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Arrays
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Basic Concept

• Many applications require multiple data items 
that have common characteristics.
– In mathematics, we often express such groups of data 

items in indexed form:
• x1, x2, x3, …, xn

• Why are arrays essential for some applications?
– Take an example.
– Finding the minimum of a set of numbers.
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if   ((a <= b) && (a <= c))
min = a;

else
if   (b <= c)

min = b;
else

min = c;

if   ((a <= b) && (a <= c) && (a <= d))
min = a;

else
if   ((b <= c) && (b <= d))

min = b;
else

if  (c <= d)
min = c;

else
min = d;

3 numbers 4 numbers
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The Problem

• Suppose we have 10 numbers to handle.
• Or 20.
• Or 100.

• How to tackle this problem?
• Solution:

– Use arrays.



21 July 2009 Programming and Data Structure 5

Using Arrays

• All the data items constituting the group share 
the same name.

int  x[10];

• Individual elements are accessed by specifying 
the index.

x[0] x[1] x[2] x[9]

X is a 10-element one 
dimensional array
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Declaring Arrays

• Like variables, the arrays that are used in a 
program must be declared before they are used.

• General syntax:
type array-name [size];

– type specifies the type of element that will be 
contained in the array (int, float, char, etc.)

– size is an integer constant which indicates the 
maximum number of elements that can be stored 
inside the array.

• marks is an array containing a maximum of 5 integers.
int   marks[5];
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• Examples:
int  x[10];
char  line[80];
float  points[150];
char  name[35];

• If we are not sure of the exact size of the array, 
we can define an array of a large size.

int   marks[50];

though in a particular run we may only be 
using, say, 10 elements.
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How an array is stored in memory?

• Starting from a given memory location, the 
successive array elements are allocated space in 
consecutive memory locations.

• Let
x: starting address of the array in memory
k: number of bytes allocated per array element

– Element a[i] :: allocated memory location at  
address  x + i*k

• First array index assumed to start at zero.

Array a
x x+k x+2k
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Accessing Array Elements

• A particular element of the array can be 
accessed by specifying two things:
– Name of the array.
– Index (relative position) of the element in the array.

• In C, the index of an array starts from zero.
• Example:

– An array is defined as    int  x[10];
– The first element of the array x can be accessed as 

x[0], fourth element as x[3], tenth element as x[9], 
etc.
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Contd.

• The array index must evaluate to an integer 
between 0 and n-1 where n is the number of 
elements in the array.

a[x+2] = 25;
b[3*x-y] = a[10-x] + 5;
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A Warning

• In C, while accessing array elements, array 
bounds are not checked.

• Example:
int   marks[5];
:
:
marks[8] = 75;

– The above assignment would not necessarily cause 
an error.

– Rather, it may result in unpredictable program 
results.
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Initialization of Arrays
• General form:

type   array_name[size]  =  { list of values };

• Examples:
int  marks[5] = {72, 83, 65, 80, 76};
char  name[4] = {‘A’, ‘m’, ‘i’, ‘t’};

• Some special cases:
– If the number of values in the list is less than the 

number of elements, the remaining elements are 
automatically set to zero.

float  total[5] = {24.2, -12.5, 35.1};
total[0]=24.2, total[1]=-12.5, total[2]=35.1, total[3]=0, 
total[4]=0
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Contd.

– The size may be omitted. In such cases the compiler 
automatically allocates enough space for all 
initialized elements.

int   flag[] = {1, 1, 1, 0};
char  name[] = {‘A’, ‘m’, ‘i’, ‘t’};
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Example 1:  Find the minimum of a set of 10 numbers

#include  <stdio.h>
main()
{

int  a[10], i, min;
printf(“Give 10 values \n”);
for  (i=0; i<10; i++)

scanf (“%d”, &a[i]);

min = 99999;
for  (i=0; i<10; i++)
{

if  (a[i] < min)
min = a[i];

}
printf (“\n Minimum is %d”, min);

}

Array
declaration

Accessing 
Array Element

Reading
Array Element
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#include  <stdio.h>
#define   size   10

main()
{

int  a[size], i, min;
printf(“Give 10 values \n”);
for  (i=0; i<size; i++)

scanf (“%d”, &a[i]);

min = 99999;
for  (i=0; i<size; i++)
{

if  (a[i] < min)
min = a[i];

}
printf (“\n Minimum is %d”, min);

