
21 July 2009 Programming and Data Structure 1

Arrays

21 July 2009 Programming and Data Structure 2

Basic Concept

• Many applications require multiple data items
that have common characteristics.
– In mathematics, we often express such groups of data

items in indexed form:
• x1, x2, x3, …, xn

• Why are arrays essential for some applications?
– Take an example.
– Finding the minimum of a set of numbers.

21 July 2009 Programming and Data Structure 3

if ((a <= b) && (a <= c))
min = a;

else
if (b <= c)

min = b;
else

min = c;

if ((a <= b) && (a <= c) && (a <= d))
min = a;

else
if ((b <= c) && (b <= d))

min = b;
else

if (c <= d)
min = c;

else
min = d;

3 numbers 4 numbers

21 July 2009 Programming and Data Structure 4

The Problem

• Suppose we have 10 numbers to handle.
• Or 20.
• Or 100.

• How to tackle this problem?
• Solution:

– Use arrays.

21 July 2009 Programming and Data Structure 5

Using Arrays

• All the data items constituting the group share
the same name.

int x[10];

• Individual elements are accessed by specifying
the index.

x[0] x[1] x[2] x[9]

X is a 10-element one
dimensional array

21 July 2009 Programming and Data Structure 6

Declaring Arrays

• Like variables, the arrays that are used in a
program must be declared before they are used.

• General syntax:
type array-name [size];

– type specifies the type of element that will be
contained in the array (int, float, char, etc.)

– size is an integer constant which indicates the
maximum number of elements that can be stored
inside the array.

• marks is an array containing a maximum of 5 integers.
int marks[5];

21 July 2009 Programming and Data Structure 7

• Examples:
int x[10];
char line[80];
float points[150];
char name[35];

• If we are not sure of the exact size of the array,
we can define an array of a large size.

int marks[50];

though in a particular run we may only be
using, say, 10 elements.

21 July 2009 Programming and Data Structure 8

How an array is stored in memory?

• Starting from a given memory location, the
successive array elements are allocated space in
consecutive memory locations.

• Let
x: starting address of the array in memory
k: number of bytes allocated per array element

– Element a[i] :: allocated memory location at
address x + i*k

• First array index assumed to start at zero.

Array a
x x+k x+2k

21 July 2009 Programming and Data Structure 9

Accessing Array Elements

• A particular element of the array can be
accessed by specifying two things:
– Name of the array.
– Index (relative position) of the element in the array.

• In C, the index of an array starts from zero.
• Example:

– An array is defined as int x[10];
– The first element of the array x can be accessed as

x[0], fourth element as x[3], tenth element as x[9],
etc.

21 July 2009 Programming and Data Structure 10

Contd.

• The array index must evaluate to an integer
between 0 and n-1 where n is the number of
elements in the array.

a[x+2] = 25;
b[3*x-y] = a[10-x] + 5;

21 July 2009 Programming and Data Structure 11

A Warning

• In C, while accessing array elements, array
bounds are not checked.

• Example:
int marks[5];
:
:
marks[8] = 75;

– The above assignment would not necessarily cause
an error.

– Rather, it may result in unpredictable program
results.

21 July 2009 Programming and Data Structure 12

Initialization of Arrays
• General form:

type array_name[size] = { list of values };

• Examples:
int marks[5] = {72, 83, 65, 80, 76};
char name[4] = {‘A’, ‘m’, ‘i’, ‘t’};

• Some special cases:
– If the number of values in the list is less than the

number of elements, the remaining elements are
automatically set to zero.

float total[5] = {24.2, -12.5, 35.1};
total[0]=24.2, total[1]=-12.5, total[2]=35.1, total[3]=0,
total[4]=0

21 July 2009 Programming and Data Structure 13

Contd.

