
21 July 2009 Programming and Data Structure 1

Pointers

21 July 2009 Programming and Data Structure 2

Introduction

• A pointer is a variable that represents the
location (rather than the value) of a data item.

• They have a number of useful applications.
– Enables us to access a variable that is defined

outside the function.
– Can be used to pass information back and forth

between a function and its reference point.
– More efficient in handling data tables.
– Reduces the length and complexity of a program.
– Sometimes also increases the execution speed.

21 July 2009 Programming and Data Structure 3

Basic Concept

• Within the computer memory, every stored data
item occupies one or more contiguous memory
cells.
– The number of memory cells required to store a data

item depends on its type (char, int, double, etc.).

• Whenever we declare a variable, the system
allocates memory location(s) to hold the value of
the variable.
– Since every byte in memory has a unique address, this

location will also have its own (unique) address.

21 July 2009 Programming and Data Structure 4

Contd.

• Consider the statement
int xyz = 50;

– This statement instructs the compiler to allocate a
location for the integer variable xyz, and put the
value 50 in that location.

– Suppose that the address location chosen is 1380.

xyz variable

50 value

1380 address

21 July 2009 Programming and Data Structure 5

Contd.

• During execution of the program, the system
always associates the name xyz with the
address 1380.
– The value 50 can be accessed by using either the

name xyz or the address 1380.

• Since memory addresses are simply numbers,
they can be assigned to some variables which
can be stored in memory.
– Such variables that hold memory addresses are

called pointers.
– Since a pointer is a variable, its value is also stored

in some memory location.

21 July 2009 Programming and Data Structure 6

Contd.

• Suppose we assign the address of xyz to a
variable p.
– p is said to point to the variable xyz.

Variable Value Address

xyz 50 1380

p 1380 2545

p = &xyz;

501380

xyz

13802545

p

21 July 2009 Programming and Data Structure 7

Accessing the Address of a Variable

• The address of a variable can be determined
using the ‘&’ operator.
– The operator ‘&’ immediately preceding a variable

returns the address of the variable.
• Example:

p = &xyz;
– The address of xyz (1380) is assigned to p.

• The ‘&’ operator can be used only with a
simple variable or an array element.

&distance
&x[0]
&x[i-2]

21 July 2009 Programming and Data Structure 8

Contd.

• Following usages are illegal:
&235

• Pointing at constant.

int arr[20];
:

&arr;
• Pointing at array name.

&(a+b)
• Pointing at expression.

21 July 2009 Programming and Data Structure 9

Example

#include <stdio.h>
main()
{

int a;
float b, c;
double d;
char ch;

a = 10; b = 2.5; c = 12.36; d = 12345.66; ch = ‘A’;
printf (“%d is stored in location %u \n”, a, &a) ;
printf (“%f is stored in location %u \n”, b, &b) ;
printf (“%f is stored in location %u \n”, c, &c) ;
printf (“%ld is stored in location %u \n”, d, &d) ;
printf (“%c is stored in location %u \n”, ch, &ch) ;

}

21 July 2009 Programming and Data Structure 10

Output:

10 is stored in location 3221224908
2.500000 is stored in location 3221224904
12.360000 is stored in location 3221224900
12345.660000 is stored in location 3221224892
A is stored in location 3221224891

Incidentally variables a,b,c,d and ch are allocated
to contiguous memory locations.

a
b
c

d
ch

21 July 2009 Programming and Data Structure 11

Pointer Declarations

• Pointer variables must be declared before we
use them.

• General form:
data_type *pointer_name;

Three things are specified in the above
declaration:

1. The asterisk (*) tells that the variable pointer_name is a
pointer variable.

2. pointer_name needs a memory location.
3. pointer_name points to a variable of type data_type.

21 July 2009 Programming and Data Structure 12

Contd.