}

Alternate
Version 1

Change only one
line to change the

problem size
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#include  <stdio.h>

main()
{

int  a[100], i, min, n;

printf(“Give number of elements (n) \n”);
scanf (“%d”, &n);  /* Number of elements */

printf(“Input all n integers \n”);
for  (i=0; i<n; i++)

scanf (“%d”, &a[i]);

min = 99999;
for  (i=0; i<n; i++)
{

if  (a[i] < min)
min = a[i];

}
printf (“\n Minimum is %d”, min);

}

Alternate
Version 2

Define an array of
large size and use
only the required

number of elements
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Example 2:
Computing gpa 

#include  <stdio.h>
#define  nsub  6

main()
{

int  grade_pt[nsub], cred[nsub], i, 
gp_sum=0, cred_sum=0, gpa;

printf(“Input gr. points and credits for six subjects \n”);
for  (i=0; i<nsub; i++)

scanf (“%d %d”, &grade_pt[i], &cred[i]);

for  (i=0; i<nsub; i++)
{

gp_sum += grade_pt[i] * cred[i];
cred_sum += cred[i];

}
gpa = gp_sum / cred_sum;
printf (“\n Grade point average:  is %d”, gpa);

}

Handling two arrays
at the same time
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Things you cannot do

• You cannot
– use = to assign one array variable to another

a = b;   /* a and b are arrays */
– use == to directly compare array variables

if  (a = = b)  ………..
– directly scanf or printf arrays

printf (“……”, a);
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How to copy the elements of one array to 
another?

• By copying individual elements
int a[25],b[25];   
for  (j=0; j<25; j++)

a[j] = b[j];
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How to read the elements of an array?

• By reading them one element at a time
int a[25];    
for  (j=0; j<25; j++)

scanf  (“%f”, &a[j]);

• The ampersand (&) is necessary.
• The elements can be entered all in one line or in 

different lines.
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How to print the elements of an array?

• By printing them one element at a time.
for  (j=0; j<25; j++)

printf  (“\n %f”, a[j]);
– The elements are printed one per line.

printf  (“\n”);
for  (j=0; j<25; j++)

printf (“ %f”, a[j]);
– The elements are printed all in one line (starting 

with a new line).
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Character String
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Introduction

• A string is an array of characters.
– Individual characters are stored in memory in 

ASCII code.
– A string is represented as a sequence of characters 

terminated by the null (‘\0’) character.

‘\0’leH ol“Hello”  
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Declaring String Variables

• A string is declared like any other array:
char  string-name [size];

– size determines the number of characters in 
string_name.

• When a character string is assigned to a 
character array, it automatically appends the 
null character (‘\0’) at the end of the string.
– size should be equal to the number of characters in 

the string plus one.
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Examples

char   name[30];
char   city[15];
char   dob[11];

• A string may be initialized at the time of 
declaration.

char   city[15] = “Calcutta”;
char   city[15] = {‘C’, ‘a’, ‘l’, ‘c’, ‘u’, ‘t’, ‘t’, ‘a’};

char   dob[] = “12-10-1975”;

Equivalent
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Reading Strings from the Keyboard

• Two different cases will be considered:
– Reading words
– Reading an entire line
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Reading “words”

• scanf can be used with the “%s” format 
specification.

char   name[30];
:
:
scanf (“%s”, name);

– The ampersand (&) is not required before the 
variable name with “%s”.

– The problem here is that the string is taken to be 
upto the first white space (blank, tab, carriage 
return, etc.)

• If we type  “Rupak Biswas”
• name will be assigned the string “Rupak”
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Reading a “line of text”

• In many applications, we need to read in an 
entire line of text (including blank spaces).

• We can use the getchar() function for the 
purpose.
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char   line[81], ch;
int  c=0;
:
:
do

{
ch = getchar();
line[c] = ch;
c++;

}
while  (ch != ‘\n’);

c = c – 1;
line[c] = ‘\0’;

Read characters 
until CR (‘\n’) is 
encountered

Make it a valid 
string
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Reading a line :: Alternate Approach

char   line[81];
:
:
scanf  (“%[ ABCDEFGHIJKLMNOPQRSTUVWXYZ]”, line);

char   line[81];
:
:
scanf  (“%[^\n]”, line);

Reads a string containing uppercase
characters and blank spaces

Reads a string containing any characters
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Writing Strings to the Screen

• We can use printf with the “%s” format 
specification.

char name[50];
:
:    
printf (“\n %s”, name);
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Processing Character Strings

• There exists a set of C library functions for 
character string manipulation.
– strcpy  ::  string copy
– strlen   ::  string length
– strcmp ::  string comparison
– strtcat  ::  string concatenation

• It is required to include the following
#include  <string.h>
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strcpy()

• Works very much like a string assignment 
operator.

strcpy  (string1, string2);
– Assigns the contents of string2 to string1.

