495

Other loop control constructs Continuing with the next iteration

Cautionary points on controls

An expression with non-zero value is treated as true, otherwise
false

Thus while (1); is an infinite loop
Similarly do while (0); is an infinite loop
for (;1;); is and infinite loop
Also, a dropped condition in the for loop is treated as true, thus
for (;;); is an infinite loop

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 185 / 495

Other loop control constructs Continuing with the next iteration

Syllabus (Theory)

Introduction to the Digital Computer;
Introduction to Programming – Variables, Assignment; Expressions;
Input/Output;
Conditionals and Branching; Iteration;
Functions; Recursion; Arrays; Introduction to Pointers; Strings;
Structures;
Introduction to Data-Procedure Encapsulation;
Dynamic allocation; Linked structures;
Introduction to Data Structure – Stacks and Queues; Searching and
Sorting; Time and space requirements.

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 186 / 495

Part VI

1D Arrays

16 Arrays

17 Working with arrays

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 187 / 495

Arrays

Section outline

16 Arrays
Need for arrays
Sample definitions
Array initialisation
Memory snapshots

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 188 / 495

Arrays Need for arrays

Need for arrays

Vectors and matrices have long been used to represent
information – well before the advent of computers
Dot products, cross products, vector triple products, solution to
systems of linear equations, eigen vector computation and many
more mathematical operations defined using vectors and matrices
Support for these in a high-level programming language is only
expected
Two important characteristics: all elements are of the same type
and elements are indexed by integers
Vectors and matrices are representable in ‘C’ using arrays
The size of the array is usually fixed

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 189 / 495

Arrays Sample definitions

Sample definitions

Array of five integers: int A[5]
– first element: A[0], last elementL A[4]

Array of ten reals: float B[10]
– first element: B[0], last elementL B[9]

Array of eleven characters: char C[11]
– first element: C[0], last elementL C[10]

In int z, z represents the value of the integer – what does the A
in int A[5] represent?
There is no single value to represent
The A in int A[5] represents the starting address of the array –
address of the first element of A
For int A[5], A ≡ &(A[0])

Same for any array declaration/definition

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 190 / 495

Arrays Array initialisation

Array initialisation

int A[5] = { 1, 2, 4, 8, 16}; –
equivalent to A[0] = 1; A[1] = 2; A[2] = 4; A[3] =
8; A[4] = 16;

int A[5] = { 1, 2};

A[0] = 1; A[1] = 2;

“Default-initialisation” (usually zeroes) for the the remaining
elements – A[2] = A[3] = A[4] = 0, by default
char C[5] = "Yes";

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 191 / 495

Arrays Memory snapshots

Integer and Character arrays in memory
A[0] 00000000 00000000 00000000 00000001
address 3075 3074 3073 3072
A[1] 00000000 00000000 00000000 00000010
address 3079 3078 3077 3076
A[2] 00000000 00000000 00000000 00000100
address 3083 3082 3081 3080
A[3] 00000000 00000000 00000000 00001000
address 3087 3086 3085 3084
A[4] 00000000 00000000 00000000 00010000
address 3091 3090 3089 3088
C[3]..C[0] 00000000 01110011 01100101 01011001
address 3095 3094 3093 3092
...C[4] 10100011 00001101 01110010 10110110
address 3099 3098 3097 3096

A has address 3072 and its elements are initialised
C has address 3088 and its elements are partially initialised

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 192 / 495

Working with arrays

Section outline

17 Working with arrays
Address arithmetic
Array declaration
Passing 1D Arrays

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 193 / 495

Working with arrays Address arithmetic

Address arithmetic

Integer and character array elements have different sizes
&A[0], &A[4], &C[3] gives us addresses (references) of the
desired array elements – ‘&’ is the reference operator

*A, *C yields the value at the addresses of A and C, resp. – ‘*’ is
the de-reference operator
Can we compute on our own? – often needed
Clever address arithmetic in ‘C’
A+0 ≡ &A[0], A[0] ≡ *(A+0)

A+4 ≡ &A[4], A[4] ≡ *(A+4)

&A[i] ≡ A+i Implicitly: addr. of A + i×size of an integer – done
internally by compiler, never multiply yourself
C+3 ≡ &C[3], C[3] ≡ *(C+3)

&C[i] ≡ C+i Implicitly: addr. of C + i×size of an character

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 194 / 495

Working with arrays Address arithmetic

Reading integers into an array

Editor:
#include <stdio.h>
#define SIZE 5
int main() {
int A[SIZE], B[SIZE], i;
for (i=0; i<SIZE; i++) {
printf("Enter A[%d]: ", i);
scanf("%d", &(A[i])); // using address operator
}
for (i=0; i<SIZE; i++) {
printf("Enter B[%d]: ", i);
scanf("%d", B+i); // using address arithmetic
// &B[i] ≡ B+i
}

return 0; }

Populating an array manually is not convenient
Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 195 / 495

Working with arrays Array declaration

Array declaration

int A[5] is a definition of an array, because storage space gets
allocated
int aD[] is a declaration that aD represents a single
dimensional array of integers – aD can store a reference (pointer)
to an int array – no storage space gets allocated for the array
elements
aD is essentially an un-initialised address of an integer array
It should be used only after initialisation (say aD = A)
NB. The size of the declared array aD is not specified
Not needed for a single dimensional array

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 196 / 495

Working with arrays Array declaration

View in memory
A[0] 00000000 00000000 00000000 00000001
address 3075 3074 3073 3072
A[1] 00000000 00000000 00000000 00000010
address 3079 3078 3077 3076
A[2] 00000000 00000000 00000000 00000100
address 3083 3082 3081 3080
A[3] 00000000 00000000 00000000 00001000
address 3087 3086 3085 3084
A[4] 00000000 00000000 00000000 00010000
address 3091 3090 3089 3088
aD 01101101 01110011 01110101 11011001
aD 00000000 01110011 00001100 00000000
address 3095 3094 3093 3092

int A[5], aD[]; location of aD initially has garbage
aD=A; Now aD and A, both refer to 3072
There is no location for A containing 3072, compiler knows that 3072 should
be used for A, where appropriate

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 197 / 495

Working with arrays Array declaration

Initialise an array with integers

Editor:
#include <stdlib.h>
#include <time.h>
#define SIZE 50
populateRand(int Z[], int sz) {
// array Z of type int is declared
int i;
for (i=0; i<sz ; i++) Z[i]=mrand48();
} // ‘‘man mrand48’’ for details
int main() {
int A[SIZE]; // array A of SIZE ints is defined
srand48(time(NULL));
// to get fresh random numbers on each run
populateRand(A, SIZE); // call to populate A randomly
return 0; }

Z=A (Z gets defined to A) via populateRand(A, SIZE)

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 198 / 495

Working with arrays Passing 1D Arrays

Passing 1D Arrays to functions

1D arrays are passed to functions with or without their
dimensions, as int A[10] or int A[]

Only the address of the array, as available in the calling function
(caller) is passed
There is no new allocation of memory to store arrays passed as
formal parameters
A[i] is obtained as *(A+1), where the dimension does not play
any role
Formal parameters of functions declared as arrays are always
arrays declarations

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 199 / 495

Part VII

More on functions

18 Prototypes

19 References

20 Recursive functions

21 Recursion with arrays

22 Efficient recursion

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 200 / 495

Prototypes

Section outline

18 Prototypes
Need for prototypes
Illustrative example
Points to note
Persistent data
Scope rules

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 201 / 495

Prototypes Need for prototypes

Finding average of two numbers

Editor: Simple program that does not compile
#include <stdio.h>
main() {
float x, y, avg; printf ("enter two numbers: ");
scanf ("%f%f", &x, &y);
avg = avg fun(x, y);
printf("average of the given numbers is %f\n", avg);
}

float avg fun (float a, float b) {
return (a + b)/2;
}

Compile:
$ cc avg2.c -o avg2
avg2.c:8: error: conflicting types for ‘avg fun’
avg2.c:5: error: previous implicit declaration of ‘avg fun’ was here
make: *** [avg2] Error 1

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 202 / 495

Prototypes Need for prototypes

Explanation of compilation failure

If a function is used before it is defined, the compiler cannot
handle the function call properly (its return type may be defaulted
to int)
Solution:

Define the functions before they are used – not always possible
(why?)
Function may be recursive – to be seen soon
Use forward declarations, using function prototypes

Presence of a prototype enables automatic type casting, if
necessary
Functions taking no arguments should have a prototype with
(void) as the argument specification

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 203 / 495

Prototypes Illustrative example

Use case of prototypes

Editor:
#include <stdio.h>

float avg fun (float , float) ;

main() {
float x, y, avg; printf ("enter two numbers: ");
scanf ("%f%f", &x, &y); avg = avg fun(x, y);
printf("average of the given numbers is %f\n", avg);
}
float avg fun (float a, float b) {
return (a + b)/2;
}

Compile:
$ cc avg2.c -o avg2
$

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 204 / 495

Prototypes Illustrative example

Function prototype – example (contd.)

Editor:
#include <stdio.h>

float avg fun (float x , float y) ;

main() {
float x, y, avg; printf ("enter two numbers: ");
scanf ("%f%f", &x, &y); avg = avg fun(x, y);
printf("average of the given numbers is %f\n", avg);
}
float avg fun (float a, float b) {
return (a + b)/2;
}

Compile:
$ cc avg2.c -o avg2
$

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 205 / 495

Prototypes Points to note

Points to note

Prototypes are an advance declaration (but not definition) of the
function
Prototypes indicate the type and number of arguments taken by
the functions
Prototypes also indicate the return type of the function
Parameter names are not needed in a prototype declaration
If parameter names are used, then they are ignored
However, it is sometimes easier to indicate the type of the
parameter by declaring it in the regular manner, using a parameter
name

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 206 / 495

Prototypes Persistent data within functions

Evaluation version of Fibonacci

Editor: Counting using a global variable
#include <stdio.h>
int count;
// scope of global variable count covers whole file
int fib rec Eval (int n) {

count++;
if (n < 2) return 1 ;
return fib rec Eval (n-1) + fib rec Eval (n-2) ;

}
main() {
count=0;
printf ("fib rec Eval(5)=%d\n", fib rec Eval(5));
printf ("count=%d\n", count);

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 207 / 495

Prototypes Persistent data within functions

Evaluation version of Fibonacci (contd.)
Editor: Counting using a static variable
#include <stdio.h>
int fib rec Eval (int n, int flag) {
static int count; // automatically initialize to 0
// count has usual scope -- within this function
if (flag) { // flag=1 for printing count

printf ("fib rec Eval called %d times\n", count);
count=0; // reset count for the next round of

counting
} else { // flag=0 for normal usage
count++; // value is remembered across calls!

}
if (n < 2) return 1 ;
return fib rec Eval (n-1, 0) + fib rec Eval (n-2, 0) ;

}
main() {
printf ("fib rec Eval(5, 0)=%d\n", fib rec Eval(5, 0));
fib rec Eval(0, 1); // for printing statistics

}
Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 208 / 495

Prototypes Persistent data within functions

Evaluation version of Fibonacci (contd.)

Compile and run:
$ cc fib rec Eval.c -o fib rec Eval
$./fib rec Eval
fib rec Eval(5)=8
fib rec Eval called 15 times

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 209 / 495

Prototypes Persistent data within functions

Evaluation version of Fibonacci (contd.)

Editor: Counting using a global variable
#include <stdio.h>
int fibT Eval(int n, int c 1, int c 2, int flag) {
static int count; // automatically initialize to 0
if (flag) { // flag=1 for printing count

printf ("fibT Eval called %d times\n", count);
} else { // flag=0 for normal usage
count++; // value is remembered across calls!

}
if (n==0 || n==1) return 1;
else if (n==2) return c 1 + c 2;
else return fibT Eval(n-1, c 1 + c 2, c 1, 0) ;

}
main() {
printf ("fibT Eval(5, 1, 1, 0)=%d\n", fibT Eval(5, 0));
fibT Eval(0, 1); // for printing statistics

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 210 / 495

Prototypes Persistent data within functions

Evaluation version of Fibonacci (contd.)

Compile and run:
$ cc fibT Eval.c -o fibT Eval
$./fibT Eval
fibT Eval(5, 1, 1, 0)=8
fibT Eval called 4 times

Observation
The fibT() implementation of Fibonacci is better than fib_rec().

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 211 / 495

Prototypes Persistent data within functions

Counting calls to Fibonacci

fib(n) = if (n /∈ {0,1}) then fib(n − 1) + fib(n − 2) (1)
= otherwise 1 (2)

How many times is fib called for n = 8?
n 0 1 2

calls 1 1 1 + 1 + 1 = 3
n 3 4 5

calls 1 + 1 + 3 = 5 1 + 3 + 5 = 9 1 + 5 + 9 = 15
n 6 7 8

calls 1 + 9 + 15 = 25 1 + 15 + 25 = 41 1 + 25 + 41 = 67

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 212 / 495

Prototypes Persistent data within functions

Classroom assignment

The function fib_rec() may be called several times.
Using static variables within functions develop a way to limit the
number of recursive calls made to fib_rec().

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 213 / 495

Prototypes Persistent data within functions

Classroom assignment

Write a function to check if a positive integer (provided as parameter)
is prime.

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 214 / 495

Prototypes Persistent data within functions

Classroom assignment

What does it do?
unsigned int foo1 (unsigned int n) {
unsigned int t = 0;

while (n > 0) {
if (n % 2 == 1) ++t;
n = n / 2;

}
return t;

}

Try out the function on a few numbers and also examine the code
carefully

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 215 / 495

Prototypes Persistent data within functions

Classroom assignment

The Towers of Hanoi (ToH) problem is as follows.
You are given three pins (f, t and u).
Initially, the ‘f’ pin has n disks stacked on it such that no disk has a
disk of larger radius stacked on it.
You are required to transfer the n disks from the ‘f’ pin to the ‘t’ pin
using the ‘u’ pin, so that, it is never the case that a disk has a disk
of larger radius stacked on it.
You need to write a function that can generate (print) the sequence
of individual disk transfers so that the overall transfer is achieved.

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 216 / 495

Prototypes Persistent data within functions

Classroom assignment

Catalan numbers are defined as follows:

C0 = 1
C1 = 1
Cn = C0Cn−1 + C1Cn−2 + . . .+ Cn−2C1 + Cn−1C0 for n >= 2

Write a function to compute Cn

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 217 / 495

Prototypes Scope rules

Scope rules

Declarations in a parameter list of a function extend over the entire
function, overridding is not permitted
Scope declaration of a variable in a block extends to contained
sub-blocks
Declaration of a variable in a block overrides any earlier
declaration of that variable (unless it is a function parameter)

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 218 / 495

Use of References

Section outline

19 References
Need to pass addresses
Storage snapshots
Swapping two variable
Summary

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 219 / 495

Use of References Need to pass addresses

Possible to increment x using a function?

Editor: Does it increment ?
#include <stdio.h>
int increment (int x) {
x += 1; // increment x by 1
return x;

}
main() {
int x=5;
printf("increment(%d)=%d\n", x, increment(x));
printf("x=%d\n", x);

}

Compile and run:
$ cc increment.c -o increment
$./increment
increment(5)=6
x=5

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 220 / 495

Use of References Need to pass addresses

Incrementing x using a function

Editor: Sending and using address of x (as with scanf)
#include <stdio.h>
void increment (int *xA)
{// xA is a pointer to an integer

*xA += 1; // increment contents of location xA by 1
// return x; // Not needed!
}
main() {
int x=5;
increment(&x); // passing address of (reference to) x
printf("x=%d\n", x);

}

Compile and run:
$ cc increment.c -o increment
$./increment
x=6

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 221 / 495

Use of References Storage snapshots

What is there in the variables?
...
address
x(=5) 00000000 00000000 00000000 00000101
address 3075 3074 3073 3072
...
address
xA(=3072) 00000000 00000000 00001111 00100000
address 3875 3874 3873 3872
...
address

xA has the address of x [as a result of binding of actual value
&x(=3072) to formal parameter xA]
xA is a reference to x
xA is dereferenced by the * operator to get the value of x
* reference_to_variable ≡ variable
* xA ≡ x

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 222 / 495

Use of References Swapping two variable

Swap x and y (very common problem)

Editor: By passing addresses (references) to x and y

#include <stdio.h>
void swap (int *xA, int *yA) { // note the references
int temp; // temporary storage
temp = *xA; // save x in temp

*xA = *yA; // now copy y to x

*yA = temp; // saved value of x is finally copied to y
}
main() {
int x=5, y=9;
swap (&x, &y);
printf("x=%d, y=%d\n", x, y);

}

Compile and run:
$ cc swap.c -o swap
$./swap
x=9, y=5

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 223 / 495

Use of References Summary

Summary

In the context of the two examples, discussed so far,
increment() could have returned x+1

x = increment(x) could have been done
Same could not be done for swap()
Both increment() and swap() using references have a sense
of simplicity of usage
Just the call increment (&x) or swap (&x, &y) is enough –
no need for an additional assignment statement
Pointers (references) also have their problems – to be discovered
soon
Java has done away with pointers

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 224 / 495

Recursive functions

Section outline

20 Recursive functions
Considerations
Activation records

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 225 / 495

Recursive functions Considerations

Considerations

A function is said to be recursive when it is permissible to invoke it
before its earlier invocation has been completed
Modern programming languages support recursion
Earlier versions of FORTRAN did not support recursion
Recursively defined routines often cannot be implemented in an
iterative manner
In such cases use of recursive functions becomes essential for the
problem under consideration
An important question is what happens to the contents of the
variables when the function is called again
Instead of allocating a fixed space for the variables of a function,
fresh space (activation record) is allocated for each invocaton, so
that variables do not get overwritten

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 226 / 495

Recursive functions Activation records

Recursive and iterative factorial functions

Example

Editor:
int fact iter (int n) {
int i, f;
for (f=1,i=n;i>0;i--)

f = f * i ;
return f;