• Example:
int *count;
float *speed;

• Once a pointer variable has been declared, it
can be made to point to a variable using an
assignment statement like:

int *p, xyz;
:
p = &xyz;

– This is called pointer initialization.

21 July 2009 Programming and Data Structure 13

Things to Remember

• Pointer variables must always point to a data
item of the same type.

float x;
int *p;
: will result in erroneous output
p = &x;

• Assigning an absolute address to a pointer
variable is prohibited.

int *count;
:
count = 1268;

21 July 2009 Programming and Data Structure 14

Accessing a Variable Through its Pointer

• Once a pointer has been assigned the address of
a variable, the value of the variable can be
accessed using the indirection operator (*).

int a, b;
int *p;
:
p = &a;
b = *p;

Equivalent to b = a

21 July 2009 Programming and Data Structure 15

Example 1

#include <stdio.h>
main()
{

int a, b;
int c = 5;
int *p;

a = 4 * (c + 5) ;

p = &c;
b = 4 * (*p + 5) ;
printf (“a=%d b=%d \n”, a, b) ;

}

Equivalent

21 July 2009 Programming and Data Structure 16

Example 2
#include <stdio.h>
main()
{

int x, y;
int *ptr;

x = 10 ;
ptr = &x ;
y = *ptr ;
printf (“%d is stored in location %u \n”, x, &x) ;
printf (“%d is stored in location %u \n”, *&x, &x) ;
printf (“%d is stored in location %u \n”, *ptr, ptr) ;
printf (“%d is stored in location %u \n”, y, &*ptr) ;
printf (“%u is stored in location %u \n”, ptr, &ptr) ;
printf (“%d is stored in location %u \n”, y, &y) ;

*ptr = 25;
printf (“\nNow x = %d \n”, x);

}

*&x x

ptr=&x;
&x &*ptr

21 July 2009 Programming and Data Structure 17

Output:

10 is stored in location 3221224908
10 is stored in location 3221224908
10 is stored in location 3221224908
10 is stored in location 3221224908
3221224908 is stored in location 3221224900
10 is stored in location 3221224904

Now x = 25

Address of x: 3221224908

Address of y: 3221224904

Address of ptr: 3221224900

21 July 2009 Programming and Data Structure 18

Pointer Expressions

• Like other variables, pointer variables can be
used in expressions.

• If p1 and p2 are two pointers, the following
statements are valid:

sum = *p1 + *p2 ;
prod = *p1 * *p2 ;
prod = (*p1) * (*p2) ;
*p1 = *p1 + 2;
x = *p1 / *p2 + 5 ;

21 July 2009 Programming and Data Structure 19

Contd.

• What are allowed in C?
– Add an integer to a pointer.
– Subtract an integer from a pointer.
– Subtract one pointer from another (related).

• If p1 and p2 are both pointers to the same array, them
p2–p1 gives the number of elements between p1 and p2.

• What are not allowed?
– Add two pointers.

p1 = p1 + p2 ;

– Multiply / divide a pointer in an expression.
p1 = p2 / 5 ;
p1 = p1 – p2 * 10 ;

21 July 2009 Programming and Data Structure 20

Scale Factor

• We have seen that an integer value can be
added to or subtracted from a pointer variable.

int *p1, *p2 ;
int i, j;
:
p1 = p1 + 1 ;
p2 = p1 + j ;
p2++ ;
p2 = p2 – (i + j) ;

• In reality, it is not the integer value which is
added/subtracted, but rather the scale factor
times the value.

21 July 2009 Programming and Data Structure 21

Contd.

Data Type Scale Factor
char 1
int 4
float 4
double 8

– If p1 is an integer pointer, then
p1++

will increment the value of p1 by 4.