– The size may be omitted. In such cases the compiler
automatically allocates enough space for all
initialized elements.

int flag[] = {1, 1, 1, 0};
char name[] = {‘A’, ‘m’, ‘i’, ‘t’};

21 July 2009 Programming and Data Structure 14

Example 1: Find the minimum of a set of 10 numbers

#include <stdio.h>
main()
{

int a[10], i, min;
printf(“Give 10 values \n”);
for (i=0; i<10; i++)

scanf (“%d”, &a[i]);

min = 99999;
for (i=0; i<10; i++)
{

if (a[i] < min)
min = a[i];

}
printf (“\n Minimum is %d”, min);

}

Array
declaration

Accessing
Array Element

Reading
Array Element

21 July 2009 Programming and Data Structure 15

#include <stdio.h>
#define size 10

main()
{

int a[size], i, min;
printf(“Give 10 values \n”);
for (i=0; i<size; i++)

scanf (“%d”, &a[i]);

min = 99999;
for (i=0; i<size; i++)
{

if (a[i] < min)
min = a[i];

}
printf (“\n Minimum is %d”, min);

}

Alternate
Version 1

Change only one
line to change the

problem size

21 July 2009 Programming and Data Structure 16

#include <stdio.h>

main()
{

int a[100], i, min, n;

printf(“Give number of elements (n) \n”);
scanf (“%d”, &n); /* Number of elements */

printf(“Input all n integers \n”);
for (i=0; i<n; i++)

scanf (“%d”, &a[i]);

min = 99999;
for (i=0; i<n; i++)
{

if (a[i] < min)
min = a[i];

}
printf (“\n Minimum is %d”, min);

}

Alternate
Version 2

Define an array of
large size and use
only the required

number of elements

21 July 2009 Programming and Data Structure 17

Example 2:
Computing gpa

#include <stdio.h>
#define nsub 6

main()
{

int grade_pt[nsub], cred[nsub], i,
gp_sum=0, cred_sum=0, gpa;

printf(“Input gr. points and credits for six subjects \n”);
for (i=0; i<nsub; i++)

scanf (“%d %d”, &grade_pt[i], &cred[i]);

for (i=0; i<nsub; i++)
{

gp_sum += grade_pt[i] * cred[i];
cred_sum += cred[i];

}
gpa = gp_sum / cred_sum;
printf (“\n Grade point average: is %d”, gpa);

}

Handling two arrays
at the same time

21 July 2009 Programming and Data Structure 18

Things you cannot do

• You cannot
– use = to assign one array variable to another

a = b; /* a and b are arrays */
– use == to directly compare array variables

if (a = = b) ………..
– directly scanf or printf arrays

printf (“……”, a);

21 July 2009 Programming and Data Structure 19

How to copy the elements of one array to
another?

• By copying individual elements
int a[25],b[25];
for (j=0; j<25; j++)

a[j] = b[j];

21 July 2009 Programming and Data Structure 20

How to read the elements of an array?

• By reading them one element at a time
int a[25];
for (j=0; j<25; j++)

scanf (“%f”, &a[j]);

• The ampersand (&) is necessary.
• The elements can be entered all in one line or in

different lines.

21 July 2009 Programming and Data Structure 21

How to print the elements of an array?

• By printing them one element at a time.
for (j=0; j<25; j++)

printf (“\n %f”, a[j]);
– The elements are printed one per line.

printf (“\n”);
for (j=0; j<25; j++)

printf (“ %f”, a[j]);
– The elements are printed all in one line (starting

with a new line).

21 July 2009 Programming and Data Structure 22

Character String

21 July 2009 Programming and Data Structure 23

Introduction

• A string is an array of characters.
– Individual characters are stored in memory in

ASCII code.
– A string is represented as a sequence of characters

terminated by the null (‘\0’) character.

‘\0’leH ol“Hello”

21 July 2009 Programming and Data Structure 24

Declaring String Variables

• A string is declared like any other array:
char string-name [size];

– size determines the number of characters in
string_name.

• When a character string is assigned to a
character array, it automatically appends the
null character (‘\0’) at the end of the string.
– size should be equal to the number of characters in

the string plus one.

21 July 2009 Programming and Data Structure 25

Examples

char name[30];
char city[15];
char dob[11];

• A string may be initialized at the time of
declaration.

char city[15] = “Calcutta”;
char city[15] = {‘C’, ‘a’, ‘l’, ‘c’, ‘u’, ‘t’, ‘t’, ‘a’};

char dob[] = “12-10-1975”;

Equivalent

21 July 2009 Programming and Data Structure 26

Reading Strings from the Keyboard

• Two different cases will be considered:
– Reading words
– Reading an entire line

21 July 2009 Programming and Data Structure 27

Reading “words”

• scanf can be used with the “%s” format
specification.

char name[30];
:
:
scanf (“%s”, name);

– The ampersand (&) is not required before the
variable name with “%s”.

