
Autumn Semester 2009 Programming and Data Structure 1

Control Statements

Autumn Semester 2009 Programming and Data Structure 2

What do they do?

• Allow different sets of instructions to be
executed depending on the outcome of a
logical test.
– Whether TRUE or FALSE.
– This is called branching.

• Some applications may also require that a
set of instructions be executed repeatedly,
possibly again based on some condition.
– This is called looping.

Autumn Semester 2009 Programming and Data Structure 3

How do we specify the conditions?

• Using relational operators.
– Four relation operators: <, <=, >, >=
– Two equality operations: ==, !=

• Using logical operators / connectives.
– Two logical connectives: &&, | |
– Unary negation operator: !

Autumn Semester 2009 Programming and Data Structure 4

Examples

count <= 100
(math+phys+chem)/3 >= 60
(sex==‘M’) && (age>=21)
(marks>=80) && (marks<90)
(balance>5000) | | (no_of_trans>25)
! (grade==‘A’)
! ((x>20) && (y<16))

Autumn Semester 2009 Programming and Data Structure 5

The conditions evaluate to …

• Zero
– Indicates FALSE.

• Non-zero
– Indicates TRUE.
– Typically the condition TRUE is represented by

the value ‘1’.

Autumn Semester 2009 Programming and Data Structure 6

Branching: The if Statement

• Diamond symbol (decision symbol) -
indicates decision is to be made.
– Contains an expression that can be TRUE or

FALSE.
– Test the condition, and follow appropriate path.

• Single-entry / single-exit structure.
• General syntax:

if (condition) { …….. }
– If there is a single statement in the block, the

braces can be omitted.

Autumn Semester 2009 Programming and Data Structure 7

The if Selection Structure

true

false

grade >= 60 print “Passed”

A decision can be made on
any expression.

zero - false

nonzero - true

if (grade>=60)
printf(“Passed \n”);

Autumn Semester 2009 Programming and Data Structure 8

Example

#include <stdio.h>
main()
{

int a,b,c;
scanf (“%d %d %d”, &a, &b, &c);
if ((a>=b) && (a>=c))

printf (“\n The largest number is: %d”, a);
if ((b>=a) && (b>=c))

printf (“\n The largest number is: %d”, b);
if ((c>=a) && (c>=b))

printf (“\n The largest number is: %d”, c);
}

Autumn Semester 2009 Programming and Data Structure 9

Branching: The if-else Statement

• Also a single-entry / single-exit structure.
• Allows us to specify two alternate blocks of

statements, one of which is executed
depending on the outcome of the condition.

• General syntax:
if (condition) { …… block 1 ……. }
else { …….. block 2 …….. }

– If a block contains a single statement, the braces
can be deleted.

Autumn Semester 2009 Programming and Data Structure 10

The if/else Selection Structure

if (grade >= 60)
printf("Passed\n");

else
printf("Failed\n");

truefalse

print “Failed” print “Passed”

grade >= 60

Autumn Semester 2009 Programming and Data Structure 11

if-else syntax

if (expression)
{

statement1;
statement2;

.
statement_n;

}

if (expression)
{

statement_1;
statement_2;

.
statement_n;

}
else
{

Statement_1;
.

Statement_m;
}

if (grade>=60)
printf(“Passed \n”); if (grade >= 60)

printf("Passed\n");
else

printf("Failed\n");

Autumn Semester 2009 Programming and Data Structure 12

Nesting of if-else Structures

• It is possible to nest if-else statements,
one within another.

• All if statements may not be having the
“else” part.
– Confusion??

• Rule to be remembered:
– An “else” clause is associated with the closest

preceding unmatched “if”.

Autumn Semester 2009 Programming and Data Structure 13

if e1 s1
else if e2 s2

if e1 s1
else if e2 s2
else s3

if e1 if e2 s1
else s2
else s3

if e1 if e2 s1
else s2

?