}

Editor:
factorial (int n) {

int f n less 1;
if (n==0) {

return 1;
} else {

f n less 1 =
factorial (n-1);

return n * f n less 1;
}

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 227 / 495

Recursive functions Activation records

Trace of Recursive Factorial

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 228 / 495

Recursive functions Activation records

Trace of Recursive Factorial

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 229 / 495

Recursive functions Activation records

Trace of Recursive Factorial

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 230 / 495

Recursive functions Activation records

Trace of Recursive Factorial

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 231 / 495

Recursive functions Activation records

Trace of Recursive Factorial

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 232 / 495

Recursive functions Activation records

Trace of Recursive Factorial
factorial(1)
invoked from
within invocation
of
factorial(1)

Note the creation
of activation
records for each
invocation of
factorial()

Fresh set of
variables per call
through activation
record

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 233 / 495

Recursive functions Activation records

Trace of Recursive Factorial

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 234 / 495

Recursive functions Activation records

Trace of Recursive Factorial

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 235 / 495

Recursive functions Activation records

Trace of Recursive Factorial

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 236 / 495

Recursive functions Activation records

Trace of Recursive Factorial

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 237 / 495

Recursive functions Activation records

Trace of Recursive Factorial

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 238 / 495

Recursive functions Activation records

Trace of Recursive Factorial

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 239 / 495

Recursive functions Activation records

Trace of Recursive Factorial

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 240 / 495

Recursive functions Activation records

Trace of Recursive Factorial

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 241 / 495

Recursion with arrays

Section outline

21 Recursion with arrays
Simple search
Combinations
Permuations of n items

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 242 / 495

Recursion with arrays Simple search

Searching (slowly) for a key in an array

Say we have an array A of integers and another number – a key
We want to check whether the key is present in the array or not

If there are no elements in the array, then fail
Compare the key to the first element in the array,
If matched, then done, otherwise search in the rest of the array

Worst case runtime (counted as number of steps) of described
procedure is proportional to number of elements in array

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 243 / 495

Recursion with arrays Simple search

Recursive definition for sequential search

searchSeq(A, n, k)
Inductive/recursive case

CI1 [n > 0 and k does not match first element of A]

AI1 return searchSeq (rest of A (leaving out the first element), n-1, k)
Base case

CB2 [n > 0 and k matches first element of A]

AB2 return success
Base case

CB1 [n = 0] (array empty)
AB1 return failure

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 244 / 495

Recursion with arrays Simple search

Searching slowly in an array

Editor: Recursive, ranges by address arithmetic
int searchSeqRA(int Z[], int ky, int sz, int pos) {
// sample invocation: searchSeqRA(A, ky, SIZE, 0)
if (sz==0) return -1; // CB1 ⇒ AB1; failed
if (Z[0]==ky) return pos; // CB2 ⇒ AB2; matched
return searchSeqRA(Z+1, ky, sz-1, pos+1); // recursion
} // CI1 ⇒ AI1; finally

Editor: Recursive, ranges by array index
int searchSeqRI(int Z[], int ky, int sz, int pos) {
// sample invocation: searchSeqRI(A, ky, SIZE, 0)
if (pos>=sz) return -1; // CB1 ⇒ AB1; failed
if (Z[pos]==ky) return pos; // CB2 ⇒ AB2; matched
return searchSeqRI(Z, ky, sz, pos+1); // recursion
} // CI1 ⇒ AI1; finally

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 245 / 495

Recursion with arrays Simple search

Searching slowly in an array (contd.)
Editor: Iterative, ranges by array index
int searchSeqII(int Z[], int ky, int sz) { int i;
// sample invocation: searchSeqIR(A, SIZE, 5)
for (i=0; i<sz ; i++) { CB1 is false within for loop
if (Z[i]==ky) return i; // CB2 ⇒ AB2; matched
} // CI1 ⇒ AI1; searching reduced to (i+1) to end of Z
return -1; // CB1 ⇒ AB1; failed
}

Editor: Iterative, ranges by address arithmetic
int searchSeqIA(int Z[], int ky, int sz) {
// sample invocation: searchSeqIA(A, SIZE, 5)
for (; n; n--, Z++) { CB1 is false within for loop
if (*Z==ky) return i; // CB2 ⇒ AB2; matched
} // CI1 ⇒ AI1; Z++ advances array head to next element
return -1; // CB1 ⇒ AB1; failed
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 246 / 495

Recursion with arrays Combinations

Combinations

(n
r

)
=

(
n − 1

r

)
+

(
n − 1
r − 1

)
(n

0

)
=
(n

n

)
= 1

1 the first item is not taken, so r items must be selected from the
remaining n − 1 items

2 the first item is taken, so r − 1 items must be selected from the
remaining n − 1 items

3 nothing to do when 0 items are to be selected, report what items
were chosen earlier

4 if exactly n of n items are to be chosen, then choose all of them,
report what items were chosen earlier and these items

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 247 / 495

Recursion with arrays Combinations

Editor: Combinations of r of n items using array indices
void nCrShow (int selVec[], int n, int r, int itemIdx) {
// usage: nCrShow (selVec, n, r, 0), n+itemIdx=totItems
int total, i;
if (r == 0) { // nothing more to choose, print pattern
for (total = n + itemIdx, i = 0; i < itemIdx; i++)
printf ("%d ", selVec[i]);

for (; i < total; i++) printf ("0 "); printf ("\n");
} else if (r == n) { // take all n items, print pattern
for (total = n + itemIdx, i = 0; i < itemIdx; i++)
printf ("%d ", selVec[i]);

for (; i < total; i++) printf ("1 "); printf ("\n");
} else { // induction: either take or drop item itemIdx
selVec[itemIdx] = 1; gen patterns when item is taken
nCrShow (selVec, n - 1, r - 1, itemIdx + 1);
selVec[itemIdx] = 0; gen patterns when item is dropped
nCrShow (selVec, n - 1, r, itemIdx + 1);
} // decisions from item itemIdx+1 onwards taken
} // printing of patterns is a required functionality!

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 248 / 495

Recursion with arrays Permuations of n items

Permuations of n items

P(n) = n × P(n − 1)

P(0) = 1

1 choose the first item in n ways and then take the permuation of
the remaining n − 1 items

2 nothing to do for 0 items

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 249 / 495

Recursion with arrays Permuations of n items

Permuations of n items

Editor: Swap elements in array
void swapArr (int arr[], int i, int j) {
// interchange elements at positions i and j of arr[]
int t;

t = arr[i];
arr[i] = arr[j];
arr[j] = t;

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 250 / 495

Recursion with arrays Permuations of n items

Permuations of n items (Contd.)
Editor: nPnShow (pattern, n, 0)

void nPnShow (int pattern[], int n, int nowPos) {
int i, total;
if (n <= 1) { // done, now show the pattern

for (total = n + nowPos, i = 0; i < total; i++)
printf ("%d ", pattern[i]);

printf ("\n");
} else
for (total = n + nowPos, i = 0; i < n; i++) {
swapArr (pattern, nowPos, nowPos + i);
// start with the i-th item
nPnShow (pattern, n - 1, nowPos + 1);
// generate permutation of all remaining items
swapArr (pattern, nowPos, nowPos + i);
// restore the i-th item at its original position so
// that the remaining items can be treated consistently
}

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 251 / 495

Efficient recursion

Section outline

22 Efficient recursion
Factorial again
Tail recursion
Handling TR

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 252 / 495

Efficient recursion Factorial again

Factorial – iteratively from recursive definition

fact(n) = if(n 6= 0) then n fact(n − 1)

fact(0) = 1

By repeated substitution,

fact(n) = n fact(n−1) = n(n−1) fact(n−2) = n(n−1)(n−2) fact(n−3)

fact(n) = n(n − 1)(n − 2) . . . 1 fact(0) = n(n − 1)(n − 2) . . . 1

Thus, fact(n) may be computed as the product n(n − 1)(n − 2) . . . 1 –
this can be done in a loop

1 Initilise p = 1
2 Looping while n > 0,

a multiply n to p (p = p × n)
b decrement n (n = n-1)

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 253 / 495

Efficient recursion Factorial again

Program, results and discussions

Editor:
#include <stdio.h>
main() {
int i, n, f=1;
printf ("enter n: ");
scanf ("%d", &n);
for (i=n; i>0 ;i--)
f = f * i ;

printf ("factorial(%d)=%d\n",
n, f);

}

Compile and run:
$ cc factR.c -o factR
$./factR
enter n: 5
factorial(5)=120

fact(n) was expanded to the
product: n(n − 1) . . . 1

Such simple expansions not
always possible

Simpler options need to be
considered

For n > 0, reformulate
fact(n) = n×fact(n − 1) as
facT(n,p) = facT(n − 1,p × n)

Second parameter carries the
evolving product

Let facT(0,p) = p and

fact(n) = facT(n,1), so that
facT() starts with p = 1

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 254 / 495

Efficient recursion Tail recursion

Recursive functions for fact() and facT()

Editor:
int fact(int n) {
if (n != 0)
return n*fact(n-1);

else return 1;
}

Editor:
int facT(int n, int p) {
// first call: facT(n, 1);
if (n != 0)
return facT(n-1, n*p);

else return p;
}

Both formulations can be coded recursively, but facT() can be
coded as an iterative routine, avoiding the recursive call
It is a special kind of recursion called tail recursion, where nothing
remains to be done after the recursive call
Many recursive problem formuations lack a tail recursive version
Tail recursion combines the elegance of recursion and the
efficiency of iteration

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 255 / 495

Efficient recursion Tail recursion

Iterative computation of facT()

Basis facT(0,p) = p
Induction facT(n,p) = facT(n − 1,n × p), n > 0

fact() in terms of facT() fact(n) = facT(n,1)

Iterative routine for facT(n, p)
facT(int n, int p) {
// handle the induction, if n > 0
while (n>0) {
preparation to to compute facT(n − 1,p × n), next
p = p*n; n=n-1;
} // carry on until n = 0
// inductive steps are now over
// now compute facT(0,p) -- trivial
return p; // as p is the result
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 256 / 495

Efficient recursion Iterative routine from tail recursive defintion

Handling tail recursion (base cases coming last)
trR(p1, . . . ,pn)

Induction [CI,1]
AI,1;
ret
trR(pI1,1, . . . ,pI1,n)

Induction [CI,2]
AI,2;
ret
tr(pI2,1, . . . ,pI2,n)
...

Basis [CB,1]
AB,1; ret b1

Basis [CB,2]
AB,2; ret b2

...

Iterative routine for trR()

trR(p1, ..., pn) {
while (1) { handle induction
if (CI,1) {
code for AI,1;
p1=pI11=; ...; pn=pI11;

} else if (CI,2) {
code for AI,2;
p1=pI21=; ...; pn=pI21;

} else if ...
else break;
} // inductive steps over
if (CB,1) { // base conditions
code for AB,1; return b1;
} else if (CB,2) { ...
code for AB,2; return b2;
} ...

}
Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 257 / 495

Efficient recursion Iterative routine from tail recursive defintion

Greatest of many numbers

Consider a sequence of numbers:
xi ,1 ≤ i ≤ n, it is necessary to
identify the greatest number in this
sequence.
Let mi denote the max of the
sequence of length n

Basis m1 = x1, as the first
number is sequence
of length 1

Induction mi =max(mi−1, xi), for
i > 1

In this tail recursion the base case
comes first!

Editor:
#include <stdio.h>
main() {
int n, i, x, mx;
printf ("enter n: ");
scanf ("%d", &n);
scanf ("%d", &x);
mx = x; // m1 = x
for (i=1; i<n ; i++) {
// handle remaining n-1 nos
scanf ("%d", &x);
if (x > mx) mx = x;
// mi =max(mi−1, xi)
}
printf ("max: %d\n", mx);
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 258 / 495

Efficient recursion Iterative routine from tail recursive defintion

Syllabus (Theory)

Introduction to the Digital Computer;
Introduction to Programming – Variables, Assignment; Expressions;
Input/Output;
Conditionals and Branching; Iteration;
Functions; Recursion; Arrays; Introduction to Pointers; Strings;
Structures;
Introduction to Data-Procedure Encapsulation;
Dynamic allocation; Linked structures;
Introduction to Data Structure – Stacks and Queues; Searching and
Sorting; Time and space requirements.

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 259 / 495

Part VIII

Strings

23 Strings

24 String Examples

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 260 / 495

Strings

Section outline

23 Strings
Character strings
Common string functions
Reading a string

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 261 / 495

Strings Character strings

Character strings

Strings are arrays of characters
char name[10];

R a m e s h ’\0’

At most 10 characters may be stored in name – including the
’\0’ at the end
Strings typically store varying numbers of characters
The end is indicated by the NULL character – ’\0’

Any character beyond the first ’\0’ is ignored

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 262 / 495

Strings Common string functions

Common string functions

int strlen (const char s[]); – Returns the length (the
number of characters before the first NULL character) of the string
s

int strcmp (const char s[], const char t[]); –
Returns 0 if the two strings are identical, a negative value if s is
lexicographically smaller than t (s comes before t in the standard
dictionary order), and a positive value if s is lexicographically
larger than t

char *strcpy (char s[], const char t[]); – Copies
the string t to the string s; returns s
char *strcat (char s[], const char t[]); – Appends
the string t and then the NULL character at the end of s; returns s

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 263 / 495

Strings Reading a string

Reading a string

char name[10]; scanf("%s", name); – Note that name
rather than &name is passed (why?); name should be a large
enough array to accommodate the full name and the trailing ’\0’
– real problem if a bigger string is actually supplied (why?)
char nameDecl[]; scanf("%ms", &nameDecl); – the
declaration char nameDecl[]; only allocates a pointer location
but not an array;
the m in the conversion specification ms instructs scanf that it
should itself allocate the required space to accommodate the
string it reads (and also the trailing ’\0’); the allocated pointer is
placed in the memory location for nameDecl; that is why
&nameDecl is passed

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 264 / 495

Strings Reading a string

Program for reading strings

Editor:
#include <stdio.h>
int main() {
char s1[8], *s2;

printf ("Enter a string of 5 characters or less: ");
scanf ("%6s", s1); // dangerous if string is larger
printf ("You typed: %s\n\n", s1);

printf ("Now enter a string of any length.");
scanf ("%as", &s2);
printf ("You typed: %s\n", s2);

return 0; }

NB. scanf only reads a “word” – characters until the next white space

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 265 / 495

Strings Reading a string

Memory view
s1 00000000 00000000 00000000 00000000
address 3075 3074 3073 3072

00000000 00000000 00000000 00000000
address 3079 3078 3077 3076
s2 00000000 00000000 00000000 00000000
s2 00000000 00000000 00001100 00001000
address 3083 3082 3081 3080

00000000 00000000 00000000 00000000
address 3087 3086 3085 3084

00000000 00000000 00000000 00000000
address 3091 3090 3089 3088

Locations 3072..3079 are allocated to s1 (char s1[8])
s2 (char s2[]) can store a reference (pointer) to a string (with allocated
memory)
Let scanf, with %ms allocate space at 3088 for storing a string it reads
3088 is then stored at the location for s2 (3080), because 3080 was passed
to scanf as &s2

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 266 / 495

Strings Reading a string

Program for reading strings

Editor:
#include <stdio.h>
#define LMAX 85
int main() {
char line[LMAX];
printf ("Enter a line of text: ");
fgets(line, LMAX, stdin); // just accept, for now
printf ("fgets accepted: %s\n", line);

return 0; }

NB. In the above call, fgets reads at most LMAX-1 characters and
terminates the string with ‘\0’
The simpler gets(), eg. gets(line), should never be used

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 267 / 495

String Examples

Section outline

24 String Examples
String length
Appending one string to another
Substrings
Deletion
Insertion
Substring replacement
Str fn prototypes

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 268 / 495

String Examples String length

Length of a string

Recursive version:

L(s) =

{
if (s[0] = ′\0′) then 0 (1)
else 1 + L(s + 1) (2)

L(s,n) =

{
if (s[0] = ′\0′) then n (1)
else L(s + 1,n + 1) (2)

Tail recursive version, called as l(s,0) (3)

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 269 / 495

String Examples String length

Length of a string (iterative)

Editor:
int c strlen(const char s[]) {
int n=0; // by clause 3
while (s[0] != ’\0’) { // by complement of clause 1
s++ ; n++; // by clause 2

}
return n; // by clause 1 & 2

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 270 / 495

String Examples Appending one string to another

Appending one string to another

A(s, t ,p,q) =


s[p] = t [q] (1)
if (t [q] = ′\0′) then done (2)
else A(s, t ,p + 1,q + 1) (3)

To be called as A(s, t ,L(s),0) (4)

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 271 / 495

String Examples Appending one string to another

String concatenation (iterative)

Editor:
void c strcat(char s[], const char t[]) {
int p, q=0; // by clause 4
p = c strlen(s); // by clause 4
do {

s[p] = t[q]; // by clause 1
if (t[q] == ’\0’) break; // by clause 2
p++; q++; // by clause 3

} while (1);
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 272 / 495

String Examples Substrings

Substring identification
S(s, t ,p, f ,m,n) =

if (n = 0) then p (1)
else if (n > m) then − 1 (2)
else

if (s[p] = t [0] and S(s, t + 1,p + 1,0,m − 1,n − 1) 6= −1) (3)
then p (4)

else
{

if (f 6= 0) then S(s, t ,p + 1,1,m − 1,n) (5)
else − 1 (6)

Use to be called as S(s, t ,0,1,L(s),L(t)) (7)

f f=0: matching strictly at p

(1) success on reaching end of t

(2) failure on reaching end of s but not t

(3) first char of t matches char at postion p in s and remaining
chars of t match at position p+1 in s

(4) success if (3) is satisfied

(5) f6=0: search for match at next position

(6) f=0: failureChittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 273 / 495

String Examples Substrings

Substring identification (recursive)

Editor:
int c ss aux (char s[], const char t[], int p, int f, int
m, int n) {
if (n==0) return p; // by clause 1
else if (n > m) return -1; // by clause 2
else {

if (s[p] == t[0] && // by clause 3
c ss aux(s, t + 1, p+1, 0, m-1, n-1) != -1)

return p; // by clause 4
else {
if (f!=0) return c ss aux(s, t, p + 1, 1, m-1, n);
// by clause 5
else return -1; // by clause 6
}

}
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 274 / 495

String Examples Substrings

Substring identification (Contd.)