– The problem here is that the string is taken to be
upto the first white space (blank, tab, carriage
return, etc.)

• If we type “Rupak Biswas”
• name will be assigned the string “Rupak”

21 July 2009 Programming and Data Structure 28

Reading a “line of text”

• In many applications, we need to read in an
entire line of text (including blank spaces).

• We can use the getchar() function for the
purpose.

21 July 2009 Programming and Data Structure 29

char line[81], ch;
int c=0;
:
:
do

{
ch = getchar();
line[c] = ch;
c++;

}
while (ch != ‘\n’);

c = c – 1;
line[c] = ‘\0’;

Read characters
until CR (‘\n’) is
encountered

Make it a valid
string

21 July 2009 Programming and Data Structure 30

Reading a line :: Alternate Approach

char line[81];
:
:
scanf (“%[ABCDEFGHIJKLMNOPQRSTUVWXYZ]”, line);

char line[81];
:
:
scanf (“%[^\n]”, line);

Reads a string containing uppercase
characters and blank spaces

Reads a string containing any characters

21 July 2009 Programming and Data Structure 31

Writing Strings to the Screen

• We can use printf with the “%s” format
specification.

char name[50];
:
:
printf (“\n %s”, name);

21 July 2009 Programming and Data Structure 32

Processing Character Strings

• There exists a set of C library functions for
character string manipulation.
– strcpy :: string copy
– strlen :: string length
– strcmp :: string comparison
– strtcat :: string concatenation

• It is required to include the following
#include <string.h>

21 July 2009 Programming and Data Structure 33

strcpy()

• Works very much like a string assignment
operator.

strcpy (string1, string2);
– Assigns the contents of string2 to string1.

• Examples:
strcpy (city, “Calcutta”);
strcpy (city, mycity);

• Warning:
– Assignment operator do not work for strings.

city = “Calcutta”; INVALID

21 July 2009 Programming and Data Structure 34

strlen()

• Counts and returns the number of characters
in a string.

len = strlen (string); /* Returns an integer */

– The null character (‘\0’) at the end is not counted.
– Counting ends at the first null character.

21 July 2009 Programming and Data Structure 35

char city[15];
int n;
:
:
strcpy (city, “Calcutta”);
n = strlen (city);

n is assigned 8

21 July 2009 Programming and Data Structure 36

strcmp()

• Compares two character strings.
int strcmp (string1, string2);

– Compares the two strings and returns 0 if they are
identical; non-zero otherwise.

• Examples:
if (strcmp (city, “Delhi”) = = 0)
{ ……. }

if (strcmp (city1, city2) ! = 0)
{ ……. }

21 July 2009 Programming and Data Structure 37

strcat()

• Joins or concatenates two strings together.
strcat (string1, string2);

– string2 is appended to the end of string1.
– The null character at the end of string1 is removed,

and string2 is joined at that point.

• Example:
strcpy (name1, “Amit “);
strcpy (name2, “Roy“);
strcat (name1, name2);

‘\0’yoR

‘\0’imA t

‘\0’yoR

imA t

21 July 2009 Programming and Data Structure 38

Example
/* Read a line of text and count the number of uppercase letters */
#include <stdio.h>
#include <string.h>
main()
{

char line[81];
int i, n, count=0;
printf(“Input the line \n”);
scanf (“%[^\n]”, line);
n = strlen (line);
for (i=0; i<n; i++)

{
if (isupper (line[i]))

count++;
}

printf (“\n The number of uppercase letters in the string %s is %d”,
line, count);

}

Include header for string processing

Character Array for String

Reading a line of text

Computing string length

Checking whether a character is Uppercase

21 July 2009 Programming and Data Structure 39

Two Dimensional Arrays

• We have seen that an array variable can store a
list of values.

• Many applications require us to store a table of
values.

75 82 90 65 76
68 75 80 70 72
88 74 85 76 80
50 65 68 40 70

Student 1

Student 2

Student 3

Student 4

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

21 July 2009 Programming and Data Structure 40

Contd.