Autumn Semester 2009 Programming and Data Structure 14

if e1 s1 if e1 s1
else if e2 s2 else if e2 s2

if e1 s1 if e1 s1
else if e2 s2 else if e2 s2
else s3 else s3

if e1 if e2 s1 if e1 if e2 s1
else s2 else s2
else s3 else s3

if e1 if e2 s1 if e1 if e2 s1
else s2 else s2

Autumn Semester 2009 Programming and Data Structure 15

Example

#include <stdio.h>
main()
{

int a,b,c;
scanf (“%d %d %d”, &a, &b, &c);
if (a>=b)

if (a>=c)
printf (“\n The largest number is: %d”, a);

else printf (“\n The largest number is: %d”, c);
else

if (b>=c)
printf (“\n The largest number is: %d”, b);

else printf (“\n The largest number is: %d”, c);
}

Autumn Semester 2009 Programming and Data Structure 16

Example

#include <stdio.h>
main()
{

int a,b,c;
scanf (“%d %d %d”, &a, &b, &c);
if ((a>=b) && (a>=c))

printf (“\n The largest number is: %d”, a);
else if (b>c)

printf (“\n The largest number is: %d”, b);
else

printf (“\n The largest number is: %d”, c);
}

Autumn Semester 2009 Programming and Data Structure 17

Confusing Equality (==) and Assignment (=) Operators

• Dangerous error
– Does not ordinarily cause syntax errors
– Any expression that produces a value can be used in control

structures
– Nonzero values are true, zero values are false

• Example:
if (payCode == 4)

printf("You get a bonus!\n");

Checks paycode, if it is 4 then a bonus is awarded

Equality check improper
if (payCode = 4)

printf("You get a bonus!\n");

Equality check proper
if (payCode == 4)

printf("You get a bonus!\n");

Autumn Semester 2009 Programming and Data Structure 18

Generalization of expression evaluation in C

• Assignment (=) operation is also a part of
expression.

i=3; Returns the value 3
after assigning it to i.

int i=4, j ;

if(i=3)
j=0;

else
j=1;

j?

Whatever be the value of i,
j is always 0.

int i=4, j ;

if(i==3)
j=0;

else
j=1;

j=1

Autumn Semester 2009 Programming and Data Structure 19

More about expressions

• Increment (++) and Decrement (--)Operations

Prefix operation

Postfix operation

++i;

i++;

--i;

i--;

First increment / decrement and then used in evaluation

increment / decrement operation after being used in evaluation

int t,m=1;

t=++m;

int t,m=1;

t=m++;

m=2;
t=2;

m=2;
t=1;

Autumn Semester 2009 Programming and Data Structure 20

Some More Examples

Initial values :: a = 10; b = 20;

x = 50 + ++a;
a = 11, x = 61

x = 50 + a++;
x = 60, a = 11

x = a++ + --b;
b = 19, x = 29, a = 11

x = a++ – ++a; Undefined value (implementation
dependent)

Autumn Semester 2009 Programming and Data Structure 21

Ternary conditional operator (?:)

– Takes three arguments (condition, value if
true, value if false)

– Returns the evaluated value
accordingly.

grade >= 60 ? printf(“Passed\n”) : printf(“Failed\n”);

(expr1)? (expr2): (expr3);

Example:
interest = (balance>5000) ? balance*0.2 : balance*0.1;

Returns a value

Autumn Semester 2009 Programming and Data Structure 22

The switch Statement

• This causes a particular group of statements
to be chosen from several available groups.
– Uses “switch” statement and “case” labels.
– Syntax of the “switch” statement:

switch (expression) {
case expression-1: { …….. }
case expression-2: { …….. }

case expression-m: { …….. }
default: { ……… }

}

Autumn Semester 2009 Programming and Data Structure 23

The switch Multiple-Selection Structure

true

false

.

.

.

case a case a action(s) break

case b case b action(s) break

false

false

case z case z action(s) break

true

true

default action(s)

Autumn Semester 2009 Programming and Data Structure 24

Example

switch (letter) {
case 'A':

printf("First letter\n");
break;

case 'Z':
printf("Last letter\n");
break;

default :
printf("Middle letter\n");
break;

}

Autumn Semester 2009 Programming and Data Structure 25

Example

switch (choice = toupper(getchar())) {

case ‘R’: printf (“RED \n”);
break;

case ‘G’: printf (“GREEN \n”);
break;

case ‘B’: printf (“BLUE \n”);
break;

default: printf (“Invalid choice \n”);

}

Autumn Semester 2009 Programming and Data Structure 26

Example

switch (choice = getchar()) {

case ‘r’:
case ‘R’: printf (“RED \n”);

break;
case ‘g’:
case ‘G’: printf (“GREEN \n”);

break;
case ‘b’:
case ‘B’: printf (“BLUE \n”);

break;
default: printf (“Invalid choice \n”);

}

Autumn Semester 2009 Programming and Data Structure 27

The break Statement

• Used to exit from a switch or terminate
from a loop.
– Already illustrated in the switch examples.