Editor:
int c substr (const char s[], const char t[]) {

return c ss aux (s, t, 0, 1,
c strlen(s), c strlen(t));

// by clause 7
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 275 / 495

String Examples Deletion

Deletion from string

D(s,p,n) =

{
if (n = 0) done (1)
else F (s,p,p + n,L(s + p + n) + 1) (2)

required to delete n characters from postion p in string s
achieved by shifting the characters starting at p + n to the end of
s, including the ’“0’ character using the shift forward function,
defined below
the total number of characters to be shifted is L(s + p + n) + 1
the shift forward functino moves n characters from postion f to
postion t (f ≥ t) s
definition of F is tail recursive

F (s, t , f ,n) =


if (n = 0) done (1)
else{

s[t] = s[f] (2)
F (s, t + 1, f + 1,n − 1) (3)

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 276 / 495

String Examples Deletion

Deletion from a string (iterative)

Editor:
void c moveForward (char s[], int t, int f, int n) {

while (n) { // by complement of clause 1
s[t] = s[f]; // by clause 2
t++; f++; n--; // by clause 3

}
}

void c delstr (char s[], int p, int n) {
if (n == 0) return; // by clause 1
else c moveForward (s, p, p + n, c strlen(s+p+n) + 1);
// by clause 2

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 277 / 495

String Examples Insertion

Insertion in a string

I(s, t ,p) =


Let n = L(t) (1)
if (n = 0) done (2)
else{

B(s,p,p + n,L(s + p) + 1) (3)
C(s + p, t ,L(t)) (4)

Insert string t at postion p in string s
Shift backward from postion f to postion t , n characters in f
Definition of B is tail recursive

B(s, f , t ,n) =


if (n = 0) done (1)
else{

s[t + n − 1] = s[f + n − 1] (2)
B(s, f , t ,n − 1) (3)

Definition of B is tail recursive
Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 278 / 495

String Examples Insertion

Insertion in a string (iterative)

Editor:
void c copyArr(char s[], const char t[], int n) {
while (n) { // while characters remain to be copied

*s = *t; // copy character at t to s
s++; t++; n--; // s & t to next pos, decr n

}
}
void c moveBack(char s[], int f, int t, int n) {

n--; // to avoid -1 in clause 2
while (n>=0) {
// by clause 1 and accounting for the previous n--

s[t + n] = s[f + n];
// by clause 2 and accounting for the previous n--
n--; // by clause 3

}
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 279 / 495

String Examples Insertion

Insertion in a string (iterative) (Contd.)

Editor:
void c instr(char s[], const char t[], int p) {

int n = c strlen(t); // by clause 1
if (n) { // by complement of clause 2
c moveBack(s, p, p + n, c strlen(s + p) + 1);
// by clause 3
c copyArr(s + p, t, n); // by clause 4

}
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 280 / 495

String Examples Substring replacement

Substring replacement

R(s, t , r) =



Let p = S(s, t ,0,1) (1)
if (p = −1) absent (2)
else

D(s,p,L(t)) (3)
I(s, r ,p) (4)
replaced (5)

(1) first find the position where t matches in s
(2) if no match, then nothing to do
(3) delete as many characters there are in t , from position p

in s
(4) insert from position p in s, characters in the replacement

string r

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 281 / 495

String Examples Substring replacement

Substring replacement (Contd.)

Editor:
int c replace(char s[], const char t[], const char r[]) {

int p = c substr(s, t); // by clause 1
if (p == -1) return -1; // by clause 2
else {
c delstr(s, p, c strlen(t)); // by clause 3
c instr(s, r, p); // by clause 4
return 1; // by clause 5

}
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 282 / 495

String Examples Str fn prototypes

Prototypes of our string functions

Editor:c_string.h
int c strlen(const char s[]);
void c strcat(char s[], const char t[]);
int c substr(const char s[], const char t[]);
int c replace(char s[], const char t[], const char r[]);

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 283 / 495

String Examples Str fn prototypes

Testing string functions
Editor:
#include <stdio.h>
#include "c string.h"
int main() {
char s[100]="this "; char t[15]="and thar.";
printf ("length of t=\"%s\" is %d\n", t, c strlen(t));
printf ("length of s=\"%s\" is %d\n", t, c strlen(s));

c strcat(s, t);
printf ("after concatenating t to s: %s\n", s);
printf ("\"thar\" occurs at position %d in %s\n",

c substr (s, "thar"), s);

c replace(s, "thar", "that");
printf ("after correction: %s\n", s);

printf ("\"thar\" occurs at position %d in %s\n",
c substr (s, "thar"), s);

return 0;
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 284 / 495

String Examples Str fn prototypes

String Functions

Editor: Output from program
cc -Wall -o strTest strings.c strTest.c
./strTest
length of t="and thar." is 9
length of s="and thar." is 5
after concatenating t to s: this and thar.
"thar" occurs at position 9 in this and thar.
after correction: this and that.
"thar" occurs at position -1 in this and that.

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 285 / 495

String Examples Str fn prototypes

Substring Matching at Work
Editor: c ss aux(const char s[], const char t[], int p, int f, m, int n)
s+p:"this and thar.", t:"thar", p=0, f=1, m=14, n=4
s+p:"his and thar.", t:"har", p=1, f=0, m=13, n=3
s+p:"is and thar.", t:"ar", p=2, f=0, m=12, n=2
s+p:"his and thar.", t:"thar", p=1, f=1, m=13, n=4
s+p:"is and thar.", t:"thar", p=2, f=1, m=12, n=4
s+p:"s and thar.", t:"thar", p=3, f=1, m=11, n=4
s+p:" and thar.", t:"thar", p=4, f=1, m=10, n=4
s+p:"and thar.", t:"thar", p=5, f=1, m=9, n=4
s+p:"nd thar.", t:"thar", p=6, f=1, m=8, n=4
s+p:"d thar.", t:"thar", p=7, f=1, m=7, n=4
s+p:" thar.", t:"thar", p=8, f=1, m=6, n=4
s+p:"thar.", t:"thar", p=9, f=1, m=5, n=4
s+p:"har.", t:"har", p=10, f=0, m=4, n=3
s+p:"ar.", t:"ar", p=11, f=0, m=3, n=2
s+p:"r.", t:"r", p=12, f=0, m=2, n=1
s+p:".", t:"", p=13, f=0, m=1, n=0
"thar" occurs at position 9 in "this and thar."

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 286 / 495

String Examples Str fn prototypes

Remove whitespace preceeding punctuation
marks

Blanks and tabs preceeding commas, semicolons and periods are to
be removed using the functions described earlier.

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 287 / 495

String Examples Str fn prototypes

Substring Identification Revisited

S(s, t ,p,m,n) =

if (n = 0) then p (1)
else if (n > m) then − 1 (2)
else if (s[p] = t [0] and T (s + p + 1, t + 1,0,n − 1) 6= −1) (3)

then p (4)
else S(s, t ,p + 1,m − 1,n) (5)

To be called as S(s, t ,0,L(s),L(t)) (6)

T (s + p + 1, t + 1,0,n − 1) looks for a match of t + 1 (having n − 1
characters) exactly at s + p + 1

Now S is tail recursive

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 288 / 495

String Examples Str fn prototypes

Substring Identification Revisited (code)

Editor:
int c substr I(const char s[], const char t[]) {
int m=c strlen(s), n=c strlen(t), p=0; // by clause 6
while (n != 0) { // by complement of clause 1

if (n > m) return -1; // by clause 2
if (s[p]==t[0] && c ss2(s+p+1, t+1, 0, n-1)!=1)
// by clause 3
return p; // by clause 4

else {
p++; m--; // by clause 5
}

}
return p; // by clauses 1 & 4
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 289 / 495

String Examples Str fn prototypes

Match at fixed position

T (u, v ,q, l) =


if (l = 0) then 1 (1)
else if (s[q] = t [q]) (2)

then T (u, v ,q + 1, l − 1) (3)
else − 1 (4)

To be called as S(s, t ,0,L(t)) (5)

T is tail recursive

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 290 / 495

String Examples Str fn prototypes

Match at fixed position (code)

Editor:
int c ss2(const char u[], const char v[], int l) {
int q=0; // by clause 5
while (l != 0) { // by complement of clause 1

if (u[q]==v[q]) { // by clause 2
q++; l--; // by clause 3
} else
return -1; // by clause 4

}
return 1; // by clauses 1
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 291 / 495

String Examples Str fn prototypes

Optional Code Optimisation

Editor:
int c substr I(const char s[], const char t[]) {
int m=c strlen(s), n=c strlen(t), p=0; // by clause 6
while (n != 0) { // by complement of clause 1

if (n > m) return -1; // by clause 2
if (s[p]==t[0]) {
if (c ss2(s+p+1, t+1, 0, n-1)!=1)
return p;
else {
p++; m--;
} else {
p++; m--;
}

}
return p; // by clauses 1 & 4
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 292 / 495

String Examples Str fn prototypes

Optional Code Optimisation
Editor:
int c substr 2(const char s[], const char t[]) {
int m=c strlen(s), n=c strlen(t), p=0; // by clause 6
while (n != 0) { // by complement of clause 1

if (n > m) return -1; // by clause 2
if (s[p]==t[0]) {

const char *u=s+p+1, *v=t+1; int l=n-1;
int q=0;
while (l != 0) {

if (u[q]==v[q]) {
q++; l--;

} else {
p++; m--; break; // instead of return -1

}
}
if (l==0) return p; // instead of return 1

} else {
p++; m--;
}

}
return p; // by clauses 1 & 4
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 293 / 495

Part IX

Searching and simple sorting

25 Fast searching

26 Simple sorting

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 294 / 495

Fast searching

Section outline

25 Fast searching
Binary search formulation
Example
Rec, indices
Rec, indices, fail pos
Rec, splitting
Rec, splitting, fail pos
Iter, indices, fail pos

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 295 / 495

Fast searching Binary search formulation

Searching in a sorted array

Numbers in the array are sorted in ascending order
If the array is empty, then report failure
Compare the key to the middle element
If equal, then done
else, if key is smaller than middle element, then search in upper half
else, search in lower half

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 296 / 495

Fast searching Example

Searching in a sorted array

23?
0 03
1 23
2 27
3 38
4 53
5 58
6 85

23?
0 03
1 23
2 27

24?
0 03
1 23
2 27
3 38
4 53
5 58
6 85

24?
0 03
1 23
2 27

24?
2 27

24?

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 297 / 495

Fast searching Rec, indices

Binary search – recursive, array indices

Editor: Ranges by array index
int searchBinRI(int Z[], int ky, int is, int ie) {
// is: starting index, ie: ending index
// invoked as: searchBinRI(A, ky, 0, SIZE-1)
int mid=is+(ie-is)/2;
if (is>ie) {
return -1; // empty array
} else if (ky==Z[mid]) {
return mid;
} else if (ky<Z[mid]) { // search in upper half
return searchBinRI(Z, ky, is, mid-1);
} else { // search in lower half
return searchBinRI(Z, ky, mid+1, ie);
}
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 298 / 495

Fast searching Rec, indices, fail pos

Binary search – recursive, array indices, where
failed

Editor: Ranges by array index, failure position
int searchBinRIF(int Z[], int ky, int is, int ie) {
// is: starting index, ie: ending index
// invoked as: searchBinRIF(A, ky, 0, SIZE-1)
int mid=is+(ie-is)/2;
if (is>ie) {
return -is-10; // empty array

} else if (ky==Z[mid]) {
return mid;

} else if (ky<Z[mid]) { // search in upper half
return searchBinRIF(Z, ky, is, mid-1);

} else { // search in lower half
return searchBinRIF(Z, ky, mid+1, ie);

}
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 299 / 495

Fast searching Rec, splitting

Searching in a sorted array

index address size of part
0 Z
1 Z+1
... ...

mid-1 Z+mid-1 mid
mid Z+mid

mid+1 Z+mid+1
... ...

SIZE-1 Z+SIZE-1 SIZE-mid-1

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 300 / 495

Fast searching Rec, splitting

Binary search – recursive, address arithmetic

Editor: Ranges by address arithmetic
int searchBinRA(int Z[], int ky, int sz, int pos) {
// invoked as: searchBinRA(A, ky, SIZE, 0)
int mid=sz/2;
if (sz<=0) { // array is empty
return -1;
} else if (ky==Z[mid]) {
return pos+mid;
} else if (ky<Z[mid]) { // search in upper half
return searchBinRA(Z, ky, mid, pos);
} else { // search in lower half
return searchBinRA(Z+mid+1, ky, sz-mid-1, pos+mid+1);
}
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 301 / 495

Fast searching Rec, splitting, fail pos

Binary search – recursive, addresses, where failed

Editor: Ranges by address arithmetic, failure position
int searchBinRAF(int Z[], int ky, int sz, int pos) {
// invoked as: searchBinRAF(A, ky, SIZE, 0)
int mid=sz/2;
if (sz<=0) {
return -pos-10;
} else if (ky==Z[mid]) {
return pos+mid;
} else if (ky<Z[mid]) { // search in upper half
return searchBinRAF(Z, mid, ky, pos);
} else { // search in lower half
return searchBinRAF(Z+mid+1, sz-mid-1, ky, pos+mid+1);
}
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 302 / 495

Fast searching Rec, splitting, fail pos

Compiling tail recursive binary search

To generate optimised code where tail recursion is eliminated:
gcc -Wall -O2 -o search search.c

To generate optimised assembler code without tail recursion:
gcc -Wall -O2 -S search.c

To view assembler code:
gvim search.s

Search for searchBinRAF or searchBinRAF in vi or gvim:
/searchB.*R.F←↩
Search for next occurence of pattern in vi or gvim:
n

What to look for?
Inside searchBinRAF: call searchBinRAF
Inside searchBinRIF: call searchBinRIF

If these calls are absent inside functions searchBinRAF and
searchBinRAF, respectively, then these functions are not recursive

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 303 / 495

Fast searching Rec, splitting, fail pos

Binary search – recursive, array indices, where
failed

Run Results:
int A[5]=1, 3, 5, 7, 9;

RAF: 1 found at 0
RIF: 1 found at 0
RAF: 7 found at 3
RIF: 7 found at 3
RAF: search for 0 failed at 0
RIF: search for 0 failed at 0
RAF: search for 2 failed at 1
RIF: search for 2 failed at 1
RAF: search for 10 failed at 5
RIF: search for 10 failed at 5

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 304 / 495

Fast searching Rec, splitting, fail pos

Calling program for binary search functions

Editor:
#include <stdio.h>
int main() {
int A[5]=1, 3, 5, 7, 9, ky, pos;

ky = 1 ; pos = searchBinRAF(A, ky, 5, 0);
printf(pos<0 ? "RAF: search for %d failed at %d\n"

:"RAF: %d found at %d\n",
ky, pos<0 ? -(pos+10):pos);

ky = 1 ; pos = searchBinRIF(A, ky, 0, 4);
printf(pos<0 ? "RIF: search for %d failed at %d\n"

:"RIF: %d found at %d\n",
ky, pos<0 ? -(pos+10):pos);

return 0;
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 305 / 495

Fast searching Iter, indices, fail pos

Binary search – iterative, array indices, where
failed

Editor:
int searchBinIIF(int Z[], int ky, int sz,) {
int is=0;
int ie=sz-1;
while (is <= ie) do { // exit loop on failure

int mid=is+(ie-is)/2;
if (ky==Z[mid]) break; // exit loop on match
else if (ky<Z[mid]) // search in upper half

ie = mid - 1;
else // search in lower half
is = mid - 1;

}
if (is>ie)
return -is-10; // failure

else
return mid; // matched at mid

}Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 306 / 495

Simple sorting

Section outline

26 Simple sorting
Selection Sort
Bubble Sort
Insertion Sort

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 307 / 495

Simple sorting Selection Sort

Motivation of Selection Sort

Select smallest element
Interchange with top element
Repeat procedure leaving out the top element

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 308 / 495

Simple sorting Selection Sort

Recursive Selection Sort

Editor:
void selectionSortR(int Z[], int sz) {
int sel, i, t;
if (sz<=0) return;
for (i=sz-1,minI=i,i--;i=>0;i--)
// select the smallest element
if (Z[i]<Z[minI]]) minI = i;
// interchange the min element with the top element
t=Z[minI];
Z[minI]=Z[0];
Z[0]=t;
// now sort the rest of the array
selectionSortR(Z+1, sz-1);

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 309 / 495

Simple sorting Selection Sort

Iterative Selection Sort

Editor:
void selectionSortI(int Z[], int sz) {
int sel, i, t;
for (j=sz; j>0; j--) { // from full array, decrease

for (i=sz-1,minI=i,i--;i=>sz-j;i--)
// sz-j varies from 0 to sz-1 and i from sz-2 to sz-j
// select the smallest element
if (Z[i]<Z[minI]]) minI = i;
// interchange the min element with the top element
t=Z[minI];
Z[minI]=Z[sz-j];
Z[sz-j]=t;
// now sort the rest of the array

}
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 310 / 495

Simple sorting Bubble Sort

Motivation of Bubble Sort

Start from the bottom and move upwards
If an element is smaller than the one over it, then interchange the
two
The smaller element bubbles up
Smallest element at top at the end of the pass
Repeat procedure leaving out the top element

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 311 / 495

Simple sorting Bubble Sort

Recursive Bubble Sort

Editor:
void bubbleSortR(int Z[], int sz) {
int i;
if (sz<=0) return;
for (i=sz-1;i>0;i--)
// the smallest element bubbles up to the top
if (Z[i]<Z[i-1]) {

int t;
t=Z[i];
Z[i]=Z[i-1];
Z[i-1]=t;

}
// now sort the rest of the array
bubbleSortR(Z+1, sz-1);

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 312 / 495

Simple sorting Bubble Sort

Iterative Bubble Sort

Editor:
void bubbleSortI(int Z[], int sz) {
int i, j;
for (j=sz; j>0; j--) // from full array, decrease
for (i=sz-1;i>sz-j;i--)
// the smallest element bubbles up to the top
if (Z[i]<Z[i-1]) {

int t;
t=Z[i];
Z[i]=Z[i-1];
Z[i-1]=t;

}
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 313 / 495

Simple sorting Insertion Sort

Insert sorted

Editor:
void insertSorted(int Z[], int ky, int sz) {
// insert ky at the correct place
// original array should have free locations
// sz is number of elements currently in the array
// sz is not the allocated size of the array
int i, pos=searchBinRAF(Z, ky, sz, 0);
if (pos<0) pos=-(pos+10);
// compensation specific to searchBinRAF
// now shift down all elements from pos onwards
for (i=sz;i>pos;i--) // start from the end! (why?)
Z[i]=Z[i-1];
Z[pos]=ky; // now the desired position is available
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 314 / 495

Simple sorting Insertion Sort

Insertion Sort

Editor:
void insertionSort(int Z[], int sz) {
int i;
for (i=1;i<sz;i++)
// elements 0..(i-1) are sorted, element Z[i]
// is to be placed so that elements 0..i are also

sorted
insertSorted(Z, Z[i], i);

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 315 / 495

Part X

Runtime measures

27 Program complexity

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 316 / 495

Program complexity

Section outline

27 Program complexity
Asymptotic Complexity
Big-O Notation
Big-Theta Notation
Big-Omega Notation
Sample Growth Functions
Common Recurrences

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 317 / 495

Program complexity Asymptotic Complexity

Asymptotic Complexity

Suppose we determine that a program takes 8n + 5 steps to solve
a problem of size n
What is the significance of the 8 and +5 ?
As n gets large, the +5 becomes insignificant
The 8 is inaccurate as different operations require varying
amounts of time
What is fundamental is that the time is linear in n
Asymptotic Complexity: As n gets large, ignore all lower order
terms and concentrate on the highest order term only

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 318 / 495

Program complexity Asymptotic Complexity

Asymptotic Complexity (Contd.)