21 July 2009 Programming and Data Structure 22

Example: to find the scale factors
#include <stdio.h>
main()
{

printf (“Number of bytes occupied by int is %d \n”, sizeof(int));
printf (“Number of bytes occupied by float is %d \n”, sizeof(float));
printf (“Number of bytes occupied by double is %d \n”, sizeof(double));
printf (“Number of bytes occupied by char is %d \n”, sizeof(char));

}

Output:

Number of bytes occupied by int is 4
Number of bytes occupied by float is 4
Number of bytes occupied by double is 8
Number of bytes occupied by char is 1

Returns no. of bytes required for data type representation

21 July 2009 Programming and Data Structure 23

Passing Pointers to a Function

• Pointers are often passed to a function as
arguments.
– Allows data items within the calling program to be

accessed by the function, altered, and then returned
to the calling program in altered form.

– Called call-by-reference (or by address or by
location).

• Normally, arguments are passed to a function
by value.
– The data items are copied to the function.
– Changes are not reflected in the calling program.

21 July 2009 Programming and Data Structure 24

Example: passing arguments by value

#include <stdio.h>
main()
{

int a, b;
a = 5 ; b = 20 ;
swap (a, b) ;
printf (“\n a = %d, b = %d”, a, b);

}

void swap (int x, int y)
{

int t ;
t = x ;
x = y ;
y = t ;

}

Output

a = 5, b = 20

x and y swap

a and b
do not
swap

21 July 2009 Programming and Data Structure 25

Example: passing arguments by reference

#include <stdio.h>
main()
{

int a, b;
a = 5 ; b = 20 ;
swap (&a, &b) ;
printf (“\n a = %d, b = %d”, a, b);

}

void swap (int *x, int *y)
{

int t ;
t = *x ;
*x = *y ;
*y = t ;

}

Output

a = 20, b = 5

*x and *y
swap

*(&a) and *(&b)
swap

21 July 2009 Programming and Data Structure 26

scanf Revisited

int x, y ;
printf (“%d %d %d”, x, y, x+y) ;

• What about scanf ?

scanf (“%d %d %d”, x, y, x+y) ;

scanf (“%d %d”, &x, &y) ;

NO

YES

21 July 2009 Programming and Data Structure 27

Example: Sort 3 integers

• Three-step algorithm:
1. Read in three integers x, y and z
2. Put smallest in x

• Swap x, y if necessary; then swap x, z if necessary.

3. Put second smallest in y
• Swap y, z if necessary.

21 July 2009 Programming and Data Structure 28

Contd.

#include <stdio.h>
main()
{

int x, y, z ;
………..
scanf (“%d %d %d”, &x, &y, &z) ;
if (x > y) swap (&x, &y);
if (x > z) swap (&x, &z);
if (y > z) swap (&y, &z) ;
………..

}

21 July 2009 Programming and Data Structure 29

sort3 as a function

#include <stdio.h>
main()
{

int x, y, z ;
………..
scanf (“%d %d %d”, &x, &y, &z) ;
sort3 (&x, &y, &z) ;
………..

}

void sort3 (int *xp, int *yp, int *zp)
{

if (*xp > *yp) swap (xp, yp);
if (*xp > *zp) swap (xp, zp);
if (*yp > *zp) swap (yp, zp);

}

xp/yp/zp
are

pointers

21 July 2009 Programming and Data Structure 30

Contd.

• Why no ‘&’ in swap call?
– Because xp, yp and zp are already pointers that

point to the variables that we want to swap.

21 July 2009 Programming and Data Structure 31

Pointers and Arrays

• When an array is declared,
– The compiler allocates a base address and sufficient

amount of storage to contain all the elements of the
array in contiguous memory locations.

– The base address is the location of the first element
(index 0) of the array.

– The compiler also defines the array name as a
constant pointer to the first element.

21 July 2009 Programming and Data Structure 32

Example

• Consider the declaration:
int x[5] = {1, 2, 3, 4, 5} ;

– Suppose that the base address of x is 2500, and each
integer requires 4 bytes.