• With respect to “switch”, the “break”
statement causes a transfer of control out
of the entire “switch” statement, to the
first statement following the “switch”
statement.

Autumn Semester 2009 Programming and Data Structure 28

The Essentials of Repetition

• Loop
– Group of instructions computer executes repeatedly while

some condition remains true
• Counter-controlled repetition

– Definite repetition - know how many times loop will execute
– Control variable used to count repetitions

• Sentinel-controlled repetition
– Indefinite repetition
– Used when number of repetitions not known
– Sentinel value indicates "end of data"

Autumn Semester 2009 Programming and Data Structure 29

Counter-Controlled Repetition

• Counter-controlled repetition requires
– name of a control variable (or loop counter).
– initial value of the control variable.
– condition that tests for the final value of the control

variable (i.e., whether looping should continue).
– increment (or decrement) by which the control variable

is modified each time through the loop.

int counter =1; //initialization

while (counter <= 10) { //repetition condition
printf("%d\n", counter);
++counter; //increment

}

int counter;
for (counter=1;counter<=10;counter++)
printf(“%d\n”,counter);

Autumn Semester 2009 Programming and Data Structure 30

while Statement

while (condition)
statement_to_repeat;

while (condition) {
statement_1;
...
statement_N;

}

/* Weight loss program */
while (weight > 65) {

printf("Go, exercise, ");
printf("then come back. \n");
printf("Enter your weight: ");
scanf("%d", &weight);
}

int digit = 0;

while (digit <= 9)
printf (“%d \n”, digit++);

Autumn Semester 2009 Programming and Data Structure 31

C

statement(s)

true

false
Single-entry /

single-exit
structure

Autumn Semester 2009 Programming and Data Structure 32

do-while Statement

/* Weight loss program */
do {

printf("Go, exercise, ");
printf("then come back. \n");
printf("Enter your weight: ");
scanf("%d", &weight);
} while (weight > 65) ;

do {

statement-1
statement-2

.

.
statement-n

} while (condition);

At least one round
of exercise ensured.

Autumn Semester 2009 Programming and Data Structure 33

C

statement(s)

true

false

Single-entry /
single-exit
structure

int digit = 0;

do
printf (“%d \n”, digit++);

while (digit <= 9);

Autumn Semester 2009 Programming and Data Structure 34

for Statement

for (initial; condition; iteration)
statement_to_repeat;

for (initial; condition; iteration) {
statement_1;
...
statement_N;

}
fact = 1; /* Calculate 10 ! */

for (i = 1; i < =10; i++)
fact = fact * i; No

semicolon
after last
expression

All are expressions.
initial expr1
condition expr2
iteration expr3

Autumn Semester 2009 Programming and Data Structure 35

• How it works?
– “expression1” is used to initialize some variable

(called index) that controls the looping action.
– “expression2” represents a condition that must

be true for the loop to continue.
– “expression3” is used to alter the value of the

index initially assigned by “expression1”.

int digit;

for (digit=0; digit<=9; digit++)

printf (“%d \n”, digit);

Autumn Semester 2009 Programming and Data Structure 36

• How it works?
– “expression1” is used to initialize some variable

(called index) that controls the looping action.
– “expression2” represents a condition that must

be true for the loop to continue.
– “expression3” is used to alter the value of the

index initially assigned by “expression1”.

Autumn Semester 2009 Programming and Data Structure 37

expression2

statement(s)

true

false
Single-entry /

single-exit
structure

expression1

expression3

int digit;

for (digit=0; digit<=9; digit++)

printf (“%d \n”, digit);

Autumn Semester 2009 Programming and Data Structure 38

The For Structure: Notes and Observations

• Arithmetic expressions
– Initialization, loop-continuation, and increment can

contain arithmetic expressions.
– e.g. Let x = 2 and y = 10
for (j = x; j <= 4 * x * y; j += y / x)

is equivalent to

for (j = 2; j <= 80; j += 5)

• "Increment" may be negative (decrement)
• If loop continuation condition initially false