8n + 5 is said to grow asymptotically like n
So does 119n − 45
This gives us a simplified approximation of the complexity of the
algorithm, leaving out details that become insignificant for larger
input sizes

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 319 / 495

Program complexity Big-O Notation

Big-O Notation

We have talked of O(n), O(n2) and O(n3) before
The Big-O notation is used to express the upper bound on a
function, hence used to denote the worst case running time of a
program
If f (n) and g(n) are two functions then we can say:
f (n) ∈ O(g(n)) if there exists a positive constant c
and n0 such that 0 ≤ f (n) ≤ cg(n), for all n > n0

cg(n) dominates f (n) for n > n0 (for large n)
This is read “f (n) is order g(n)”, or “f (n) is big-O of g(n)”
Loosely speaking, f (n) is no larger than g(n)

Sometimes people also write f (n) = O(g(n)), but that notation is
misleading, as there is no straightforward equality involved
This characterisation is not tight, if f (n) ∈ O(n), then f (n) ∈ O(n2)

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 320 / 495

Program complexity Big-O Notation

Diagramatic representation of Big-O

f (n) ∈ O(g(n)) if there exists a positive constant c and n0
such that 0 ≤ f (n) ≤ cg(n), for all n > n0

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 321 / 495

Program complexity Big-Theta Notation

Big-Theta Notation

The Big-Theta notation is used to express the notion that a
function g(n) is a good (preferably simpler) characterisation of
another function f (n)

If f (n) and g(n) are two functions then we can say:
f (n) ∈ Θ(g(n)) if there exists a positive constants
c1, c2 and n0 such that 0 ≤ c1g(n) ≤ f (n) ≤ c2g(n),
for all n > n0

Loosely speaking, f (n) is like g(n)

Sometimes people also write f (n) = Θ(g(n)), but that notation is
misleading
This characterisation is tight

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 322 / 495

Program complexity Big-Omega Notation

Big-Omega Notation

While discussing matrix evaluation by Crammer’s ruled we
mentioned that the number of operations to be performed is worse
that n!

The Big-Omega notation is used to express the lower bound on a
function
If f (n) and g(n) are two functions then we can say:
f (n) ∈ Ω(g(n)) if there exists a positive constant c
and n0 such that 0 ≤ cg(n) ≤ f (n), for all n > n0

f (n) dominates cg(n) for n > n0 (for large n)
Loosely speaking, f (n) is larger than g(n)

Sometimes people also write f (n) = Ω(g(n)), but that notation is
misleading, as there is no straightforward equality involved
This characterisation is also not tight

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 323 / 495

Program complexity Big-Omega Notation

Summary

If f (n) = Θ(g(n)) we say that f (n) and g(n) grow at the same rate
asymptotically
If f (n) = O(g(n)) but f (n) 6= Ω(g(n)), then we say that f (n) is
asymptotically slower growing than g(n).
If f (n) = Ω(g(n)) but f (n) 6= O(g(n)), then we say that f (n) is
asymptotically faster growing than g(n).

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 324 / 495

Program complexity Sample Growth Functions

Sample Growth Functions

The functions below are given in ascending order:

O(k) = O(1) Constant Time
O(logbn) = O(log n) Logarithmic Time
O(n) Linear Time
O(n log n)

O(n2) Quadratic Time
O(n3) Cubic Time
. . .

O(kn) Exponential Time
O(n!) Exponential Time

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 325 / 495

Program complexity Common Recurrence Relations

Sample Recurrences and Their Solutions

T (N) = 1 for N = 1 (1)
T (N) = T (N − 1) + 1 for N ≥ 2 (2)

T (N) = N ∈ O(N)

Show that this recurrence captures the running time complexity of
determining the maximum element, searching in an un-sorted array

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 326 / 495

Program complexity Common Recurrence Relations

Sample Recurrences and Their Solutions (Contd.)

T (N) = 1 for N = 1 (1)
T (N) = T (N − 1) + N for N ≥ 2 (2)

T (N) =
N(N + 1)

2
∈ O(N2)

Show that this recurrence captures the running time complexity of
bubble/insertion/selection sort

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 327 / 495

Program complexity Common Recurrence Relations

Sample Recurrences and Their Solutions (Contd.)

T (N) = 1 for N = 1 (1)
T (N) = T (N/2) + 1 for N ≥ 2 (2)

T (N) = lg N + 1 ∈ O(lg N)

Show that this recurrence captures the running time complexity of
binary search

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 328 / 495

Program complexity Common Recurrence Relations

Sample Recurrences and Their Solutions (Contd.)

T (N) = 0 for N = 1 (1)
T (N) = T (N/2) + N for N ≥ 2 (2)

T (N) = 2N ∈ O(N)

No problem examined so far in this course whose behaviour is
modelled by this recurrence relation

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 329 / 495

Program complexity Common Recurrence Relations

Sample Recurrences and Their Solutions (Contd.)

T (N) = 1 for N = 1 (1)
T (N) = 2T (N/2) + N for N ≥ 2 (2)

T (N) = N lg N ∈ O(N lg N)

Show that this recurrence captures the running time complexity of
quicksort

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 330 / 495

Program complexity Common Recurrence Relations

Sample Recurrences and Their Solutions (Contd.)

T (N) = 1 for N = 1 (1)
T (N) = 2T (N − 1) + 1 for N ≥ 2 (2)

T (N) = 2N − 1 ∈ O(2N)

Show that this recurrence captures the running time complexity of the
towers of Hanoi problem

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 331 / 495

Part XI

2D Arrays

28 Two dimensional arrays

29 2D Matrices

30 More on 2-D arrays

31 Pseudo 2D arrays

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 332 / 495

Two dimensional arrays

Section outline

28 Two dimensional arrays
Usage
Element addresses
Points to note
Declaring 2D arrays
Array of arrays

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 333 / 495

Two dimensional arrays Usage

Usage

int A[4][5] – 4× 5 array of int – four rows and five columns
Row and column values must be positive integer constants

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 334 / 495

Two dimensional arrays Element addresses

Addresses of elements

int A[4][5] – A has 4 rows and 5 columns
0 1 2 3 4

0 (0,0)[0] (0,1)[1] (0,2)[2] (0,3)[3] (0,4)[4]
1 (1,0)[5] (1,1)[6] (1,2)[7] (1,3)[8] (1,4)[9]
2 (2,0)[10] (2,1)[11] (2,2)[12] (2,3)[13] (2,4)[14]
3 (3,0)[15] (3,1)[16] (3,2)[17] (3,3)[18] (3,4)[19]

int A[R][C] address of location (i , j)?:i × C + j

0 1 2 3 4
0 0× 5 + 0 0× 5 + 1 0× 5 + 2 0× 5 + 3 0× 5 + 4
1 1× 5 + 0 1× 5 + 1 1× 5 + 2 1× 5 + 3 1× 5 + 4
2 2× 5 + 0 2× 5 + 1 2× 5 + 2 2× 5 + 3 2× 5 + 4
3 3× 5 + 0 3× 5 + 1 3× 5 + 2 3× 5 + 3 3× 5 + 4

A[i][j]

≡ *((int *)A+i*C+j)
&A[i][j] ≡ ((int *)A+i*C+j)

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 335 / 495

Two dimensional arrays Points to note

Array facts – for ‘C’

Array elements are stored in memory, one element after another
Two dimensional arrays are also stored the same way – in row
major order – one row after another
Size of a single dimensional array not required to compute
element addresses – both declarations Z[] and Z[SIZE] work
Column size of a two dimensional array (but not the row size) of a
two dimensional array is required to compute element addresses
– both declarations Z[][COL] and Z[ROW][COL] work, but
Z[][] does not work
Array bounds are not checked – int A[5]; A[8]=0; is usually
accepted by the compiler, but it over writes memory locations
outside the array region – serious problem

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 336 / 495

Two dimensional arrays Points to note

Summing all elements in an 2-D array

We definitely need to know the number of columns
How do we declare the array?
Can only declare an array for constant dimensions
Arbitrary arrays cannot be handled via declaration
Explicit address computation required
Type of array elements must be fixed
#define ADDR2D(C,I,J) C*I+j

#define EL2D(T,Z,C,I,J) *((T*)Z+C*I+j)

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 337 / 495

Two dimensional arrays Points to note

Sum 2D

Editor:
#define ADDR2D(C,I,J) (C)*(I)+(J)
int sum2D(int *Z, int R, int C) {
// the 2D array is passed simply as an int pointer
// row and column sizes are passed separately
int i, j, s=0;
for (i=0; i<R; i++)
for (j=0; j<C; j++)
s += Z[ADDR2D(C,i,j)];

return s;
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 338 / 495

Two dimensional arrays Declaring 2D arrays

Declaring 2D arrays

int A[10][20] – also definition
int B[][20], (*Y)[20] – only pointer allocation, no array
allocation

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 339 / 495

Two dimensional arrays Declaring 2D arrays

Declaring 2D arrays (Contd.)

int *C[10] – C is a vector of integer pointers
int **D – pointer to (a vector of) integer pointer(s)

C[0] ?
C[1] ?
C[2] ?
C[3] ?
C[4] ?
C[5] ?
C[6] ?
C[7] ?
C[8] ?
C[9] ?

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 340 / 495

Two dimensional arrays Declaring 2D arrays

Declaring 2D arrays (Contd.)

int *C[10] – C is a vector of integer pointers
int a0[4]; C[0]=a0;

C[0]
C[1] ?
C[2] ?
C[3] ?
C[4] ?
C[5] ?
C[6] ?
C[7] ?
C[8] ?
C[9] ?

a0

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 341 / 495

Two dimensional arrays Declaring 2D arrays

Declaring 2D arrays (Contd.)

int *C[10] – C is a vector of integer pointers
int a0[4]; C[0]=a0;
int a1[5]; C[1]=a1;

C[0]
C[1]
C[2] ?
C[3] ?
C[4] ?
C[5] ?
C[6] ?
C[7] ?
C[8] ?
C[9] ?

a0
a1

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 342 / 495

Two dimensional arrays Declaring 2D arrays

Handling 2D arrays
Editor: arr.c
int main () {
int i, j;
int b[3][4], (*r)[4], *q[3];

for (i=0; i<3; i++)
q[i] = (int *) malloc (4*sizeof(int));

r = (int (*)[4]) malloc (3*4*sizeof(int));

printf("declarations: int b[3][4], (*r)[4], *q[3]\n");
printf ("address of r: %12p, b: %12p, q: %12p\n",

&r, &b, &q);
printf (" value of r: %12p, b: %12p, q: %12p\n",

r, b, q);

for (i=0; i<3; i++)
for (j=0; j<4; j++)
b[i][j] = q[i][j] = r[i][j] = pow(2,i)*pow(3,j);

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 343 / 495

Two dimensional arrays Declaring 2D arrays

Handling 2D arrays (Contd.)
Editor: arr.c (Contd.)
for (i=0; i<3; i++)
for (j=0; j<4; j++) {
printf ("b[%d][%d] = %d\t@ %p \t",

i, j, b[i][j], &(b[i][j]));
printf ("b[%d(=%d*4 + %d)] = %d\t",

i*4+j, i, j, ((int *) b)[i*4+j]);
printf ("q[%d][%d] = %d\n", i, j, q[i][j]);
printf ("r[%d(=i)][%d(=j)] = %d \t@ %p\t",

i, j, r[i][j],
&(r[i][j]));

printf ("r[%d(=%d*4 + %d)] = %d\n\n",
i*4+j, i, j, ((int *) r)[i*4+j]);

}

return 0;
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 344 / 495

Two dimensional arrays Declaring 2D arrays

Handling 2D arrays (Contd.)

Shell: run of arr
$ arr
declarations: int b[3][4], (*r)[4], *q[3]
address of r: 0xbf99948c, b: 0xbf999490, q: 0xbf999480
values of r: 0x804a088, b: 0xbf999490, q: 0xbf999480

b[0][0] = 1 @ 0xbf999490 b[0(=0*4 + 0)] = 1 q[0][0] = 1
r[0(=i)][0(=j)] = 1 @ 0x804a088 r[0(=0*4 + 0)] = 1

b[0][1] = 3 @ 0xbf999494 b[1(=0*4 + 1)] = 3 q[0][1] = 3
r[0(=i)][1(=j)] = 3 @ 0x804a08c r[1(=0*4 + 1)] = 3

b[0][2] = 9 @ 0xbf999498 b[2(=0*4 + 2)] = 9 q[0][2] = 9
r[0(=i)][2(=j)] = 9 @ 0x804a090 r[2(=0*4 + 2)] = 9

b[0][3] = 27 @ 0xbf99949c b[3(=0*4 + 3)] = 27 q[0][3] = 27
r[0(=i)][3(=j)] = 27 @ 0x804a094 r[3(=0*4 + 3)] = 27

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 345 / 495

Two dimensional arrays Declaring 2D arrays

Handling 2D arrays (Contd.)

Shell: run of arr
b[1][0] = 2 @ 0xbf9994a0 b[4(=1*4 + 0)] = 2 q[1][0] = 2
r[1(=i)][0(=j)] = 2 @ 0x804a098 r[4(=1*4 + 0)] = 2

b[1][1] = 6 @ 0xbf9994a4 b[5(=1*4 + 1)] = 6 q[1][1] = 6
r[1(=i)][1(=j)] = 6 @ 0x804a09c r[5(=1*4 + 1)] = 6

b[1][2] = 18 @ 0xbf9994a8 b[6(=1*4 + 2)] = 18 q[1][2] = 18
r[1(=i)][2(=j)] = 18 @ 0x804a0a0 r[6(=1*4 + 2)] = 18

b[1][3] = 54 @ 0xbf9994ac b[7(=1*4 + 3)] = 54 q[1][3] = 54
r[1(=i)][3(=j)] = 54 @ 0x804a0a4 r[7(=1*4 + 3)] = 54

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 346 / 495

Two dimensional arrays Declaring 2D arrays

Handling 2D arrays (Contd.)

Shell: run of arr
b[2][0] = 4 @ 0xbf9994b0 b[8(=2*4 + 0)] = 4 q[2][0] = 4
r[2(=i)][0(=j)] = 4 @ 0x804a0a8 r[8(=2*4 + 0)] = 4

b[2][1] = 12 @ 0xbf9994b4 b[9(=2*4 + 1)] = 12 q[2][1] = 12
r[2(=i)][1(=j)] = 12 @ 0x804a0ac r[9(=2*4 + 1)] = 12

b[2][2] = 36 @ 0xbf9994b8 b[10(=2*4 + 2)] = 36 q[2][2] = 36
r[2(=i)][2(=j)] = 36 @ 0x804a0b0 r[10(=2*4 + 2)] = 36

b[2][3] = 108 @ 0xbf9994bc b[11(=2*4 + 3)] = 108 q[2][3] = 108
r[2(=i)][3(=j)] = 108 @ 0x804a0b4 r[11(=2*4 + 3)] = 108

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 347 / 495

Two dimensional arrays Declaring 2D arrays

Handling 2D arrays (Contd.)

Editor: arr.c
#include <stdlib.h>
#include <math.h>

int (*allocate r())[4]{
int (*r)[4], i, j;
r = (int (*)[4]) malloc (3*4*sizeof(int));

for (i=0; i<3; i++)
for (j=0; j<4; j++) {
r[i][j] = pow(2,i)*pow(3,j);
}
return r;
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 348 / 495

Two dimensional arrays Array of arrays

Print command-line arguments

Editor: showArgs.c
#include <stdio.h>

int main(int argc, char **argv) {
int i;

for (i=0; i<argc; i++)
printf("arg-%d: %s\n", i, argv[i]);

return 0;
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 349 / 495

Two dimensional arrays Array of arrays

Print command-line arguments (Contd.)

Shell: run of showArgs
$ make showArgs
cc showArgs.c -o showArgs
$ showArgs arg1 arg2 ... argn
arg-0: showArgs
arg-1: arg1
arg-2: arg2
arg-3: ...
arg-4: argn

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 350 / 495

2D Matrices

Section outline

29 2D Matrices
Determinants
Matrix Operations
Row-Column interchange
Eliminating columns
Setting pivot
Determinant computation

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 351 / 495

2D Matrices Determinant of a Square Matrix

Determinant of a matrix

Leibniz formula:

det(A) =
n∑

j=1

Ai,jCi,j =
n∑

j=1

Ai,j(−1)i+jMi,j

Time complexity of computing the determinant by this mechanism
is important.

T (n) =

{
if (n = 1) then 1
otherwise n × T (n − 1) + N

T (N) is worse than n!

Routines for determinant evaluation by Leibniz formula essentially
for programming practice

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 352 / 495

2D Matrices Determinant of a Square Matrix

Determinant of a matrix (Contd.)

