
CS11001 Programming and Data Structures, Autumn 2010

Class Test 1

Maximum marks: 20 September 06, 2010 Total time: 1 hour

Roll no: 10FB1331 Name: Foolan Barik Section: @

[

Write your answers in the question paper itself. Be brief andprecise. Answer allquestions.
]

1. (a) What does the following program print? (2)

#include <stdio.h>

main ()

{

int i = 100, m, n;

m = 1 + (i++);

n = 1 + (++i);

printf("m = %d, n = %d\n",m,n);

}

m = 101, n = 103

(b) What does the following program print? (3)

#include <stdio.h>

int eval (int q)

{

q *= 10;

q -= 100;

return q;

}

main ()

{

int p = 10, q = 100;

q = eval(p);

printf("%d %d ", p, q);

q = eval(q);

printf("%d %d\n", p, q);

}

10 0 10 -100

(c) Describe in one English sentence what the
following function outputs. Assumeb 6= 0. (2)

int what (int a, int b)

{

double q1, q2;

q1 = a / b;

q2 = (double)a / (double)b;

return (q1 == q2);

}

Returns whethera is an integral multiple ofb.

(d) Expressf(n) as a function ofn, wheref is
defined as follows. Show your calculations. (3)

unsigned int f (unsigned int n)

{

unsigned int s = 0, i, j;

for (i=1; i<=n; ++i)

for (j=i; j<=n; ++j)

s += i + j;

return s;

}

f(n) =

n
∑

i=1

n
∑

j=i

(i + j) =

n
∑

i=1

1

2
(n − i + 1)[(i + i) + (i + n)]

=
1

2

n
∑

i=1

(n + 1 − i)(n + 3i)

=
1

2

n
∑

i=1

[

n(n + 1) + (2n + 3)i − 3i2
]

=
1

2

[

n2(n + 1) + (2n + 3)
n(n + 1)

2
−

3

6
n(n + 1)(2n + 1)

]

=
1

4
n(n + 1)

[

(2n) + (2n + 3) − (2n + 1)
]

=
1

2
n(n + 1)2

— Page 1 of 2 —

2. In this exercise, we compute the binomial coefficient
(

n

r

)

by repeatedly using the formula
(

n

r

)

= n

r

(

n−1

r−1

)

. We
computen/r as a floating-point value. Finally, the accumulated productis rounded to the nearest integer. In
both the following parts, you are not allowed to use any math library function.

(a) Fill in the blanks to complete the following C function that takes a floating-point valuex as its only
argument and returns the rounded value ofx. The rounded value ofx is the integer nearest tox. Whenx is
mid-way between two consecutive integers, we follow the convention “round half away from zero”, that is,
round(2.5) = 3 and round(−2.5) = −3. (4)

int roundit (double x)
{

int r; /* The rounded integer to return */
double fpart; /* Fractional part */

/* Store in r the truncated value of |x| */

r = (x >= 0) ? (int)x : (int)(-x);

/* Store in fpart the fractional part of |x| */

fpart = (x >= 0) ? x - (double)r : -(x + (double)r);

/* Modify r based conditionally upon fpart */

if (fpart >= 0.5) ++r ;

/* Return r after sign adjustment */

return (x >= 0) ? r : -r ;

}

(b) Complete the following C function to compute
(

n

r

)

. The function starts by initializing an empty product,
and subsequently multiplies the product byn

r
, n−1

r−1
, n−2

r−2
, and so on, in a loop, until the denominator reduces

to 0. After the loop terminates, the product is almost ready to bereturned (since
(

n−r

0

)

= 1). But since
floating-point calculations are used to compute the product, there may be some (small) error due to floating-
point approximations. Use the function of Part (a) to round the product, and return the rounded value. (6)

unsigned int bincoeff (unsigned int n, unsigned int r)

{

double prod = 1.0 ; /* Initialize to empty product */

if (r > n) return 0 ;

while (r != 0) /* Condition on r */ {

/* Multiply prod by the fraction n
r
(floating-point division) */

prod *= (double)n / (double)r;

/* Prepare for the next iteration (computation of
(

n−1

r−1

)

) */

--n; --r;

}

/* Return the rounded product. Use the function of Part (a). */

return roundit(prod) ;

}

— Page 2 of 2 —