– Body of for structure not performed
– Control proceeds with statement after for structure

Initialization
Loop continuation

Increment

Autumn Semester 2009 Programming and Data Structure 39

for :: Examples

int fact = 1, i;

for (i=1; i<=10; i++)
fact = fact * i;

int sum = 0, N, count;

scanf (“%d”, &N);

for (i=1; i<=N, i++)
sum = sum + i * i;

printf (“%d \n”, sum);

Autumn Semester 2009 Programming and Data Structure 40

• The comma operator
– We can give several statements separated by

commas in place of “expression1”, “expression2”,
and “expression3”.

for (fact=1, i=1; i<=10; i++)
fact = fact * i;

for (sum=0, i=1; i<=N, i++)
sum = sum + i * i;

Autumn Semester 2009 Programming and Data Structure 41

Specifying “Infinite Loop”

while (1) {
statements

}

for (; ;)
{

statements
}

do {
statements

} while (1);

Autumn Semester 2009 Programming and Data Structure 42

break Statement
• Break out of the loop { }

– can use with
• while
• do while
• for
• switch

– does not work with
• if {}
• else {}

Causes immediate exit from a while, for, do/while or switch structure

Program execution continues with the first statement after the
structure

Common uses of the break statement
Escape early from a loop
Skip the remainder of a switch structure

Autumn Semester 2009 Programming and Data Structure 43

A Complete Example

#include <stdio.h>
main()
{

int fact, i;

fact = 1; i = 1;

while (i<10) { /* run loop –break when fact >100*/
fact = fact * i;
if (fact > 100) {

printf ("Factorial of %d above 100", i);
break; /* break out of the while loop */

}
i ++ ;

}
}

Autumn Semester 2009 Programming and Data Structure 44

continue Statement

• continue
– Skips the remaining statements in the body of a while,
for or do/while structure

• Proceeds with the next iteration of the loop
– while and do/while

• Loop-continuation test is evaluated immediately after the
continue statement is executed

– for structure
• Increment expression is executed, then the loop-

continuation test is evaluated.
expression3 is evaluated, then expression2 is
evaluated.

Autumn Semester 2009 Programming and Data Structure 45

An Example with “break” & “continue”

fact = 1; i = 1; /* a program to calculate 10 !
while (1) {

fact = fact * i;
i ++ ;
if (i<10)

continue; /* not done yet ! Go to loop and
perform next iteration*/

break;
}

Autumn Semester 2009 Programming and Data Structure 46

ANNOUNCEMENT REGARDING
CLASS TEST 1

Autumn Semester 2009 Programming and Data Structure 47

Time and Venue

• Date: August 20, 2009
• Time: 6:00 PM to 7:00 PM

– Students must occupy seat within 5:45 PM,
and carry identity card with them.

• Venue: VIKRAMSHILA COMPLEX / MAIN BUILDING
– Section 7 :: Room V1
– Section 8 :: Room V2
– Section 9 :: Room V3
– Section 10 :: Room V4
– Section 11:: F 116
– Section 12:: F 142

Autumn Semester 2009 Programming and Data Structure 48

Syllabus

• Variables and constants
• Number system
• Assignments
• Conditional statements
• Loops
• Simple input/output

Autumn Semester 2009 Programming and Data Structure 49

Some Examples

Autumn Semester 2009 Programming and Data Structure 50

Example 1: Test if a number is prime or not

#include <stdio.h>
main()
{

int n, i=2;
scanf (“%d”, &n);
while (i < n) {

if (n % i == 0) {
printf (“%d is not a prime \n”, n);
exit;

}
i++;

}
printf (“%d is a prime \n”, n);

}

Autumn Semester 2009 Programming and Data Structure 51

More efficient??