Editor: determinant.c
int determinant (int N, int A[N][N]) {
int i, j, k, l, sum=0, sign=1, B[N-1][N-1];
if (N==1) return A[0][0];
for (i=0;i<N;i++,sign*=-1) {

// Now form B
for (j=0;j<N;j++) {

if (j==i) continue;
for (k=1;k<N;k++) {

l = j<i ? j : j-1;
B[k-1][l] = A[k][j];

}
} // B formed
sum += sign * A[0][i] * determinant(N-1, B);

}
return sum;

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 353 / 495

2D Matrices Determinant of a Square Matrix

Determinant of a matrix (Contd.)

Editor: determinant.c
#include <stdio.h>
#define SIZE 3
int main () {
int A[SIZE][SIZE], i, j;
for (i=0;i<SIZE;i++) {

for (j=0;j<SIZE;j++) {
A[i][j] = (i+1)*(j+1);
printf ("%4d ", A[i][j]);

} printf ("\n");
}
printf ("determinant of above matrix is %d\n",

determinant(SIZE, A));
return 0;
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 354 / 495

2D Matrices Determinant of a Square Matrix

Determinant of a matrix (Contd.)

Shell: run of determinant
$ make determinant
cc determinant.c -o determinant
$ determinant

1 2 3
2 4 6
3 6 9

determinant of above matrix is 0

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 355 / 495

2D Matrices Determinant of a Square Matrix

Determinant of a matrix (Contd.)

Editor: determinant.c
#include <stdio.h>
#define SIZE 3
int main () {
int A[SIZE][SIZE], i, j;
for (i=0;i<SIZE;i++) {

for (j=0;j<SIZE;j++) {
A[i][j] = (i+1)*(j+1) + i*i + j*j;
printf ("%4d ", A[i][j]);

} printf ("\n");
}
printf ("determinant of above matrix is %d\n",

determinant(SIZE, A));
return 0;
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 356 / 495

2D Matrices Determinant of a Square Matrix

Determinant of a matrix (Contd.)

Shell: run of determinant
$ make determinant
cc determinant.c -o determinant
$ determinant

1 3 7
3 6 11
7 11 17

determinant of above matrix is -4

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 357 / 495

2D Matrices Determinant of a Square Matrix

Determinant of a matrix (Contd.)
Editor: determinant.c
int detEval (int N, int A[N][N], char p[N], int M) {
int i, j, k, l, sum=0, sign=1; // p->present
if (M==1) return findP(N, A, p);
for (i=0;i<N;i++) {

if (p[i]==0) continue; // not present
p[i] = 0; // skip to compute cofactor
sum += sign * A[N-M][i] * detEval(N, A, p, M-1);
p[i] = 1; // re-introduce and continue
sign *= -1;

}
return sum;

}

Marked parts in the code are inefficient

Avoidable by representing information in p[]
differently?

Find a logical solution, as home assignment

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 358 / 495

2D Matrices Determinant of a Square Matrix

Determinant of a matrix (Contd.)

Editor: determinant.c
int findP (int N, int A[N][N], char p[N]) {

int i;
for (i=0;i<N;i++) {

if (p[i]) return A[N-1][i] ;
}

}

int determinant2 (int N, int A[N][N]) {
char p[N]; int i;
for (i=0; i<N; i++) p[i]=1;
return detEval (N, A, p, N);

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 359 / 495

2D Matrices Matrix Operations

Matrix Operations

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 360 / 495

2D Matrices Matrix Operations

Matrix Operations

When two rows or two columns of a matrix are interchanged, the
resulting determinant will differ only in sign.
If you multiply a row or column by a non-zero constant, the
determinant is multiplied by that same non-zero constant.
If you multiply a row or column by a non-zero constant and add it
to another row or column, replacing that row or column, there is no
change in the determinant.
Columns to the right of the diagonal element can be eliminated
using the above principles to make the matrix lower triangular
Determinant of a triangular matrix is the product of the diagonal
elements
Problem when diagonal element is zero
Move largest element (among active elements) to the pivot
position

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 360 / 495

2D Matrices Row-Column interchange

Row-Column interchange

Editor:
void swapRow (int N, float A[N][N], int r1, int r2) {

float t; int i;
for (i=0; i<N; i++) { // swap elements in each col

t = A[r1][i];
A[r1][i] = A[r2][i];
A[r2][i] = t;

}
}

void swapCol (int N, float A[N][N], int c1, int c2) {
float t; int i;
for (i=0; i<N; i++) { // swap elements in each row

t = A[i][c1];
A[i][c1] = A[i][c2];
A[i][c2] = t;

}
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 361 / 495

2D Matrices Row-Column interchange

Time Complexity of Interchange Rows and
Columns

For both rowSwap and colSwap,

T (N) = O(N)

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 362 / 495

2D Matrices Eliminating columns

Eliminating columns

Editor:
void eliminateCols(int N, float A[N][N], int c) {

float sf; int i, j;
for (i=c+1; i<N; i++) { // columns after c

sf = A[c][i]/A[c][c];
#ifdef DEBUG
printf("eliminateCols: A[%d][%d]=%f, A[%d][%d]=%f,

sf=%f\n",
c, i, A[c][i], c, c, A[c][c], sf);

#endif
for (A[c][i]=0, j=c+1; j<N; j++) {
// no change to rows 0..(c-1) with zero elements

A[j][i] -= sf * A[j][c];
// no change to sign of determinant

}
}

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 363 / 495

2D Matrices Eliminating columns

Time Complexity of Eliminate Columns

On account of the two nested loops,

T (N) = O(N2)

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 364 / 495

2D Matrices Setting pivot

Setting pivot

Editor:
int setPivot (int N, float A[N][N], int c) {
// move largest element among A[i][j], i, j >= c
// return value: 1: no sign change -1: sign change 0:
A[c][c]==0
int i, j, mR, mC, sign=1; float max = fabs(A[c][c]);

for (i=c; i<N; i++) // find the max element
for (j=c; j<N; j++) {

if (fabs(A[i][j]) > max) {
max = A[i][j];
mR = i; mC = j;

}
}

#ifdef DEBUG
printf("setPivot: max=%f, c=%d, mR=%d, mC=%d\n", max,

c, mR, mC);
#endif
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 365 / 495

2D Matrices Setting pivot

Setting pivot (contd.)

Editor:
if (max == 0) return 0;
if (mR != c) { // interchange row, if necessary
swapRow (N, A, c, mR);
sign *= -1;

}
if (mC != c) { // interchange row, if necessary
swapCol (N, A, c, mC);
sign *= -1;

}
return sign;
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 366 / 495

2D Matrices Setting pivot

Time Complexity of Setting the Pivot Element

Maximim element identified in O(N2) time
Swapping or rows and columns done in O(N) time
Overall time complexity is O(N2)

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 367 / 495

2D Matrices Determinant computation

Compute Determinant by Elimination

Editor:
float det byElim (int N, float A[N][N]) {
#ifdef DEBUG
printf ("det byElim: address of A=%p\n", A);

#endif
int i, j, sign=1; float prod=1;
for (i=0; i<N-1; i++) {

sign *= setPivot (N, A, i);
#ifdef DEBUG
showMatrix (N, A, "setPivot: after setPivot");

#endif
if (sign == 0) return 0;
prod *= A[i][i];
eliminateCols(N, A, i);

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 368 / 495

2D Matrices Determinant computation

Compute Determinant by Elimination (Contd.)

Editor:
#ifdef DEBUG
printf("det byElim: sign=%d, prod=%f, A[%d][%d]=%f\n",

sign, prod, i, i, A[i][i]);
showMatrix (N, A, "setPivot: after eliminateCols");

#endif
}
return sign * prod * A[N-1][N-1];

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 369 / 495

2D Matrices Determinant computation

Time Complexity of Determinant by Elimination

setPivot called N − 1 times, each call done in O(N2) time,
hence O(N3)

eliminateCols called N − 1 times, each call done in O(N2)
time, hence O(N3)

Overall time complexity is O(N3) – polynomial in N
Much better than direct use of Leibniz formula – exponential in N

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 370 / 495

2D Matrices Determinant computation

Compute Determinant by Elimination (Contd.)

Editor:
#define SIZE 3
int main () {
float A[SIZE][SIZE]; int i, j;
for (i=0;i<SIZE;i++) {

for (j=0;j<SIZE;j++) {
A[i][j] = (i+1)*(j+1) + i*i + j*j;
printf ("%f ", A[i][j]);

} printf ("\n");
} printf ("***\n");

printf ("determinant of above matrix (elimination) is
%f\n",

det byElim(SIZE, A));
return 0;
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 371 / 495

2D Matrices Determinant computation

Compute Determinant by Elimination (Contd.)

Shell: Compile and run
$ cc -DDEBUG determinant.c -o determinant -lm ;
determinant
1.000000 3.000000 7.000000
3.000000 6.000000 11.000000
7.000000 11.000000 17.000000

det byElim: address of A=0xbfd68804
setPivot: max=17.000000, c=0, mR=2, mC=2
17.000000 11.000000 7.000000
11.000000 6.000000 3.000000
7.000000 3.000000 1.000000
--- setPivot: after setPivot
eliminateCols: A[0][1]=11.000000, A[0][0]=17.000000,
sf=0.647059
eliminateCols: A[0][2]=7.000000, A[0][0]=17.000000,
sf=0.411765
det byElim: sign=1, prod=17.000000, A[0][0]=17.000000
17.000000 0.000000 0.000000
11.000000 -1.117647 -1.529412
7.000000 -1.529412 -1.882353

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 372 / 495

2D Matrices Determinant computation

Compute Determinant by Elimination (Contd.)

Shell: Compile and run
--- setPivot: after eliminateCols
setPivot: max=-1.882353, c=1, mR=2, mC=2
17.000000 0.000000 0.000000
7.000000 -1.882353 -1.529412
11.000000 -1.529412 -1.117647
--- setPivot: after setPivot
eliminateCols: A[1][2]=-1.529412, A[1][1]=-1.882353,
sf=0.812500
det byElim: sign=1, prod=-32.000000, A[1][1]=-1.882353
17.000000 0.000000 0.000000
7.000000 -1.882353 0.000000
11.000000 -1.529412 0.125000
--- setPivot: after eliminateCols
determinant of above matrix (elimination) is -3.999996

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 373 / 495

2D Matrices Determinant computation

Compute Determinant by Elimination (Contd.)

Shell: Compile and run
$ cc determinant.c -o determinant -lm
$./determinant
1.000000 3.000000 7.000000
3.000000 6.000000 11.000000
7.000000 11.000000 17.000000

determinant of above matrix (elimination) is -3.999996

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 374 / 495

More on 2-D arrays

Section outline

30 More on 2-D arrays
Initialisation
Address arithmetic
Sizeof
Type

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 375 / 495

More on 2-D arrays Initialisation

Initialisation of 2-D Arrays

Editor:
#define MAXROW 5
#define MAXCOL 5
int main() {
int A[MAXROW][MAXCOL] = {
{ 0, 1, 2, 3, 4},
{10, 11, 12, 13, 14},
{20, 21, 22, 23, 24},
{30, 31, 32, 33, 34},
{40, 41, 42, 43, 44},

};
return 0;
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 376 / 495

More on 2-D arrays Initialisation

Initialisation of 2-D Arrays (Contd.)

Editor:
#define MAXROW 5
#define MAXCOL 5
int main() {
int A[MAXROW][MAXCOL] = {

0, 1, 2, 3, 4,
10, 11, 12, 13, 14,
20, 21, 22, 23, 24,
30, 31, 32, 33, 34,
40, 41, 42, 43, 44,

};
return 0;
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 377 / 495

More on 2-D arrays Initialisation

Initialisation of 2-D Arrays (Contd.)

Editor:
#define MAXROW 5
#define MAXCOL 5
int main() {
int A[][MAXCOL] = {
{ 0, 1, 2, 3, 4},
{10, 11, 12, 13, 14},
{20, 21, 22, 23, 24},
{30, 31, 32, 33, 34},
{40, 41, 42, 43, 44},

};
return 0;
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 378 / 495

More on 2-D arrays Initialisation

Initialisation of 2-D Arrays (Contd.)

Editor:
#define MAXROW 5
#define MAXCOL 5
int main() {
int A[][MAXCOL] = {

0, 1, 2, 3, 4,
10, 11, 12, 13, 14,
20, 21, 22, 23, 24,
30, 31, 32, 33, 34,
40, 41, 42, 43, 44,

};
return 0;
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 379 / 495

More on 2-D arrays Initialisation

Initialisation of 2-D Arrays (Contd.)

Editor:
#define MAXROW 5
#define MAXCOL 5
int main() {
int A[][MAXCOL] = {
{ 0, 1, 2 },
{10, 11, 12, 13 },
{20, 21, 22, 23, 24},
{30, 31, 32, 33, 34},
{40, 41, 42, 43, 44},

};
return 0;
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 380 / 495

More on 2-D arrays Initialisation

Initialisation of 2-D Arrays (Contd.)

Editor:
#define MAXROW 5
#define MAXCOL 5
int main() {
int A[][MAXCOL] = {
{ 0, 1, 2 },
{10, 11, 12, 13 },
20, 21, 22, 23, 24,
30, 31, 32, 33, 34,
40, 41, 42, 43, 44,

};
return 0;
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 381 / 495

More on 2-D arrays Initialisation

Initialisation of 2-D Arrays (Contd.)
Editor:
#include <stdio.h>
#define MAXROW 5
#define MAXCOL 5
int main() {
int A[][MAXCOL] = {
{ 0, 1, 2 },
{10, 11, 12, 13 },
20, 21, 22, 23, 24,
30, 31,

}; A has only four rows
int i, j;
for (i=0; i<MAXROW; i++) {
for (j=0; j<MAXCOL; j++)

printf ("%3d ", A[i][j]);
printf ("\n");

} there is no fifth row
return 0;
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 382 / 495

More on 2-D arrays Initialisation

Initialisation of 2-D Arrays (Contd.)

Shell:
$ make init2D ; init2D
cc init2D.c -o init2D
0 1 2 0 0
10 11 12 13 0
20 21 22 23 24
30 31 0 0 0
4 1 -1079444080 -1079443992 -1210214564

NB: Elements of only four rows are properly initialised. Presence of
four rows can be inferred from the initialising values that are given in
the program.

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 383 / 495

More on 2-D arrays Address arithmetic

Address Arithmetic of Arrays Revisited

#define N 10

#define R 10

#define C 20

int A[N], B[R][C];

Element index of A[i] is i
Address of A[i] is A+i
Element index of B[i][j] is C × i + j
Address of B[i][j] is (int *)B + C*i + j

Why do we need the type casting?
What is A + C*i + j?

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 384 / 495

More on 2-D arrays Address arithmetic

Address Arithmetic of Arrays Revisited (Contd.)

The number of columns is known in int A[][C], B[R][C];
NB. those were defined constants
A and B are the addresses of the 0th rows of A and B, respectively
A+1 and B+1 are the addresses of the 1st rows of A and B,
respectively
A+i and B+i are the addresses of the i th rows of A and B,
respectively
The number of bytes in a row are: C × sizeof(int)

A + C*i + j does not make sense
(int *)A + C*i + j is okay because (int *)A is treated as
an int pointer because of the type casting
Both A and B are pointer constants of type int [][C]

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 385 / 495

More on 2-D arrays Address arithmetic

Address Arithmetic of Arrays Revisited (Contd.)

int A[][10], B[10][20];, important: the column size is a
constant
A+i and B+i are the addresses of the ist rows of A and B,
respectively

*(A+i) and *(B+i) are the addresses of the 0th elements of the
ist rows of A and B, respectively

*(A+i) + j and *(B+i) + j are the addresses of A[i][j]
and B[i][j], respectively

*(A+i) + j adds j ints to the address of the 0th element ist row
of A, and hence is the address of A[i][j]
&A[i][j] is also the address of A[i][j]

((A+i) + j) is A[i][j]
NB: When the column size is a constant, the above address
arithmetic is rarely required

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 386 / 495

More on 2-D arrays Address arithmetic

2-D Array Address Arithmetic Summary

When the column size is a constant:

((A + i) + j) ≡ A[i][j]

*(A + i) + j ≡ &A[i][j]

*(A[i] + j) ≡ A[i][j]

A[i] + j ≡ &A[i][j]

(*(A+i))[j] ≡ A[i][j]

A + i ≡ A[i]

The last item is useful when trying to work with a sequence of rows of
A starting at row i

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 387 / 495

More on 2-D arrays Address arithmetic

Splitting 2-D Arrays
Editor:
int searchBinRAF2(int Z[][2], int ky, int sz, int pos) {
// invoked as: searchBinRAF2(A, ky, SIZE, 0)
int mid=sz/2;

#ifdef DEBUG
printf ("sz=%d, mid=%d, pos=%d\n", sz, mid, pos);

#endif
if (sz<=0) {
return -pos-10;
} else if (ky==Z[mid][0]) {
return pos+mid;
} else if (ky<Z[mid][0]) { // search in upper half
return searchBinRAF2(Z, ky, mid, pos);
} else { // search in lower half
return searchBinRAF2(Z+mid+1, ky, sz-mid-1,

pos+mid+1);
}

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 388 / 495

More on 2-D arrays Address arithmetic

Splitting 2-D Arrays (Contd.)
Editor:
int main(){ int sz=7, ky,pos,i, A2[7][2]={{1, 78},{2, 26},
{3, 352}, {4, 532}, {5, 272}, {6, 823}, {7, 945}};

ky = 1 ; pos = searchBinRAF2(A2, ky, sz, 0);
printf(pos<0 ? "RAF2: search for %d failed at %d\n":
"RAF2: %d found at %d\n", ky, pos<0?-(pos+10):pos);

ky = 7 ; pos = searchBinRAF2(A2, ky, sz, 0);
printf(pos<0 ? "RAF2: search for %d failed at %d\n":
"RAF2: %d found at %d\n", ky, pos<0?-(pos+10):pos);

ky = 0 ; pos = searchBinRAF2(A2, ky, sz, 0);
printf(pos<0 ? "RAF2: search for %d failed at %d\n":
"RAF2: %d found at %d\n", ky, pos<0?-(pos+10):pos);

ky = 2 ; pos = searchBinRAF2(A2, ky, sz, 0);
printf(pos<0 ? "RAF2: search for %d failed at %d\n":
"RAF2: %d found at %d\n", ky, pos<0?-(pos+10):pos);

ky = 10 ; pos = searchBinRAF2(A2, ky, sz, 0);
printf(pos<0 ? "RAF2: search for %d failed at %d\n":
"RAF2: %d found at %d\n", ky, pos<0?-(pos+10):pos);

return 0; }
Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 389 / 495

More on 2-D arrays Address arithmetic

Splitting 2-D Arrays (Contd.)