Element Value Address
x[0] 1 2500
x[1] 2 2504
x[2] 3 2508
x[3] 4 2512
x[4] 5 2516

21 July 2009 Programming and Data Structure 33

Contd.

x &x[0] 2500 ;

– p = x; and p = &x[0]; are equivalent.
– We can access successive values of x by using p++ or

p- - to move from one element to another.

• Relationship between p and x:
p = &x[0] = 2500
p+1 = &x[1] = 2504
p+2 = &x[2] = 2508
p+3 = &x[3] = 2512
p+4 = &x[4] = 2516

*(p+i) gives the

value of x[i]

21 July 2009 Programming and Data Structure 34

Example: function to find average

#include <stdio.h>
main()
{

int x[100], k, n ;

scanf (“%d”, &n) ;

for (k=0; k<n; k++)
scanf (“%d”, &x[k]) ;

printf (“\nAverage is %f”,
avg (x, n));

}

float avg (int array[],int size)
{

int *p, i , sum = 0;

p = array ;

for (i=0; i<size; i++)
sum = sum + *(p+i);

return ((float) sum / size);
}

int *array

p[i]

21 July 2009 Programming and Data Structure 35

Structures Revisited

• Recall that a structure can be declared as:
struct stud {

int roll;
char dept_code[25];
float cgpa;

};
struct stud a, b, c;

• And the individual structure elements can be
accessed as:

a.roll , b.roll , c.cgpa , etc.

21 July 2009 Programming and Data Structure 36

Arrays of Structures

• We can define an array of structure records as
struct stud class[100] ;

• The structure elements of the individual
records can be accessed as:

class[i].roll
class[20].dept_code
class[k++].cgpa

21 July 2009 Programming and Data Structure 37

Example: Sorting by Roll Numbers

#include <stdio.h>
struct stud
{

int roll;
char dept_code[25];
float cgpa;

};

main()
{

struc stud class[100], t;
int j, k, n;

scanf (“%d”, &n);
/* no. of students */

for (k=0; k<n; k++)
scanf (“%d %s %f”, &class[k].roll,

class[k].dept_code, &class[k].cgpa);
for (j=0; j<n-1; j++)

for (k=j+1; k<n; k++)
{

if (class[j].roll > class[k].roll)
{

t = class[j] ;
class[j] = class[k] ;
class[k] = t

}
}

<<<< PRINT THE RECORDS >>>>
}

21 July 2009 Programming and Data Structure 38

Pointers and Structures

• You may recall that the name of an array
stands for the address of its zero-th element.
– Also true for the names of arrays of structure

variables.

• Consider the declaration:
struct stud {

int roll;
char dept_code[25];
float cgpa;

} class[100], *ptr ;

21 July 2009 Programming and Data Structure 39

– The name class represents the address of the zero-th
element of the structure array.

– ptr is a pointer to data objects of the type struct stud.

• The assignment
ptr = class ;

will assign the address of class[0] to ptr.
• When the pointer ptr is incremented by one

(ptr++) :
– The value of ptr is actually increased by sizeof(stud).
– It is made to point to the next record.

21 July 2009 Programming and Data Structure 40

• Once ptr points to a structure variable, the
members can be accessed as:

ptr –> roll ;
ptr –> dept_code ;
ptr –> cgpa ;

– The symbol “–>” is called the arrow operator.

21 July 2009 Programming and Data Structure 41

Example
#include <stdio.h>

typedef struct {
float real;
float imag;
} _COMPLEX;

swap_ref(_COMPLEX *a, _COMPLEX *b)
{
_COMPLEX tmp;
tmp=*a;
*a=*b;
*b=tmp;

}

print(_COMPLEX *a)
{
printf("(%f,%f)\n",a->real,a->imag);

}

main()
{
_COMPLEX x={10.0,3.0}, y={-20.0,4.0};

print(&x); print(&y);
swap_ref(&x,&y);
print(&x); print(&y);

}

(10.000000,3.000000)
(-20.000000,4.000000)
(-20.000000,4.000000)
(10.000000,3.000000)

21 July 2009 Programming and Data Structure 42

A Warning

• When using structure pointers, we should take
care of operator precedence.
– Member operator “.” has higher precedence than “*”.