• The table contains a total of 20 values, five in
each line.
– The table can be regarded as a matrix consisting of

four rows and five columns.

• C allows us to define such tables of items by
using two-dimensional arrays.

21 July 2009 Programming and Data Structure 41

Declaring 2-D Arrays

• General form:
type array_name [row_size][column_size];

• Examples:
int marks[4][5];
float sales[12][25];
double matrix[100][100];

21 July 2009 Programming and Data Structure 42

Accessing Elements of a 2-D Array

• Similar to that for 1-D array, but use two
indices.
– First indicates row, second indicates column.
– Both the indices should be expressions which

evaluate to integer values.

• Examples:
x[m][n] = 0;
c[i][k] += a[i][j] * b[j][k];
a = sqrt (a[j*3][k]);

21 July 2009 Programming and Data Structure 43

How is a 2-D array is stored in memory?

• Starting from a given memory location, the
elements are stored row-wise in consecutive
memory locations.

• x: starting address of the array in memory
• c: number of columns
• k: number of bytes allocated per array element

– a[i][j] is allocated memory location at
address x + (i * c + j) * k

a[0]0] a[0][1] a[0]2] a[0][3] a[1][0] a[1][1] a[1][2] a[1][3] a[2][0] a[2][1] a[2][2] a[2][3]

Row 0 Row 1 Row 2

21 July 2009 Programming and Data Structure 44

How to read the elements of a 2-D array?

• By reading them one element at a time
for (i=0; i<nrow; i++)

for (j=0; j<ncol; j++)
scanf (“%f”, &a[i][j]);

• The ampersand (&) is necessary.
• The elements can be entered all in one line or in

different lines.

21 July 2009 Programming and Data Structure 45

How to print the elements of a 2-D array?

• By printing them one element at a time.
for (i=0; i<nrow; i++)

for (j=0; j<ncol; j++)
printf (“\n %f”, a[i][j]);

– The elements are printed one per line.

for (i=0; i<nrow; i++)
for (j=0; j<ncol; j++)

printf (“%f”, a[i][j]);
– The elements are all printed on the same line.

21 July 2009 Programming and Data Structure 46

Contd.

for (i=0; i<nrow; i++)
{

printf (“\n”);
for (j=0; j<ncol; j++)

printf (“%f ”, a[i][j]);
}

– The elements are printed nicely in matrix form.

• How to print two matrices side by side?

21 July 2009 Programming and Data Structure 47

Example: Matrix Addition

#include <stdio.h>

main()
{

int a[100][100], b[100][100],
c[100][100], p, q, m, n;

scanf (“%d %d”, &m, &n);

for (p=0; p<m; p++)
for (q=0; q<n; q++)

scanf (“%d”, &a[p][q]);

for (p=0; p<m; p++)
for (q=0; q<n; q++)

scanf (“%d”, &b[p][q]);

for (p=0; p<m; p++)
for (q=0; q<n; q++)

c[p]q] = a[p][q] + b[p][q];

for (p=0; p<m; p++)
{

printf (“\n”);
for (q=0; q<n; q++)

printf (“%f ”, a[p][q]);
}

}

21 July 2009 Programming and Data Structure 48

Passing Arrays to a Function
• An array name can be used as an argument to a

function.
– Permits the entire array to be passed to the function.
– Array name is passed as the parameter, which is effectively the

address of the first element.

• Rules:
– The array name must appear by itself as argument, without

brackets or subscripts.
– The corresponding formal argument is written in the same

manner.
• Declared by writing the array name with a pair of empty

brackets.
• Dimension or required number of elements to be passed as

a separate parameter.

21 July 2009 Programming and Data Structure 49

Example: Average of numbers

#include <stdio.h>

float avg(float [], int);

main()
{
float a[]={4.0, 5.0, 6.0, 7.0};

printf("%f \n", avg(a,4));
}

float avg (float x[], int n)
{
float sum=0;
int i;

for(i=0; i<n; i++)
sum+=x[i];

return(sum/(float) n);
}

5.5000

prototype

Array name passed

Array as parameter

Number of
Elements used

21 July 2009 Programming and Data Structure 50

The Actual Mechanism

• When an array is passed to a function, the
values of the array elements are not passed to
the function.
– The array name is interpreted as the address of the

first array element.
– The formal argument therefore becomes a pointer to

the first array element.
– When an array element is accessed inside the

function, the address is calculated using the formula
stated before.