Shell: compile and run
$ make search
cc search.c -o search
$ search
RAF2: 1 found at 0
RAF2: 7 found at 6
RAF2: search for 0 failed at 0
RAF2: 2 found at 1
RAF2: search for 10 failed at 7

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 390 / 495

More on 2-D arrays Sizeof

Handling of sizeof

Editor:
#include <stdio.h>
void showSize (int R, int C, int A[R][C]) {

printf ("showSize: R=%d, C=%d, sizeof(A)=%d\n",
R, C, sizeof(A));

}
int main(){
int A[3][4], B[4][5];
showSize(3, 4, A);
printf ("main: R=%d, C=%d, sizeof(A)=%d\n",

3, 4, sizeof(A));
showSize(4, 5, B);
printf ("main: R=%d, C=%d, sizeof(A)=%d\n",
4, 5, sizeof(B));

return 0;
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 391 / 495

More on 2-D arrays Sizeof

Handling of sizeof (Contd.)

Shell: compile and run
$ make sizeofArr ; ./sizeofArr
cc sizeofArr.c -o sizeofArr
showSize: R=3, C=4, sizeof(A)=4
main: R=3, C=4, sizeof(A)=48
showSize: R=4, C=5, sizeof(A)=4
main: R=4, C=5, sizeof(A)=80

NB. Note the different values of sizeof(A) reported from showSize
and main.

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 392 / 495

More on 2-D arrays Type

Type of A[R][C]

Inside the showSize function A is treated as an integer pointer
rather than of the type int [][4] or int [][4]
This may be considered a shortcoming of the current
implementation of the gcc compiler
When the array dimensions (row or column sizes) is variable
rather than constants, the type of the array variable is just a
pointer of type of the array elements (eg int *)
When C is not a constant “int [][C]” is not well defined
May lead to problems if address arithmetic is performed assuming
that inside showSize A is of type “int [][C]”
But, gcc seems to get it right (program and results next)
Conclusion: Be very careful with address arithmetic, avoid where
possible

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 393 / 495

More on 2-D arrays Type

Splitting 2-D Arrays with Variable Column Size
(Contd.)

Editor:
int searchBinRAFQ(int C, int Z[][C], int ky, int sz,
int pos) { // invoked as: searchBinRAF2(A, ky, SIZE, 0)

int mid=sz/2;
#ifdef DEBUG
printf ("sz=%d, mid=%d, pos=%d\n", sz, mid, pos);

#endif
if (sz<=0) {
return -pos-10;
} else if (ky==Z[mid][0]) {
return pos+mid;
} else if (ky<Z[mid][0]) { // search in upper half
return searchBinRAFQ(C, Z, ky, mid, pos);
} else { // search in lower half
return searchBinRAFQ(C, Z+mid+1, ky, sz-mid-1, pos+mid+1);
}

}Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 394 / 495

More on 2-D arrays Type

Splitting 2-D Arrays with Variable Column Size
(Contd.)

Shell:
$ make search ; search
cc search.c -o search
RAFQ: 1 found at 0
RAFQ: 7 found at 6
RAFQ: search for 0 failed at 0
RAFQ: 2 found at 1
RAFQ: search for 10 failed at 7

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 395 / 495

Pseudo 2D arrays

Section outline

31 Pseudo 2D arrays
Array of strings
Command-line arguments

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 396 / 495

Pseudo 2D arrays Array of strings

Array of strings

These are arrays of arrays
char *strings[5] – array of 5 strings (un-initialised)
Each element of strings is a string pointer and can be assigned
independently
char s1[]="first string", s2[]="second string";

strings[0]=s1; strings[1]=s2;

strings[0][1] is ’i’ – element as position 1 of strings[0]
strings is a 1D array of string pointers
strings[i] is a 1D array of characters at position i of
strings, if strings is properly initialised

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 397 / 495

Pseudo 2D arrays Command-line arguments

Command-line arguments

Editor: showArgs
int main(int argc, char

**argv) {
int i;

for (i=0; i<argc; i++)
printf
("CL arg %d: %s\n",
i, argv[i]);

return 0;
}

A program can be run with
arguments
showArgs arg1 arg2

Total number of arguments
is set in argc

argv is an array of strings
Each command-line
argument is set as an entry
of argv

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 398 / 495

Part XII

Structures and dynamic data types

32 Structures and Type definitions

33 Linked lists

34 Stacks using lists

35 Queues using lists

36 Array based implementations

37 Applications

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 399 / 495

Structures and Type definitions

Section outline

32 Structures and Type definitions
Representing complex numbers
Using typedef for structures
Structures with functions
Data type for rationals
Simple student records

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 400 / 495

Structures and Type definitions Representing complex numbers

Data Type for complex numbers

A complex number c can be represented using two real numbers
a and b such that c = a + ib
But can we avoid the overhead of keeping track of two numbers
and do with just a single entity?
Operations also need to be performed on complex numbers (just
as they are performed on integers and floating point numbers)
How well can we do this is ‘C’?
Not particularly well!
A single entity can be defined
Necessary functions can be written
But those cannot be nicely grouped together – need to keep track
of details

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 401 / 495

Structures and Type definitions Representing complex numbers

Structure for complex numbers

Editor:
// declare a structure with two members -- re, im
// structure "tag" is complexTag
struct complexTag {
double re, im;

}

// declare variables of this type of structure
struct complexTag c1, c2;

// declare pointers to such a structure
struct complexTag *c1P, *c2P;

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 402 / 495

Structures and Type definitions Usingtypedef for structures

Using typedef for structures

Editor:
// define a type name for such a structure
typedef struct complexTag complexTyp;

// declare variables of this type of structure
complexTyp c1, c2;

// now a type name for pointers to such a structure
typedef struct complexTag *complexPtr;

// declare pointers to such a structure
complexPtr c1P, c2P;

// direct use of typedef with struct
typedef struct complexTag {

double re, im;
} complexTyp, *complexPtr;

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 403 / 495

Structures and Type definitions Structures with functions

Complex type and functions

Editor:
typedef struct complexTag { // direct use of typedef
double re, im;

} complexTyp, *complexPtr;

void showComplex (complexTyp a);
complexTyp cnjC (complexTyp a);
complexTyp sclC (complexTyp a, double r);
complexTyp addC (complexTyp a, complexTyp b);
complexTyp subC (complexTyp a, complexTyp b);
complexTyp mulC (complexTyp a, complexTyp b);
complexTyp divC (complexTyp a, complexTyp b);

#include <stdio.h>
void showComplex (complexTyp a) {
printf ("%e + i %e", a.re, a.im);

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 404 / 495

Structures and Type definitions Structures with functions

Complex type and functions (Contd.)

Editor:
#include <stdio.h>

main() {
complexTyp a={1,2};
complexTyp b={3,4};
printf (" complex a: "); showComplex(a); printf("\n");
printf (" complex b: "); showComplex(b); printf("\n");
printf (" complex b: "); showComplex(cnjC(b)); printf("\n");
printf ("complex a+b: "); showComplex(addC(a, b)); printf("\n");
printf ("complex a-b: "); showComplex(subC(a, b)); printf("\n");
printf ("complex a*b: "); showComplex(mulC(a, b)); printf("\n");
printf ("complex a/b: "); showComplex(divC(a, b)); printf("\n");

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 405 / 495

Structures and Type definitions Structures with functions

Complex type and functions (Contd.)

Editor:
$./complex
complex a: 1.000000e+00 + i 2.000000e+00
complex b: 3.000000e+00 + i 4.000000e+00
complex b: 3.000000e+00 + i -4.000000e+00

complex a+b: 4.000000e+00 + i 6.000000e+00
complex a-b: -2.000000e+00 + i -2.000000e+00
complex a*b: -5.000000e+00 + i 9.000000e+00
complex a/b: 4.400000e-01 + i 4.000000e-02

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 406 / 495

Structures and Type definitions Structures with functions

Complex type and functions (Contd.)

Editor:
complexTyp cnjC (complexTyp a) {
complexTyp s;
s.re = a.re;
s.im = -a.im;
return s;

}

complexTyp sclC (complexTyp a, double r) {
complexTyp s;
s.re = r * a.re;
s.im = r * a.im;
return s;

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 407 / 495

Structures and Type definitions Structures with functions

Complex type and functions (Contd.)

Editor:
complexTyp addC (complexTyp a, complexTyp b) {
complexTyp s;
s.re = a.re + b.re;
s.im = a.im + b.im;
return s;

}

complexTyp subC (complexTyp a, complexTyp b) {
complexTyp s;
s.re = a.re - b.re;
s.im = a.im - b.im;
return s;

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 408 / 495

Structures and Type definitions Structures with functions

Complex type and functions (Contd.)

Editor:
complexTyp mulC (complexTyp a, complexTyp b) {
complexTyp s;
s.re = a.re * b.re - a.im * b.im;
s.im = a.re * b.im + a.im + b.re;
return s;

}

complexTyp divC (complexTyp a, complexTyp b) {
complexTyp s, d;
s = mulC(a, cnjC(b));
d = mulC(b, cnjC(b));
return sclC(s, 1.0/d.re);

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 409 / 495

Structures and Type definitions Data type for rationals

Rational type and functions

Editor:
typedef struct ratTag {
int nu, de;

} ratTyp, *ratPtr;

void showRat (ratTyp a);
ratTyp redRat (ratTyp a);
ratTyp invRat (ratTyp a);
ratTyp sclRat (ratTyp a, int r);
ratTyp addRat (ratTyp a, ratTyp b);
ratTyp subRat (ratTyp a, ratTyp b);
ratTyp mulRat (ratTyp a, ratTyp b);
ratTyp divRat (ratTyp a, ratTyp b);

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 410 / 495

Structures and Type definitions Data type for rationals

Rational type and functions (Contd.)

Editor:
#include <stdio.h>

main() {
ratTyp a={1,2};
ratTyp b={3,4};
printf (" rat a: "); showRat(a); printf("\n");
printf (" rat b: "); showRat(b); printf("\n");
printf (" rat b: "); showRat(redRat(b)); printf("\n");
printf ("rat 1/b: "); showRat(invRat(b)); printf("\n");
printf ("rat a+b: "); showRat(addRat(a, b)); printf("\n");
printf ("rat a-b: "); showRat(subRat(a, b)); printf("\n");
printf ("rat a*b: "); showRat(mulRat(a, b)); printf("\n");
printf ("rat a/b: "); showRat(divRat(a, b)); printf("\n");

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 411 / 495

Structures and Type definitions Data type for rationals

Rational type and functions (Contd.)

Editor:
$ make rat ; ./rat
cc rat.c -o rat
rat a: 1/2
rat b: 3/4
rat b: 3/4

rat 1/b: 4/3
rat a+b: 5/4
rat a-b: -1/4
rat a*b: 3/8
rat a/b: 2/3

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 412 / 495

Structures and Type definitions Data type for rationals

Rational type and functions (Contd.)

Editor:
int gcd(int a, int b) { // a >= b
int r;
if (a < 0) a *= -1;
if (b < 0) b *= -1;
if (b < a) {
r = a; a = b; b = r;

}
while (b!=0) {

r = a % b;
a=b; b=r;

}
return a ;

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 413 / 495

Structures and Type definitions Data type for rationals

Rational type and functions (Contd.)

Editor:
void showRat (ratTyp a) {
printf ("%d/%d", a.nu, a.de);

}

ratTyp invRat (ratTyp a) { // a is reduced
ratTyp s;
s.nu = a.de;
s.de = a.nu;
return s;

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 414 / 495

Structures and Type definitions Data type for rationals

Rational type and functions (Contd.)

Editor:
ratTyp redRat (ratTyp a) {
int d = gcd(a.nu, a.de);
ratTyp s;
s.nu = a.nu / d;
s.de = a.de / d;
return s;

}
ratTyp sclRat (ratTyp a, int r) {
int d = gcd(r, a.de);
ratTyp s;
s.nu = a.nu * (r/d);
s.de = a.de / d;
return s;

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 415 / 495

Structures and Type definitions Data type for rationals

Rational type and functions (Contd.)

Editor:
ratTyp addRat (ratTyp a, ratTyp b) {
int d = gcd(a.nu, a.de);
ratTyp s;
s.nu = a.nu * (b.de/d) + b.nu * (a.de/d);
s.de = a.de * (b.de/d);
return redRat(s);

}

ratTyp subRat (ratTyp a, ratTyp b) {
int d = gcd(a.nu, a.de);
ratTyp s;
s.nu = a.nu * (b.de/d) - b.nu * (a.de/d);
s.de = a.de * (b.de/d);
return redRat(s);

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 416 / 495

Structures and Type definitions Data type for rationals

Rational type and functions (Contd.)

Editor:
ratTyp mulRat (ratTyp a, ratTyp b) {
int d1 = gcd(a.nu, b.de);
int d2 = gcd(b.nu, a.de);
ratTyp s;
a.nu = a.nu/d1; b.de = b.de/d1;
b.nu = b.nu/d2; a.de = a.de/d2;
s.nu = a.nu * b.nu;
s.de = a.de * b.de;
return s;

}

ratTyp divRat (ratTyp a, ratTyp b) {
return mulRat(a, invRat(b));

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 417 / 495

Structures and Type definitions Simple student records

Simple Student Records

Editor:
typedef struct subInfoTag {
char subCode[10];
int credit, gradeWt;
// Ex: 10, A:9, B:8, C:7, D:6, X,F,I:0

} subInfoTyp, *subInfoPtr;
typedef struct semInfoTag {

float sgpa, cgpa;
subInfoPtr sbjA; // unallocated array
int creditS, nSbj; // initialize to 0

} semInfoTyp, *semInfoPtr;
typedef struct studTag {
char roll[10];
char hall[10];
char *fname, *sname;
semInfoPtr semA; // unallocated array
int nSem, semSz; // initialize to 0

} studTyp, *studPtr;
Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 418 / 495

Structures and Type definitions Simple student records

Simple Student Records (Contd.)

Editor:
main () {
studTyp s;
interactiveRegStud(&s); displayRegStud(s);
interactiveSemStud(&s); displaySemStud(s);

}

Editor: stud.dat
Rakesh Kumar 07SI2035 MMM
3
CS1101 5 10
EC1101 5 9
CE1101 3 8

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 419 / 495

Structures and Type definitions Simple student records

Simple Student Records (Contd.)

Shell:
$ make studRec ; ./studRec <stud.dat
cc studRec.c -o studRec
First name? Surname? Roll number? Hall code? First name: Rakesh
Surname: Kumar
Roll number: 07SI2035
Hall code: MMM
Semesters: 0
Number of subjects? subCode? credit? gradWt? subCode? credit? gradWt? subCode? credit? gradWt? semester 0: sgpa: 9.15 cgpa: 9.15
subCode credit gradeWt
CS1101 5 10
EC1101 5 9
CE1101 3 8

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 420 / 495

Structures and Type definitions Simple student records

Simple Student Records (Contd.)

Shell:
$ make studRec ; ./studRec <stud.dat 2>/dev/null
cc studRec.c -o studRec
First name: Rakesh
Surname: Kumar
Roll number: 07SI2035
Hall code: MMM
Semesters: 0
semester 0: sgpa: 9.15 cgpa: 9.15
subCode credit gradeWt
CS1101 5 10
EC1101 5 9
CE1101 3 8

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 421 / 495

Structures and Type definitions Simple student records

Simple Student Records (Contd.)

Editor:
void displayRegStud (studTyp s) {
printf ("First name: %s\n", s.fname);
printf ("Surname: %s\n", s.sname);
printf ("Roll number: %s\n", s.roll);
printf ("Hall code: %s\n", s.hall);
printf ("Semesters: %d\n", s.nSem);

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 422 / 495

Structures and Type definitions Simple student records

Simple Student Records (Contd.)

Editor:
void interactiveRegStud (studPtr s) {
fprintf(stderr, "First name? ");
scanf (" %as", &(*s).fname);
fprintf(stderr, "Surname? ");
scanf (" %as", &(*s).sname);
fprintf(stderr, "Roll number? ");
scanf (" %9s", (*s).roll);
fprintf(stderr, "Hall code? ");
scanf (" %9s", (*s).hall);
s->nSem = s->semSz = 0;

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 423 / 495

Structures and Type definitions Simple student records

Simple Student Records (Contd.)

Editor:
void displaySemStud (studTyp s) {
int i, j;
for (i=0; i<s.nSem; i++) {

printf ("semester %d: sgpa: %.2f cgpa: %.2f\n",
i, s.semA[i].sgpa, s.semA[i].cgpa);

printf ("subCode\tcredit\tgradeWt\n");
for (j=0; j<s.semA[i].nSbj; j++)

printf("%s\t%3d\t%5d\n",
s.semA[i].sbjA[j].subCode,
s.semA[i].sbjA[j].credit,
s.semA[i].sbjA[j].gradeWt);

}
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 424 / 495

Structures and Type definitions Simple student records

Simple Student Records (Contd.)

Editor:
void interactiveSemStud (studPtr s) {
int i, n;
subInfoPtr sA;
if (s->semSz == 0) {

s->semSz = 8;
s->semA = (semInfoPtr) malloc

(s->semSz*sizeof(semInfoTyp));
}
if (s->semSz > (*s).nSem) {
s->nSem += 1;

} else
exit(1);

fprintf(stderr, "Number of subjects? ");
scanf ("%d", &n);
sA = (subInfoPtr) malloc (n*sizeof(subInfoTyp));
s->semA[s->nSem-1].nSbj = n;
s->semA[s->nSem-1].sbjA = sA;

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 425 / 495

Structures and Type definitions Simple student records

Simple Student Records (Contd.)