• Examples:
strcpy  (city, “Calcutta”);
strcpy  (city, mycity);

• Warning:
– Assignment operator do not work for strings.

city  =  “Calcutta”;   INVALID
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strlen()

• Counts and returns the number of characters 
in a string.

len  =  strlen (string); /* Returns an integer */

– The null character (‘\0’) at the end is not counted.
– Counting ends at the first null character.
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char  city[15];
int  n;
:
:
strcpy (city, “Calcutta”);
n = strlen (city);

n is assigned 8
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strcmp()

• Compares two character strings.
int  strcmp (string1, string2);

– Compares the two strings and returns 0 if they are 
identical; non-zero otherwise.

• Examples:
if   (strcmp (city, “Delhi”) = = 0)
{  …….  }

if  (strcmp (city1, city2) ! = 0)
{ ……. }
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strcat()

• Joins or concatenates two strings together.
strcat  (string1, string2);

– string2 is appended to the end of string1.
– The null character at the end of string1 is removed, 

and string2 is joined at that point.

• Example:
strcpy (name1, “Amit “);
strcpy (name2, “Roy“);
strcat  (name1, name2);

‘\0’yoR

‘\0’imA t

‘\0’yoR

imA t
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Example 
/* Read a line of text and count the number of uppercase letters */
#include  <stdio.h>
#include  <string.h>
main()
{

char  line[81];
int  i, n, count=0;
printf(“Input the line \n”);
scanf (“%[^\n]”, line);
n = strlen (line);
for  (i=0; i<n; i++)

{
if  (isupper (line[i]))

count++;
}

printf (“\n The number of uppercase letters in the string %s is %d”,
line, count);

}

Include header for string processing

Character Array for String

Reading a line of text

Computing string length

Checking whether a character is Uppercase
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Two Dimensional Arrays

• We have seen that an array variable can store a 
list of values.

• Many applications require us to store a table of 
values.

75 82 90 65 76
68 75 80 70 72
88 74 85 76 80
50 65 68 40 70

Student 1

Student 2

Student 3

Student 4

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5
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Contd.

• The table contains a total of 20 values, five in 
each line.
– The table can be regarded as a matrix consisting of 

four rows and five columns.

• C allows us to define such tables of items by 
using two-dimensional arrays.
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Declaring 2-D Arrays

• General form:
type   array_name [row_size][column_size];

• Examples:
int  marks[4][5];
float  sales[12][25];
double  matrix[100][100];
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Accessing Elements of a 2-D Array

• Similar to that for 1-D array, but use two 
indices.
– First indicates row, second indicates column.
– Both the indices should be expressions which 

evaluate to integer values.

• Examples:
x[m][n] = 0;
c[i][k] += a[i][j] * b[j][k];
a = sqrt (a[j*3][k]); 
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How is a 2-D array is stored in memory?

• Starting from a given memory location, the 
elements are stored row-wise in consecutive 
memory locations.

• x: starting address of the array in memory
• c: number of columns
• k: number of bytes allocated per array element

– a[i][j] is allocated memory location at  
address  x + (i * c + j) * k

a[0]0] a[0][1] a[0]2] a[0][3] a[1][0] a[1][1] a[1][2] a[1][3] a[2][0] a[2][1] a[2][2] a[2][3] 

Row 0 Row 1 Row 2
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How to read the elements of a 2-D array?

• By reading them one element at a time
for  (i=0; i<nrow; i++)

for  (j=0; j<ncol; j++)
scanf  (“%f”, &a[i][j]);

• The ampersand (&) is necessary.
• The elements can be entered all in one line or in 

different lines.
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How to print the elements of a 2-D array?

• By printing them one element at a time.
for  (i=0; i<nrow; i++) 

for  (j=0; j<ncol; j++)
printf  (“\n %f”, a[i][j]);

– The elements are printed one per line.

for  (i=0; i<nrow; i++) 
for  (j=0; j<ncol; j++)

printf  (“%f”, a[i][j]);
– The elements are all printed on the same line.
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Contd.

for  (i=0; i<nrow; i++)
{

printf  (“\n”);
for  (j=0; j<ncol; j++)

printf (“%f   ”, a[i][j]);
}

– The elements are printed nicely in matrix form.