• ptr –> roll and (*ptr).roll mean the same thing.
• *ptr.roll will lead to error.

– The operator “–>” enjoys the highest priority among
operators.

• ++ptr –> roll will increment roll, not ptr.
• (++ptr) –> roll will do the intended thing.

21 July 2009 Programming and Data Structure 43

Structures and Functions

• A structure can be passed as argument to a
function.

• A function can also return a structure.
• The process shall be illustrated with the help of

an example.
– A function to add two complex numbers.

21 July 2009 Programming and Data Structure 44

Example: complex number addition

#include <stdio.h>
struct complex {

float re;
float im;

};

main()
{

struct complex a, b, c;
scanf (“%f %f”, &a.re, &a.im);
scanf (“%f %f”, &b.re, &b.im);
c = add (a, b) ;
printf (“\n %f %f”, c.re, c.im);

}

struct complex add (x, y)
struct complex x, y;
{

struct complex t;

t.re = x.re + y.re ;
t.im = x.im + y.im ;
return (t) ;

}

21 July 2009 Programming and Data Structure 45

Example: Alternative way using pointers

#include <stdio.h>
struct complex {

float re;
float im;

};

main()
{

struct complex a, b, c;
scanf (“%f %f”, &a.re, &a.im);
scanf (“%f %f”, &b.re, &b.im);
add (&a, &b, &c) ;
printf (“\n %f %f”, c,re, c.im);

}

void add (x, y, t)
struct complex *x, *y, *t;
{

t->re = x->re + y->re ;
t->im = x->im + y->im ;

}

21 July 2009 Programming and Data Structure 46

Dynamic Memory Allocation

21 July 2009 Programming and Data Structure 47

Basic Idea

• Many a time we face situations where data is
dynamic in nature.
– Amount of data cannot be predicted beforehand.
– Number of data item keeps changing during

program execution.

• Such situations can be handled more easily and
effectively using dynamic memory management
techniques.

21 July 2009 Programming and Data Structure 48

Contd.

• C language requires the number of elements in
an array to be specified at compile time.
– Often leads to wastage or memory space or program

failure.

• Dynamic Memory Allocation
– Memory space required can be specified at the time

of execution.
– C supports allocating and freeing memory

dynamically using library routines.

21 July 2009 Programming and Data Structure 49

Memory Allocation Process in C

Local variables

Free memory

Global variables

Instructions

Permanent storage
area

Stack

Heap

21 July 2009 Programming and Data Structure 50

Contd.

• The program instructions and the global
variables are stored in a region known as
permanent storage area.

• The local variables are stored in another area
called stack.

• The memory space between these two areas is
available for dynamic allocation during
execution of the program.
– This free region is called the heap.
– The size of the heap keeps changing

21 July 2009 Programming and Data Structure 51

Memory Allocation Functions

• malloc
– Allocates requested number of bytes and returns a

pointer to the first byte of the allocated space.
• calloc

– Allocates space for an array of elements, initializes
them to zero and then returns a pointer to the
memory.

• free
Frees previously allocated space.

• realloc
– Modifies the size of previously allocated space.

21 July 2009 Programming and Data Structure 52

Allocating a Block of Memory

• A block of memory can be allocated using the
function malloc.
– Reserves a block of memory of specified size and

returns a pointer of type void.
– The return pointer can be assigned to any pointer

type.

• General format:
ptr = (type *) malloc (byte_size) ;

21 July 2009 Programming and Data Structure 53

Contd.

• Examples
p = (int *) malloc (100 * sizeof (int)) ;

• A memory space equivalent to “100 times the size of an int”
bytes is reserved.