Editor:
for (i=0; i<n; i++) {
fprintf(stderr, "subCode? ");
scanf(" %9s", sA[i].subCode);
fprintf(stderr, "credit? ");
scanf("%d", &(sA[i].credit));
fprintf(stderr, "gradWt? ");
scanf("%d", &(sA[i].gradeWt));

}
computeSGPA(s->semA + (s->nSem-1));
computeLastCGPA(s->semA, s->nSem);

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 426 / 495

Structures and Type definitions Simple student records

Simple Student Records (Contd.)

Editor:
void computeSGPA(semInfoPtr semP) {
subInfoPtr sbjA=semP->sbjA;
int nSbj = semP->nSbj;
int i, s, ws;
for (i=0,ws=s=0; i<nSbj; i++) {

ws += sbjA[i].credit * sbjA[i].gradeWt;
s += sbjA[i].credit;

}
if (nSbj && s) {
semP->sgpa = ((float) ws)/s ;
semP->creditS = s;

} else {
semP->sgpa = 0;
semP->creditS = 0;

}
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 427 / 495

Structures and Type definitions Simple student records

Simple Student Records (Contd.)

Editor:
void computeLastCGPA(semInfoPtr semA, int nSem) {

int i, s=0; float ws=0;
for (i=0; i<(nSem-1); i++) s += semA[i].creditS;
if (nSem > 1) ws = semA[nSem-2].cgpa * s;
ws += semA[nSem-1].sgpa * semA[nSem-1].creditS;
s += semA[nSem-1].creditS;
semA[nSem-1].cgpa = (s==0 ? 0 : ws/s);

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 428 / 495

Linked lists

Section outline

33 Linked lists
Typedef for linked lists
Inserting in a linked list
Deleting from a linked list

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 429 / 495

Linked lists Typedef for linked lists

Self referential typedef for linked lists

node0

datadata

node0P
node1

datadata

node1P
node2

datadata

node2P

typedef struct lNodeTag {
int data;
struct lNodeTag *next;

} lNodeTyp, *lNodePtr;

node1P->next = node2P; // assume node1 is present

node2P->next = NULL;

node0P = (lNodePtr) malloc(sizeof(lNodeTyp));

node0P->next = node1P;

New node was introduced at the left end of the linked structure

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 430 / 495

Linked lists Inserting in a linked list

Inserting in the Middle (after node0)

node0

datadata

node0P
node1

datadata

node1P
node2

datadata

node2P

typedef struct lNodeTag {
int data;
struct lNodeTag *next;

} lNodeTyp, *lNodePtr;

node1P = (lNodePtr) malloc(sizeof(lNodeTyp));

node1P->next = node0P->next;

node0P->next = node1P;

New node was introduced after node0 in the linked structure
Do not forget to assign the data fields

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 431 / 495

Linked lists Inserting in a linked list

Inserting at the end (after node1)

node0

datadata

node0P
node1

datadata

node1P
node2

datadata

node2P

typedef struct lNodeTag {
int data;
struct lNodeTag *next;

} lNodeTyp, *lNodePtr;

node2P = (lNodePtr) malloc(sizeof(lNodeTyp));

node1P->next = node2P;

node2P->next = NULL;

New node was introduced after node1 in the linked structure
Do not forget to assign the data fields

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 432 / 495

Linked lists Deleting from a linked list

Deleting from Start

node0

datadata

startP==node0Pnode0P
node1

datadata

node1PstartP==node1P
node2

datadata

node2P

Initially
startP == node0P

Next
startP=node0P->next

Finally release node0
free(node0P)

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 433 / 495

Linked lists Deleting from a linked list

Deleting from Within (node1)

node0

datadata

node0P
node1

datadata

node1P
node2

datadata

node2P

Need to know the predecessor of the node to be deleted
node1P=node0P->next // identify node to be deleted

// and its predecessor

Next, skip the node to be deleted
node0P->next=node1P->next

Finally release node1
free(node1P)

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 434 / 495

Stacks using lists

Section outline

34 Stacks using lists
Function prototypes for stack
Typedefs for stack
Functions for the prototypes

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 435 / 495

Stacks using lists Function prototypes for stack

Functions of interest for a stack

Types for items: itemTyp, itemPtr

Types for stack: stackTyp, stackPtr

stackPtr stackNew();
returns a pointer to a new stack structure
int stackIsEmpty(stackPtr);
returns 0 if not empty, 1 otherwise
int stackIsFull(stackPtr);
returns 0 if not full, 1 otherwise

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 436 / 495

Stacks using lists Function prototypes for stack

Functions of interest for a stack (contd.)

int stackPush(stackPtr, itemTyp);
returns 0 for failure, 1 for success
int stackPop(stackPtr, itemPtr);
returns 0 for failure, 1 for success, popped item returned via
second argument
int stackTop(stackPtr, itemPtr);
returns 0 for failure, 1 for success, top item returned via second
argument
void stackDestroy(stackPtr);

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 437 / 495

Stacks using lists Typedefs for stack

Linked List based typedefs for stack

Editor:
// Types for items: itemTyp, itemPtr
typedef int itemTyp, *itemPtr;

typedef struct lNodeTag {
itemTyp data;
struct lNodeTag *next;
} lNodeTyp, *lNodePtr;

// Types for stack: stackTyp, stackPtr
typedef struct stackTag {
lNodePtr toP;

} stackTyp, *stackPtr;

sP–>ToP

datadata

node1P

datadata

datadata

nodeNP

datadata

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 438 / 495

Stacks using lists Functions for the prototypes

Linked List based Stack API Functions

Editor:
stackPtr stackNew() { // returns:
// pointer to a new stack structure
stackPtr sP;
sP = (stackPtr) malloc

(sizeof(stackTyp));
sP->toP=NULL; // empty stack
return sP;

}

int stackIsEmpty(stackPtr sP) {
// returns 0 if not empty, 1 otherwise

return (sP->toP==NULL);
}

sP–>ToP

datadata

node1P

datadata

datadata

nodeNP

datadata

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 439 / 495

Stacks using lists Functions for the prototypes

Linked List based Stack API Functions (Contd.)
Editor:
int stackIsFull(stackPtr sP) {
// returns 0 if not full, 1 otherwise
return 0; // never full

}

int stackPush(stackPtr sP, itemTyp d) {
// returns 0 for failure, 1 for success

lNodePtr sNdP;
sNdP = (lNodePtr) malloc
(sizeof(lNodeTyp));

// allocate a new node for the new data
sNdP->data = d; // copy data to new node
sNdP->next = sP->toP;
// the older top will go below new node
sP->toP= sNdP; // make new node the top
return 1; // always successful

}

sP–>ToP

datadata

node1P

datadata

datadata

nodeNP

datadata

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 440 / 495

Stacks using lists Functions for the prototypes

Linked List based Stack API Functions (Contd.)

Editor:
int stackPop(stackPtr sP, itemPtr dP) {
// returns 0 for failure, 1 for success,
// popped item returned via dP

lNodePtr oldToP;
if (stackIsEmpty(sP)) return 0;

*dP = sP->toP->data;
// data copied to dP location

oldToP = sP->toP; // for freeing later
sP->toP = sP->toP->next;

// top moves down
free(oldToP); // older top is freed
return 1;

}

sP–>ToP

datadata

node1P

datadata

datadata

nodeNP

datadata

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 441 / 495

Stacks using lists Functions for the prototypes

Linked List based Stack API Functions (Contd.)

Editor:
int stackTop(stackPtr sP, itemPtr dP) {
// returns 0 for failure, 1 for success
// top item returned via
// second argument
if (stackIsEmpty(sP)) return 0;

*dP = sP->toP->data;
return 1;

}

sP–>ToP

datadata

node1P

datadata

datadata

nodeNP

datadata

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 442 / 495

Stacks using lists Functions for the prototypes

Linked List based Stack API Functions (Contd.)

Editor:
void stackDestroy(stackPtr sP) {
// free all memory taken up this stack

lNodePtr nextP, thisP=sP->toP;
while (thisP) {
nextP = thisP->next;
free (thisP);
thisP=nextP;

}
free(sP);

}

sP–>ToP

datadata

node1P

datadata

datadata

nodeNP

datadata

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 443 / 495

Queues using lists

‘

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 444 / 495

Queues using lists

Section outline

35 Queues using lists
Function prototypes for queues
Typedefs for queues
Functions for the prototypes

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 444 / 495

Queues using lists Function prototypes for queues

Functions of interest for a queue

qP–>qHeadP

datadata

node1P

datadata datadata

qP–>qTailP

datadata

Types for items: itemTyp, itemPtr

Types for queue: QTyp, QPtr

QPtr QNew();
returns a pointer to a new Q structure
int QIsEmpty(QPtr);
returns 0 if not empty, 1 otherwise
int QIsFull(QPtr);
returns 0 if not full, 1 otherwise

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 445 / 495

Queues using lists Function prototypes for queues

Functions of interest for a queue (contd.)

qP–>qHeadP

datadata

node1P

datadata datadata

qP–>qTailP

datadata

int QEnque(QPtr, itemTyp);
returns 0 for failure, 1 for success
int QDeque(QPtr, itemPtr);
returns 0 for failure, 1 for success, dequeued item returned via
second argument
int QFront(QPtr, itemPtr);
returns 0 for failure, 1 for success, front item returned via second
argument
void QDestroy(QPtr);

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 446 / 495

Queues using lists Typedefs for queues

Linked List based Typedefs for Queue
qP–>qHeadP

datadata

node1P

datadata datadata

qP–>qTailP

datadata

Reuse itemTyp and lNodeTyp from Stack
Principal differneces with stack? – FIFO rather than LIFO
Do we need to work with the linked list differently?
Easy to insert at “grounded” end, but hard to remove from there
At other end both insert and delete are easy – so dequeue here
and enqueue at “grounded” end

Editor:
// Types for queue: QTyp, QPtr
typedef struct QTag {
lNodePtr headP, tailP;

} QTyp, *QPtr;

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 447 / 495

Queues using lists Functions for the prototypes

Linked List based Queue API Functions
qP–>qHeadP

datadata

node1P

datadata datadata

qP–>qTailP

datadata

Editor:
QPtr QNew() { // returns a pointer to a new queue struct
QPtr qP = (QPtr) malloc (sizeof(QTyp));
qP->headP=qP->tailP=NULL;
return qP;

}

int QIsEmpty(QPtr qP) { // ret: 1 if empty, 0 otherwise
return (qP->headP==NULL);

}

int QIsFull(QPtr qP) { // ret: 1 if full, 0 otherwise
return 0; // never full

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 448 / 495

Queues using lists Functions for the prototypes

Linked List based Queue API Functions (Contd.)
qP–>qHeadP

datadata

node1P

datadata datadata

qP–>qTailP

datadata

Editor:
int QEnque(QPtr qP, itemTyp d) { // new data goes to tail
// return: 0 for failure, 1 for success

lNodePtr qNdP = (lNodePtr) malloc (sizeof(lNodeTyp));
qNdP->data = d; // copy data to new node
qNdP->next = NULL; // as this will be the new end
if (qP->tailP) // if Q is not empty
qP->tailP->next= qNdP; // append after current tail

else // Q empty -- no nodes in the list
qP->headP=qNdP; // so, new node becomes a fresh head

qP->tailP = qNdP; // new node is the new tail, always
return 1; // always successful

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 449 / 495

Queues using lists Functions for the prototypes

Linked List based Queue API Functions (Contd.)
qP–>qHeadP

datadata

node1P

datadata datadata

qP–>qTailP

datadata

Editor:
int QDeque(QPtr qP, itemPtr dP) {
// returns 0 for failure, 1 for success,
// dequeued item returned via second argument
// needs to be removed from the head of the list

lNodePtr oldHeadP = qP->headP;
if (QIsEmpty(qP)) return 0; // return 0 for empty Q

*dP = oldHeadP->data; // copy data from head node to dP
qP->headP = oldHeadP->next; // that’s the new head
if (qP->headP == NULL) qP->tailP=NULL;
// set qP->tailP to NULL if list should become empty
free(oldHeadP); // release memory taken up old
return 1;

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 450 / 495

Queues using lists Functions for the prototypes

Linked List based Queue API Functions (Contd.)

qP–>qHeadP

datadata

node1P

datadata datadata

qP–>qTailP

datadata

Editor:
int QFront(QPtr qP, itemPtr dP) {
// returns 0 for failure, 1 for success,
// front item returned via second argument
// needs to be taken from the head of the list
if (QIsEmpty(qP)) return 0;

*dP = qP->headP->data;
return 1;

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 451 / 495

Queues using lists Functions for the prototypes

Linked List based Queue API Functions (Contd.)

qP–>qHeadP

datadata

node1P

datadata datadata

qP–>qTailP

datadata

Editor:
void QDestroy(QPtr qP) {
// free all memory taken up this Q
lNodePtr nextP, thisP=qP->headP;
while (thisP) {
nextP = thisP->next;
free (thisP);
thisP=nextP;

}
free(qP);

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 452 / 495

Array based implementations

Section outline

36 Array based implementations
Stacks using arrays
Queues using arrays

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 453 / 495

Array based implementations Stacks using arrays

Array based Stack Typedef

Editor:
// Types for items: itemTyp, itemPtr
typedef int itemTyp, *itemPtr;

// Types for stack: stackTyp, stackPtr
#define STKSIZE 15
typedef struct stackTag {

int topI; // current position of top element
int sz;
itemTyp *iArr;

} stackTyp, *stackPtr;

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 454 / 495

Array based implementations Stacks using arrays

Array based Stack API Functions

Editor:
stackPtr stackNew() {
// returns a pointer to a new stack structure
stackPtr sP;
sP = (stackPtr) malloc (sizeof(stackTyp));
sP->sz=STKSIZE;
sP->iArr = (itemPtr) malloc (sP->sz*sizeof(itemTyp));
sP->topI=-1; // empty stack
return sP;

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 455 / 495

Array based implementations Stacks using arrays

Array based Stack API Functions (Contd.)

Editor:
int stackIsEmpty(stackPtr sP) {
// returns 0 if not empty, 1 otherwise
return (sP->topI<0);

}

int stackIsFull(stackPtr sP) {
// returns 0 if not full, 1 otherwise
return (sP->topI>=sP->sz-1) ;

}

int stackPush(stackPtr sP, itemTyp d) {
// returns 0 for failure, 1 for success
if (stackIsFull(sP)) return 0;
sP->topI++;
sP->iArr[sP->topI]=d;
return 1;

}
Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 456 / 495

Array based implementations Stacks using arrays

Array based Stack API Functions (Contd.)

Editor:
int stackPop(stackPtr sP, itemPtr dP) {
// returns 0 for failure, 1 for success,
// popped item returned via second argument
if (stackIsEmpty(sP)) return 0;

*dP = sP->iArr[sP->topI];
sP->topI-=1;
return 1;

}

int stackTop(stackPtr sP, itemPtr dP) {
// returns 0 for failure, 1 for success, top item
returned
// via second argument
if (stackIsEmpty(sP)) return 0;

*dP = sP->iArr[sP->topI];
return 1;

}
Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 457 / 495

Array based implementations Stacks using arrays

Array based Stack API Functions (Contd.)

Editor:
void stackDestroy(stackPtr sP) {
// free all memory taken up this stack
free(sP->iArr);
free(sP);

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 458 / 495

Array based implementations Queues using arrays

Array based Queue Typedef

Editor:
// Types for items: itemTyp, itemPtr
typedef int itemTyp, *itemPtr;

// Types for queue: QTyp, QPtr
#define STKSIZE 15
typedef struct QTag {

int front, rear, sz;
itemTyp iArr[STKSIZE];

#if defined (Q EFLAG) // Q Empty using flag
int emptyFlag;

#elif defined (Q COUNT) // Q Empty/Full using counter
int iCount;

#endif
} QTyp, *QPtr;

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 459 / 495

Array based implementations Queues using arrays

Array based Queue API Functions

Editor:
QPtr QNew() {
// returns a pointer to a new queue structure
QPtr qP;
qP->front=qP->rear=0;

#if defined (Q EFLAG) // Q Empty using flag
qP->emptyFlag=1;

#elif defined (Q COUNT) // Q Empty/Full using counter
qP->iCount=0;

#endif
return qP;

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 460 / 495

Array based implementations Queues using arrays

Array based Queue API Functions (Contd.)

Editor:
int QIsEmpty(QPtr qP) {
// returns 0 if not empty, 1 otherwise
#if defined (Q EFLAG) // Q Empty using flag

return (qP->emptyFlag);
#elif defined (Q COUNT) // Q Empty/Full using counter
return (qP->iCount==0);

#else
return (qP->rear == qP->front) ;

#endif
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 461 / 495

Array based implementations Queues using arrays

Array based Queue API Functions (Contd.)

Editor:
int QIsFull(QPtr qP) {
// returns 0 if not full, 1 otherwise
#if defined (Q EFLAG) // Q Empty using flag
if (qP->emptyFlag) return 0;
else return (qP->front==qP->rear) ;

#elif defined (Q COUNT) // Q Empty/Full using counter
return (qP->iCount==qP->sz);

#else
return ((qP->rear+1) % qP->sz == qP->front) ;

#endif
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 462 / 495

Array based implementations Queues using arrays

Array based Queue API Functions (Contd.)

Editor:
int QEnque(QPtr qP, itemTyp d) {
// returns 0 for failure, 1 for success
// needs to go at the end of the list
if (QIsFull(qP)) return 0;
qP->iArr[qP->rear]=d;
qP->rear = (qP->rear+1) % qP->sz;

#if defined (Q EFLAG) // Q Empty using flag
qP->emptyFlag=0;

#elif defined (Q COUNT) // Q Empty/Full using counter
qP->iCount++;

#endif
return 1;

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 463 / 495

Array based implementations Queues using arrays

Array based Queue API Functions (Contd.)

Editor:
int QDeque(QPtr qP, itemPtr dP) {
// returns 0 for failure, 1 for success,
// dequeued item returned via second argument
// needs to be removed from the head of the list
if (QIsEmpty(qP)) return 0;

*dP = qP->iArr[qP->front];
qP->front = (qP->front+1) % qP->sz;

#if defined (Q EFLAG) // Q Empty using flag
if (qP->front==qP->rear) qP->emptyFlag=1;

#elif defined (Q COUNT) // Q Empty/Full using counter
qP->iCount--;

#endif
return 1;

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 464 / 495

Array based implementations Queues using arrays

Array based Queue API Functions (Contd.)