• How to print two matrices side by side?
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Example: Matrix Addition

#include  <stdio.h>

main()
{

int  a[100][100], b[100][100],
c[100][100], p, q, m, n;

scanf (“%d %d”, &m, &n); 

for  (p=0; p<m; p++)
for  (q=0; q<n; q++)

scanf (“%d”, &a[p][q]);

for  (p=0; p<m; p++)
for  (q=0; q<n; q++)

scanf (“%d”, &b[p][q]);

for  (p=0; p<m; p++)
for  (q=0; q<n; q++)

c[p]q] = a[p][q] + b[p][q];

for  (p=0; p<m; p++)
{

printf  (“\n”);
for  (q=0; q<n; q++)

printf (“%f   ”, a[p][q]);
}

}



21 July 2009 Programming and Data Structure 48

Passing Arrays to a Function
• An array name can be used as an argument to a 

function.
– Permits the entire array to be passed to the function.
– Array name is passed as the parameter, which is effectively the 

address of the first element.

• Rules:
– The array name must appear by itself as argument, without 

brackets or subscripts.
– The corresponding formal argument is written in the same 

manner.
• Declared by writing the array name with a pair of empty 

brackets.
• Dimension or required number of elements to be passed as 

a separate parameter.
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Example: Average of numbers

#include <stdio.h>

float avg(float [], int );

main()
{
float a[]={4.0, 5.0, 6.0, 7.0};

printf("%f \n", avg(a,4) );
}

float  avg (float x[], int n)
{
float sum=0;
int i;

for(i=0; i<n; i++)
sum+=x[i];

return(sum/(float) n);
}

5.5000

prototype

Array name passed

Array as parameter 

Number of
Elements used
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The Actual Mechanism

• When an array is passed to a function, the 
values of the array elements are not passed to 
the function.
– The array name is interpreted as the address of the 

first array element.
– The formal argument therefore becomes a pointer to 

the first array element.
– When an array element is accessed inside the 

function, the address is calculated using the formula 
stated before.

– Changes made inside the function are thus also 
reflected in the calling program.
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Contd.

• Passing parameters in this way is called 
call-by-reference.

• Normally parameters are passed in C using
call-by-value.

• Basically what it means?
– If a function changes the values of array elements, 

then these changes will be made to the original 
array that is passed to the function.

– This does not apply when an individual element is 
passed on as argument.
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Example: Minimum of a set of numbers

#include  <stdio.h>

main()
{

int  a[100], i, n;

scanf (“%d”, &n);  
for  (i=0; i<n; i++)

scanf (“%d”, &a[i]);

printf (“\n Minimum is %d”, 
minimum (a, n));

}

int  minimum (x, size)
int  x[], size;
{

int  i, min = 99999;

for  (i=0; i<size; i++)
if  (min < a[i])

min = a[i];

return (min);
}
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Passing 2-D Arrays

• Similar to that for 1-D arrays.
– The array contents are not copied into the function.
– Rather, the address of the first element is passed.

• For calculating the address of an element in a 
2-D array, we need:
– The starting address of the array in memory.
– Number of bytes per element.
– Number of columns in the array.

• The above three pieces of information must be 
known to the function.
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Example Usage

#include  <stdio.h>

main()
{

int  a[15][25],  b[15]25];
:
:
add (a, b, 15, 25);
:

}

void  add (x, y, rows, cols)
int  x[][25], y[][25];
int  rows, cols;
{

:
}

We can also write

int  x[15][25], y[15][25];

Number of columns
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Example: Transpose of a matrix

void  transpose (int x[][100], int n)
{

int  p, q;

for  (p=0; p<n; p++)
for  (q=0; q<n; q++)

{
t = x[p][q];
x[p][q] = x[q][p];
x[q][p] = t;

}
}

10 20   30

40 50   60

70   80   90

10 20   30

40 50   60

70   80   90

transpose(a,3)

a[100][100]
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The Correct Version

void  transpose (int x[][100], n)
{

int  p, q;

for  (p=0; p<n; p++)
for  (q=p; q<n; q++)

{
t = x[p][q];
x[p][q] = x[q][p];
x[q][p] = t;

}
}

10 20   30

40 50   60

70   80   90

10 40   70

20  50   80

30  60   90
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Some Exercise Problems to Try Out

• Find the mean and standard deviation of a set 
of n numbers.

• A shop stores n different types of items. Given 
the number of items of each type sold during a 
given month, and the corresponding unit 
prices, compute the total monthly sales.

• Multiply two matrices of orders mxn and nxp
respectively.
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