• The address of the first byte of the allocated memory is
assigned to the pointer p of type int.

p

400 bytes of space

21 July 2009 Programming and Data Structure 54

Contd.

cptr = (char *) malloc (20) ;
• Allocates 10 bytes of space for the pointer cptr of type char.

sptr = (struct stud *) malloc (10 *
sizeof (struct stud));

21 July 2009 Programming and Data Structure 55

Points to Note

• malloc always allocates a block of contiguous
bytes.
– The allocation can fail if sufficient contiguous

memory space is not available.
– If it fails, malloc returns NULL.

21 July 2009 Programming and Data Structure 56

Example

printf("Input heights for %d
students \n",N);
for(i=0;i<N;i++)
scanf("%f",&height[i]);

for(i=0;i<N;i++)
sum+=height[i];

avg=sum/(float) N;

printf("Average height= %f \n",
avg);
}

#include <stdio.h>

main()
{
int i,N;
float *height;
float sum=0,avg;

printf("Input the number of students. \n");
scanf("%d",&N);

height=(float *) malloc(N * sizeof(float));

Input the number of students.
5
Input heights for 5 students
23 24 25 26 27
Average height= 25.000000

21 July 2009 Programming and Data Structure 57

Releasing the Used Space

• When we no longer need the data stored in a
block of memory, we may release the block for
future use.

• How?
– By using the free function.

• General format:
free (ptr) ;

where ptr is a pointer to a memory block which
has been already created using malloc.

21 July 2009 Programming and Data Structure 58

Altering the Size of a Block

• Sometimes we need to alter the size of some
previously allocated memory block.
– More memory needed.
– Memory allocated is larger than necessary.

• How?
– By using the realloc function.

• If the original allocation is done by the statement
ptr = malloc (size) ;

then reallocation of space may be done as
ptr = realloc (ptr, newsize) ;

21 July 2009 Programming and Data Structure 59

Contd.

– The new memory block may or may not begin at the
same place as the old one.

• If it does not find space, it will create it in an entirely
different region and move the contents of the old block into
the new block.

– The function guarantees that the old data remains
intact.

– If it is unable to allocate, it returns NULL and frees
the original block.

21 July 2009 Programming and Data Structure 60

Pointer to Pointer

• Example:
int **p;
p=(int **) malloc(3 * sizeof(int *));

p

p[2]

p[1] int *

int **

int *

int *

p[0]

21 July 2009 Programming and Data Structure 61

2-D Array Allocation

#include <stdio.h>
#include <stdlib.h>

int **allocate(int h, int w)
{
int **p;
int i,j;

p=(int **) calloc(h, sizeof (int *));
for(i=0;i<h;i++)
p[i]=(int *) calloc(w,sizeof (int));

return(p);
}

void read_data(int **p,int h,int w)
{

int i,j;
for(i=0;i<h;i++)
for(j=0;j<w;j++)

scanf ("%d",&p[i][j]);
}

Allocate array
of pointers

Allocate array of
integers for each

row

Elements accessed
like 2-D array elements.

21 July 2009 Programming and Data Structure 62

void print_data(int **p,int h,int w)
{

int i,j;
for(i=0;i<h;i++)
{
for(j=0;j<w;j++)

printf("%5d ",p[i][j]);
printf("\n");

}
}

2-D Array: Contd.
main()
{
int **p;
int M,N;

printf("Give M and N \n");
scanf("%d%d",&M,&N);
p=allocate(M,N);
read_data(p,M,N);
printf("\n The array read as \n");
print_data(p,M,N);

}

Give M and N
3 3
1 2 3
4 5 6
7 8 9

The array read as
1 2 3
4 5 6
7 8 9

21 July 2009 Programming and Data Structure 63

Linked List :: Basic Concepts

• A list refers to a set of items organized
sequentially.
– An array is an example of a list.

• The array index is used for accessing and manipulation of
array elements.

– Problems with array:
• The array size has to be specified at the beginning.
• Deleting an element or inserting an element may require

shifting of elements.