– Changes made inside the function are thus also
reflected in the calling program.

21 July 2009 Programming and Data Structure 51

Contd.

• Passing parameters in this way is called
call-by-reference.

• Normally parameters are passed in C using
call-by-value.

• Basically what it means?
– If a function changes the values of array elements,

then these changes will be made to the original
array that is passed to the function.

– This does not apply when an individual element is
passed on as argument.

21 July 2009 Programming and Data Structure 52

Example: Minimum of a set of numbers

#include <stdio.h>

main()
{

int a[100], i, n;

scanf (“%d”, &n);
for (i=0; i<n; i++)

scanf (“%d”, &a[i]);

printf (“\n Minimum is %d”,
minimum (a, n));

}

int minimum (x, size)
int x[], size;
{

int i, min = 99999;

for (i=0; i<size; i++)
if (min < a[i])

min = a[i];

return (min);
}

21 July 2009 Programming and Data Structure 53

Passing 2-D Arrays

• Similar to that for 1-D arrays.
– The array contents are not copied into the function.
– Rather, the address of the first element is passed.

• For calculating the address of an element in a
2-D array, we need:
– The starting address of the array in memory.
– Number of bytes per element.
– Number of columns in the array.

• The above three pieces of information must be
known to the function.

21 July 2009 Programming and Data Structure 54

Example Usage

#include <stdio.h>

main()
{

int a[15][25], b[15]25];
:
:
add (a, b, 15, 25);
:

}

void add (x, y, rows, cols)
int x[][25], y[][25];
int rows, cols;
{

:
}

We can also write

int x[15][25], y[15][25];

Number of columns

21 July 2009 Programming and Data Structure 55

Example: Transpose of a matrix

void transpose (int x[][100], int n)
{

int p, q;

for (p=0; p<n; p++)
for (q=0; q<n; q++)

{
t = x[p][q];
x[p][q] = x[q][p];
x[q][p] = t;

}
}

10 20 30

40 50 60

70 80 90

10 20 30

40 50 60

70 80 90

transpose(a,3)

a[100][100]

21 July 2009 Programming and Data Structure 56

The Correct Version

void transpose (int x[][100], n)
{

int p, q;

for (p=0; p<n; p++)
for (q=p; q<n; q++)

{
t = x[p][q];
x[p][q] = x[q][p];
x[q][p] = t;

}
}

10 20 30

40 50 60

70 80 90

10 40 70

20 50 80

30 60 90

21 July 2009 Programming and Data Structure 57

Some Exercise Problems to Try Out

• Find the mean and standard deviation of a set
of n numbers.

• A shop stores n different types of items. Given
the number of items of each type sold during a
given month, and the corresponding unit
prices, compute the total monthly sales.

• Multiply two matrices of orders mxn and nxp
respectively.

	Arrays
	Basic Concept
	The Problem
	Using Arrays
	Declaring Arrays
	How an array is stored in memory?
	Accessing Array Elements
	Contd.
	A Warning
	Initialization of Arrays
	Contd.
	Example 1: Find the minimum of a set of 10 numbers
	Example 2:�Computing gpa
	Things you cannot do
	How to copy the elements of one array to another?
	How to read the elements of an array?
	How to print the elements of an array?
	Character String
	Introduction
	Declaring String Variables
	Examples
	Reading Strings from the Keyboard
	Reading “words”
	Reading a “line of text”
	Reading a line :: Alternate Approach
	Writing Strings to the Screen
	Processing Character Strings
	strcpy()
	strlen()
	strcmp()
	strcat()
	Example
	Two Dimensional Arrays
	Contd.
	Declaring 2-D Arrays
	Accessing Elements of a 2-D Array
	How is a 2-D array is stored in memory?
	How to read the elements of a 2-D array?
	How to print the elements of a 2-D array?
	Contd.
	Example: Matrix Addition
	Passing Arrays to a Function
	Example: Average of numbers
	The Actual Mechanism
	Contd.
	Example: Minimum of a set of numbers
	Passing 2-D Arrays
	Example Usage
	Example: Transpose of a matrix
	The Correct Version
	Some Exercise Problems to Try Out