#include <stdio.h>
main()
{

int n, i=3;
scanf (“%d”, &n);
while (i < sqrt(n)) {

if (n % i == 0) {
printf (“%d is not a prime \n”, n);
exit;

}
i = i + 2;

}
printf (“%d is a prime \n”, n);

}

Autumn Semester 2009 Programming and Data Structure 52

Example 2: Find the sum of digits of a number

#include <stdio.h>
main()
{

int n, sum=0;
scanf (“%d”, &n);
while (n != 0) {

sum = sum + (n % 10);
n = n / 10;

}
printf (“The sum of digits of the number is %d \n”, sum);

}

Autumn Semester 2009 Programming and Data Structure 53

Example 3: Decimal to binary conversion

#include <stdio.h>
main()
{

int dec;
scanf (“%d”, &dec);
do
{

printf (“%2d”, (dec % 2));
dec = dec / 2;

} while (dec != 0);
printf (“\n”);

}

Autumn Semester 2009 Programming and Data Structure 54

Example 4: Compute GCD of two numbers

#include <stdio.h>
main()
{

int A, B, temp;
scanf (%d %d”, &A, &B);
if (A > B) { temp = A; A = B; B = temp; }
while ((B % A) != 0) {

temp = B % A;
B = A;
A = temp;

}
printf (“The GCD is %d”, A);

}

12) 45 (3

36

9) 12 (1

9

3) 9 (3

9

0

Initial: A=12, B=45
Iteration 1: temp=9, B=12,A=9
Iteration 2: temp=3, B=9, A=3

B % A = 0 GCD is 3

Autumn Semester 2009 Programming and Data Structure 55

Shortcuts in Assignments

• Additional assignment operators:
+ =, – =, * =, / =, % =

a += b is equivalent to a = a + b
a *= (b+10) is equivalent to a = a * (b + 10)

and so on.

Autumn Semester 2009 Programming and Data Structure 56

More about scanf and printf

Autumn Semester 2009 Programming and Data Structure 57

Entering input data :: scanf function

• General syntax:
scanf (control string, arg1, arg2, …, argn);

– “control string refers to a string typically
containing data types of the arguments to be
read in;

– the arguments arg1, arg2, … represent pointers
to data items in memory.

Example: scanf (%d %f %c”, &a, &average, &type);
• The control string consists of individual groups of

characters, with one character group for each input
data item.
– ‘%’ sign, followed by a conversion character.

Autumn Semester 2009 Programming and Data Structure 58

– Commonly used conversion characters:
c single character
d decimal integer
f floating-point number
s string terminated by null character
X hexadecimal integer

– We can also specify the maximum field-width
of a data item, by specifying a number
indicating the field width before the conversion
character.

Example: scanf (“%3d %5d”, &a, &b);

Autumn Semester 2009 Programming and Data Structure 59

Writing output data :: printf function

• General syntax:
printf (control string, arg1, arg2, …, argn);

– “control string refers to a string containing
formatting information and data types of the
arguments to be output;

– the arguments arg1, arg2, … represent the
individual output data items.

• The conversion characters are the same
as in scanf.

Autumn Semester 2009 Programming and Data Structure 60

• Examples:
printf (“The average of %d and %d is %f”, a, b, avg);
printf (“Hello \nGood \nMorning \n”);
printf (“%3d %3d %5d”, a, b, a*b+2);
printf (“%7.2f %5.1f”, x, y);

• Many more options are available:
– Read from the book.
– Practice them in the lab.

• String I/O:
– Will be covered later in the class.

	Control Statements
	What do they do?
	How do we specify the conditions?
	Examples
	The conditions evaluate to …
	Branching: The if Statement
	The if Selection Structure
	Example
	Branching: The if-else Statement
	The if/else Selection Structure
	if-else syntax
	Nesting of if-else Structures
	Example
	Example
	Confusing Equality (==) and Assignment (=) Operators
	Generalization of expression evaluation in C
	More about expressions
	Some More Examples
	Ternary conditional operator (?:) �
	The switch Statement
	The switch Multiple-Selection Structure
	Example
	Example
	Example
	The break Statement
	The Essentials of Repetition
	Counter-Controlled Repetition
	while Statement
	do-while Statement
	for Statement
	The For Structure: Notes and Observations
	for :: Examples
	Specifying “Infinite Loop”
	break Statement
	A Complete Example
	continue Statement
	An Example with “break” & “continue”
	ANNOUNCEMENT REGARDING �CLASS TEST 1
	Time and Venue
	Syllabus
	Some Examples
	Example 1: Test if a number is prime or not
	More efficient??
	Example 2: Find the sum of digits of a number
	Example 3: Decimal to binary conversion
	Example 4: Compute GCD of two numbers
	Shortcuts in Assignments
	More about scanf and printf
	Entering input data :: scanf function
	Writing output data :: printf function