21 July 2009 Programming and Data Structure 64

Contd.

• A completely different way to represent a list:
– Make each item in the list part of a structure.
– The structure also contains a pointer or link to the

structure containing the next item.
– This type of list is called a linked list.

Structure 1

item

Structure 2

item

Structure 3

item

21 July 2009 Programming and Data Structure 65

Contd.

• Each structure of the list is called a node, and
consists of two fields:
– One containing the item.
– The other containing the address of the next item in

the list.

• The data items comprising a linked list need
not be contiguous in memory.
– They are ordered by logical links that are stored as

part of the data in the structure itself.
– The link is a pointer to another structure of the

same type.

21 July 2009 Programming and Data Structure 66

Contd.

• Such a structure can be represented as:
struct node
{

int item;
struct node *next;

} ;

• Such structures which contain a member field
pointing to the same structure type are called
self-referential structures.

item

node

next

21 July 2009 Programming and Data Structure 67

Contd.

• In general, a node may be represented as
follows:

struct node_name
{

type member1;
type member2;
………
struct node_name *next;

};

21 July 2009 Programming and Data Structure 68

Illustration

• Consider the structure:
struct stud
{

int roll;
char name[30];
int age;
struct stud *next;

};
• Also assume that the list consists of three nodes

n1, n2 and n3.
struct stud n1, n2, n3;

21 July 2009 Programming and Data Structure 69

Contd.

• To create the links between nodes, we can
write:

n1.next = &n2 ;
n2.next = &n3 ;
n3.next = NULL ; /* No more nodes follow */

• Now the list looks like:

n1 n2 n3

roll
name

age
next

21 July 2009 Programming and Data Structure 70

Example

#include <stdio.h>
struct stud
{

int roll;
char name[30];
int age;
struct stud *next;

};

main()
{

struct stud n1, n2, n3;
struct stud *p;

scanf (“%d %s %d”, &n1.roll,
n1.name, &n1.age);

scanf (“%d %s %d”, &n2.roll,
n2.name, &n2.age);

scanf (“%d %s %d”, &n3.roll,
n3.name, &n3.age);

n1.next = &n2 ;
n2.next = &n3 ;
n3.next = NULL ;

/* Now traverse the list and print
the elements */

p = n1 ; /* point to 1st element */
while (p != NULL)
{

printf (“\n %d %s %d”,
p->roll, p->name, p->age);
p = p->next;

}
}

	Pointers
	Introduction
	Basic Concept
	Contd.
	Contd.
	Contd.
	Accessing the Address of a Variable
	Contd.
	Example
	Pointer Declarations
	Contd.
	Things to Remember
	Accessing a Variable Through its Pointer
	Example 1
	Example 2
	Pointer Expressions
	Contd.
	Scale Factor
	Contd.
	Example: to find the scale factors
	Passing Pointers to a Function
	Example: passing arguments by value
	Example: passing arguments by reference
	scanf Revisited
	Example: Sort 3 integers
	Contd.
	sort3 as a function
	Contd.
	Pointers and Arrays
	Example
	Contd.
	Example: function to find average
	Structures Revisited
	Arrays of Structures
	Example: Sorting by Roll Numbers
	Pointers and Structures
	Example
	A Warning
	Structures and Functions
	Example: complex number addition
	Example: Alternative way using pointers
	Dynamic Memory Allocation
	Basic Idea
	Contd.
	Memory Allocation Process in C
	Contd.
	Memory Allocation Functions
	Allocating a Block of Memory
	Contd.
	Contd.
	Points to Note
	Example
	Releasing the Used Space
	Altering the Size of a Block
	Contd.
	Pointer to Pointer
	2-D Array Allocation
	2-D Array: Contd.
	Linked List :: Basic Concepts
	Contd.
	Contd.
	Contd.
	Contd.
	Illustration
	Contd.
	Example