Editor:
int QFront(QPtr qP, itemPtr dP) {
// returns 0 for failure, 1 for success,
// front item returned via second argument
// needs to be taken from the head of the list
if (QIsEmpty(qP)) return 0;

*dP = qP->iArr[qP->front];
return 1;

}

void QDestroy(QPtr qP) {
// free all memory taken up this Q
free(qP->iArr);
free(qP);

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 465 / 495

Applications

Section outline

37 Applications
Evaluation of Postfix Expressions
Postfix to Infix

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 466 / 495

Applications Evaluation of Postfix Expressions

Evaluation of Postfix Expressions

Editor:
#include <stdio.h>

typedef float itemTyp, *itemPtr;
#include "stack-ll.c"

void stackEmptyErr(void);
void addTop2(stackPtr sP, int iFlag);
void subTop2(stackPtr sP, int iFlag);
void mulTop2(stackPtr sP, int iFlag);
void divTop2(stackPtr sP, int iFlag);

void defaultAction(int iFlag){
if (iFlag) printf("default: skipping\n");

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 467 / 495

Applications Evaluation of Postfix Expressions

Evaluation of Postfix Expressions (Contd.)

Editor:
interpretPostfix(stackPtr sP, int iFlag){
float fNum; char ch;
scanf(" %c", &ch);
while (!feof(stdin)) {

switch (ch) {
case ’+’: addTop2(sP, iFlag); break;
case ’-’: subTop2(sP, iFlag); break;
case ’*’: mulTop2(sP, iFlag); break;
case ’/’: divTop2(sP, iFlag); break;

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 468 / 495

Applications Evaluation of Postfix Expressions

Evaluation of Postfix Expressions (Contd.)

Editor:
default :
if ((ch>=’0’ && ch<=’9’) || (ch==’.’)) {
ungetc(ch, stdin);
if (scanf("%f", &fNum)) {

stackPush(sP, fNum);
if (iFlag)

printf("pushed %f\n", fNum);
}

} else
defaultAction(iFlag);
break;

}
scanf(" %c", &ch);

}
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 469 / 495

Applications Evaluation of Postfix Expressions

Evaluation of Postfix Expressions (Contd.)

Editor:
void stackEmptyErr() {

fprintf(stderr, "stack empty while popping,
exiting\n");
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 470 / 495

Applications Evaluation of Postfix Expressions

Evaluation of Postfix Expressions (Contd.)

Editor:
void addTop2(stackPtr sP, int iFlag) {
float fn1, fn2;
if (!stackPop(sP, &fn2)) stackEmptyErr();
if (!stackPop(sP, &fn1)) stackEmptyErr();
stackPush(sP, fn1+fn2);
if (iFlag) {
printf("popped %f and %f, pushed sum=%f\n",

fn2, fn1, fn1+fn2);
}

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 471 / 495

Applications Evaluation of Postfix Expressions

Evaluation of Postfix Expressions (Contd.)

Editor:
void subTop2(stackPtr sP, int iFlag) {
float fn1, fn2;
if (!stackPop(sP, &fn2)) stackEmptyErr();
if (!stackPop(sP, &fn1)) stackEmptyErr();
stackPush(sP, fn1-fn2);
if (iFlag) {
printf("popped %f and %f, pushed diff=%f\n",

fn2, fn1, fn1-fn2);
}

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 472 / 495

Applications Evaluation of Postfix Expressions

Evaluation of Postfix Expressions (Contd.)

Editor:
void mulTop2(stackPtr sP, int iFlag) {
float fn1, fn2;
if (!stackPop(sP, &fn2)) stackEmptyErr();
if (!stackPop(sP, &fn1)) stackEmptyErr();
stackPush(sP, fn1*fn2);
if (iFlag) {
printf("popped %f and %f, pushed product=%f\n",

fn2, fn1, fn1*fn2);
}

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 473 / 495

Applications Evaluation of Postfix Expressions

Evaluation of Postfix Expressions (Contd.)

Editor:
void divTop2(stackPtr sP, int iFlag) {
float fn1, fn2;
if (!stackPop(sP, &fn2)) stackEmptyErr();
if (!stackPop(sP, &fn1)) stackEmptyErr();
stackPush(sP, fn1/fn2);
if (iFlag) {
printf("popped %f and %f, pushed div result=%f\n",

fn2, fn1, fn1/fn2);
}

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 474 / 495

Applications Evaluation of Postfix Expressions

Evaluation of Postfix Expressions (Contd.)

Editor:
main(){

stackPtr sP=stackNew();
interpretPostfix(sP, 1);

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 475 / 495

Applications Evaluation of Postfix Expressions

Evaluation of Postfix Expressions (Contd.)

Shell:
$ cc postfix.c -o postfix
$./postfix
3 4 + 5 *
pushed 3.000000
pushed 4.000000
popped 4.000000 and 3.000000, pushed sum=7.000000
pushed 5.000000
popped 5.000000 and 7.000000, pushed product=35.000000

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 476 / 495

Applications Postfix to Infix

Postfix to Infix

Editor:
#include <stdio.h>
#include <string.h>

typedef struct {
float fNum;
char *expStr;

} itemTyp, *itemPtr;
#include "stack-ll.c"

void stackEmptyErr(void);
void addTop2(stackPtr sP, int iFlag);
void subTop2(stackPtr sP, int iFlag);
void mulTop2(stackPtr sP, int iFlag);
void divTop2(stackPtr sP, int iFlag);

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 477 / 495

Applications Postfix to Infix

Postfix to Infix (Contd.)

Editor:
void defaultAction(int iFlag){
if (iFlag) printf("default: skipping\n");

}

void fNumPush(stackPtr sP, float fNum) {
itemTyp valExp;
valExp.fNum=fNum;
valExp.expStr=(char*)malloc(20*sizeof(char));
sprintf(valExp.expStr, "%f", fNum);
stackPush(sP, valExp);

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 478 / 495

Applications Postfix to Infix

Postfix to Infix (Contd.)

Editor:
void valExpPush(stackPtr sP, float fNum,

char *expStrP1, char *expStrP2, const char *oprStrP,

int iFlag) {
int len = strlen(expStrP1) + strlen(expStrP2) +

strlen(oprStrP) + 7;
itemTyp valExp;
valExp.fNum=fNum;
valExp.expStr=(char*)malloc(len*sizeof(char));
sprintf(valExp.expStr,"(%s %s %s)",

expStrP1, oprStrP, expStrP2);
stackPush(sP, valExp);
free(expStrP1);
free(expStrP2);
if (iFlag) printf("new expr: %s\n", valExp.expStr);

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 479 / 495

Applications Postfix to Infix

Postfix to Infix (Contd.)

Editor:
int valExpPop(stackPtr sP, float *fn, char *expStrP[]) {
itemTyp valExp;
if (!stackPop(sP, &valExp)) stackEmptyErr();

*fn = valExp.fNum;

*expStrP = valExp.expStr;
return 1;

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 480 / 495

Applications Postfix to Infix

Postfix to Infix (Contd.)

Editor:
interpretPostfix(stackPtr sP, int iFlag){
float fNum; char ch;
scanf(" %c", &ch);
while (!feof(stdin)) {

switch (ch) {
case ’+’: addTop2(sP, iFlag); break;
case ’-’: subTop2(sP, iFlag); break;
case ’*’: mulTop2(sP, iFlag); break;
case ’/’: divTop2(sP, iFlag); break;
default :

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 481 / 495

Applications Postfix to Infix

Postfix to Infix (Contd.)

Editor:
if ((ch>=’0’ && ch<=’9’) || (ch==’.’)) {
ungetc(ch, stdin);
if (scanf("%f", &fNum)) {

fNumPush(sP, fNum);
if (iFlag)

printf("pushed %f\n", fNum);
}

} else
defaultAction(iFlag);
break;

}
scanf(" %c", &ch);

}
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 482 / 495

Applications Postfix to Infix

Postfix to Infix (Contd.)

Editor:
void stackEmptyErr() {

fprintf(stderr, "stack empty while popping,
exiting\n");
}

void addTop2(stackPtr sP, int iFlag) {
float fn1, fn2;
char *expStrP1, *expStrP2;
valExpPop(sP, &fn2, &expStrP2);
valExpPop(sP, &fn1, &expStrP1);
valExpPush(sP, fn1+fn2, expStrP1, expStrP2, "+",

iFlag);
if (iFlag) {
printf("popped %f and %f, pushed sum=%f\n",

fn2, fn1, fn1+fn2);
}

}
Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 483 / 495

Applications Postfix to Infix

Postfix to Infix (Contd.)

Editor:
void subTop2(stackPtr sP, int iFlag) {
float fn1, fn2;
char *expStrP1, *expStrP2;
valExpPop(sP, &fn2, &expStrP2);
valExpPop(sP, &fn1, &expStrP1);
valExpPush(sP, fn1-fn2, expStrP1, expStrP2, "-",

iFlag);
if (iFlag) {
printf("popped %f and %f, pushed diff=%f\n",

fn2, fn1, fn1-fn2);
}

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 484 / 495

Applications Postfix to Infix

Postfix to Infix (Contd.)

Editor:
void mulTop2(stackPtr sP, int iFlag) {
float fn1, fn2;
char *expStrP1, *expStrP2;
valExpPop(sP, &fn2, &expStrP2);
valExpPop(sP, &fn1, &expStrP1);
valExpPush(sP, fn1*fn2, expStrP1, expStrP2, "*",

iFlag);
if (iFlag) {
printf("popped %f and %f, pushed product=%f\n",

fn2, fn1, fn1*fn2);
}

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 485 / 495

Applications Postfix to Infix

Postfix to Infix (Contd.)

Editor:
void divTop2(stackPtr sP, int iFlag) {
float fn1, fn2;
char *expStrP1, *expStrP2;
valExpPop(sP, &fn2, &expStrP2);
valExpPop(sP, &fn1, &expStrP1);
valExpPush(sP, fn1/fn2, expStrP1, expStrP2, "/",

iFlag);
if (iFlag) {
printf("popped %f and %f, pushed div result=%f\n",

fn2, fn1, fn1/fn2);
}

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 486 / 495

Applications Postfix to Infix

Postfix to Infix (Contd.)

Editor:
main(){

stackPtr sP=stackNew();
interpretPostfix(sP, 1);

}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 487 / 495

Applications Postfix to Infix

Postfix to Infix (Contd.)

Shell:
$ cc -o post2infix post2infix.c
$./post2infix
3 4 + 5 *
pushed 3.000000
pushed 4.000000
new expr: (3.000000 + 4.000000)
popped 4.000000 and 3.000000, pushed sum=7.000000
pushed 5.000000
new expr: ((3.000000 + 4.000000) * 5.000000)
popped 5.000000 and 7.000000, pushed product=35.000000

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 488 / 495

Part XIII

File handling

38 File Input/Output

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 489 / 495

File Input/Output

Section outline

38 File Input/Output
Streams
Opening and Closing Files

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 490 / 495

File Input/Output Streams

Streams and the FILE Structure

In C, stdin is the standard input file stream and refers to the
keyboard, by default
fscanf and fprintf may be used for reading from and writing
to specified streams, including stdin and stdout, as
appropriate
scanf is the equivalent of fscanf, with the stream set to stdin,
internally
printf is the equivalent of fprintf, with the stream set to
stdout, internally
Necessary declarations are given in stdio.h, in particular there
is a defined structure called FILE
For file input and output, we usually create variables of type FILE

* to point to a file located on the computer
These are compatible with streams and we could pass a FILE
pointer into an input or output function, for example, fscanf

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 491 / 495

File Input/Output Opening and Closing Files

Opening and Closing Files

We have to first open a file to be able to do anything else with it.
Done using fopen, which takes two arguments
The first one is the path to your file (as a string), including the
filename – either absolute or relative
The second argument is another char * (string), and determines
how the file is opened by your program.
There are 12 different values that could be used – to be see later
Finally, fopen returns a FILE pointer if the file was opened
successfully, otherwise it returns NULL
Closing files is easy, using fclose, with a FILE pointer to an
open file

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 492 / 495

File Input/Output Opening and Closing Files

Sample Program to Open a File for Reading

Editor:
#include <stdio.h>

int main() {
FILE *fileP; // declare a FILE pointer

fileP = fopen("data.txt", "r");
// open a text file for reading

if(fileP==NULL) {
printf("Error: failed to open file.\n");
return 1;

}
else {
printf("File successfully opened\n");
fscanf(fileP, "%d", &data);
// read an integer from the file
fclose(fileP);
return 0;

}
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 493 / 495

File Input/Output Opening and Closing Files

Sample Program to Open a File for Writing

Editor:
#include <stdio.h>

int main() {
FILE *fileP; // declare a FILE pointer

file = fopen("data/writing.txt", "w");
// create a text file for writing

if(fileP==NULL) {
printf("Error: can’t create file.\n");
return 1;

}
else {
printf("File created\n");
// write an integer to the file
fprintf(fileP, "%d\n", 10);
fclose(fileP);
return 0;

}
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 494 / 495

File Input/Output Opening and Closing Files

Other Options When Opening Files

The following four options are important:
"a" lets you open a text file for appending - i.e. add data to the
end of the current text.
"r+" will open a text file to read from or write to.
"w+" will create a text file to read from or write to.
"a+" will either create or open a text file for appending.
Add a "b" to the end if you want to use binary files instead of text
files, as follows:
"rb", "wb", "ab", "r+b", "w+b", "a+b"

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 495 / 495

File Input/Output Opening and Closing Files

Sample Program to Open a File for Writing

Editor:
#include <stdio.h>

int main() {
char ch; // to read characters from the file
FILE *file; // the FILE pointer

file = fopen("date.txt", "r"); // input file
if(file==NULL) {

printf("Error: failed to open file.\n");
return 1;

}
printf("File successfully opened. Contents...:\n\n");

while(1) {
ch = fgetc(file);
if(ch!=EOF) printf("%c", ch);
else break;

}

fclose(file);
return 0;
}

Chittaranjan Mandal (IIT Kharagpur) Programming and Data Structures November 9, 2011 496 / 495

	Introduction
	Outline
	Resources
	Course objectives

	Simple programming exercise
	Sum of two numbers
	A few shell commands

	Simple printing and reading data
	Printing
	Reading data

	Preprocessor
	Including files
	Macros
	Conditional compilation

	Routines and scope
	Routines and functions
	Routines
	Examples of routines
	Main routine
	Parameterised routines
	Formal and actual parameters
	Function anatomy
	Functions and macros

	Scope
	Function scope
	Block scope
	Global variables
	Static variables

	Operators and expression evaluation
	Operators and expression evaluation
	Operators
	Associativity and Precedence Relationships

	Examples
	Digits of a Number
	Area computations
	More straight line coding

	CPU
	Programmer's view of CPU
	Programming
	ISA
	Storage
	Assembly
	CPU operation
	Instruction sequencing
	Around the CPU

	Integer representation
	Valuation scheme
	Decimal to binary
	Negative numbers
	Summary of NS
	Hexadecimal and octal

	Real number representation
	Valuation
	Converting fractions
	IEEE 754
	Non-associative addition
	Special IEEE754 numbers

	Elementary data types
	Integer variants
	Size of datatypes
	Portability

	Branching and looping
	Decision Making
	Conditionals
	Dangling else
	Condition evaluation
	Comma operator
	Switching
	Simple RDs

	Iteration
	For Loop
	Syntax -- for
	Examples -- `for'
	While Loops
	Syntax -- while

	More on loops
	Breaking out
	Continue

	1D Arrays
	Arrays
	Need for arrays
	Sample definitions
	Array initialisation
	Memory snapshots

	Working with arrays
	Address arithmetic
	Array declaration
	Passing 1D Arrays

	More on functions
	Prototypes
	Need for prototypes
	Illustrative example
	Points to note
	Persistent data
	Scope rules

	References
	Need to pass addresses
	Storage snapshots
	Swapping two variable
	Summary

	Recursive functions
	Considerations
	Activation records

	Recursion with arrays
	Simple search
	Combinations
	Permuations of n items

	Efficient recursion
	Factorial again
	Tail recursion
	Handling TR

	Strings
	Strings
	Character strings
	Common string functions
	Reading a string

	String Examples
	String length
	Appending one string to another
	Substrings
	Deletion
	Insertion
	Substring replacement
	Str fn prototypes

	Searching and simple sorting
	Fast searching
	Binary search formulation
	Example
	Rec, indices
	Rec, indices, fail pos
	Rec, splitting
	Rec, splitting, fail pos
	Iter, indices, fail pos

	Simple sorting
	Selection Sort
	Bubble Sort
	Insertion Sort

	Runtime measures
	Program complexity
	Asymptotic Complexity
	Big-O Notation
	Big-Theta Notation
	Big-Omega Notation
	Sample Growth Functions
	Common Recurrences

	2D Arrays
	Two dimensional arrays
	Usage
	Element addresses
	Points to note
	Declaring 2D arrays
	Array of arrays

	2D Matrices
	Determinants
	Matrix Operations
	Row-Column interchange
	Eliminating columns
	Setting pivot
	Determinant computation

	More on 2-D arrays
	Initialisation
	Address arithmetic
	Sizeof
	Type

	Pseudo 2D arrays
	Array of strings
	Command-line arguments

	Structures and dynamic data types
	Structures and Type definitions
	Representing complex numbers
	Using typedef for structures
	Structures with functions
	Data type for rationals
	Simple student records

	Linked lists
	Typedef for linked lists
	Inserting in a linked list
	Deleting from a linked list

	Stacks using lists
	Function prototypes for stack
	Typedefs for stack
	Functions for the prototypes

	Queues using lists
	Function prototypes for queues
	Typedefs for queues
	Functions for the prototypes

	Array based implementations
	Stacks using arrays
	Queues using arrays

	Applications
	Evaluation of Postfix Expressions
	Postfix to Infix

	File handling
	File Input/Output
	Streams
	Opening and Closing Files

