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Number Systems
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Number Representation
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Topics to be Discussed

• How are numeric data items actually 
stored in computer memory?

• How much space (memory locations) is 
allocated for each type of data?
– int, float, char, etc.

• How are characters and strings stored in 
memory?
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Number System :: The Basics

• We are accustomed to using the so-
called decimal number system.
– Ten digits ::  0,1,2,3,4,5,6,7,8,9
– Every digit position has a weight which is a 

power of 10.
– Base or radix is 10.

• Example:
234 =  2 x 102 +  3 x 101 +  4 x 100

250.67 =  2 x 102 +  5 x 101 +  0 x 100 +  6 x 10-1

+  7 x 10-2
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Binary Number System

• Two digits:
– 0 and 1.
– Every digit position has a weight which is a 

power of 2.
– Base or radix is 2.

• Example:
110 =  1 x 22 +  1 x 21 +  0 x 20

101.01 =  1 x 22 +  0 x 21 +  1 x 20 +  0 x 2-1 +  1 x 
2-2
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Counting with Binary Numbers

0
1

10
11

100
101
110
111

1000
.  
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Multiplication and Division with base

Multiplication with 10  (decimal system)
435  x 10 =  4350

Multiplication with  10 (=2 ) (binary system)
1101 x 10 = 11010

Division by 10 (decimal system)
435 / 10 = 43.5

Division by 10 (=2) (binary system)
1101 / 10 = 110.1

Left Shift and add
zero at right end

Right shift and  drop
right most digit  or
shift after decimal
point
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Adding two bits

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 10

carry

1 1 1 0
1 0 1 1

+ 1 1 1 0
1 1 0 0 1

Carries
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Binary addition: Another example

1 1 0 0 (Carries)
1 1 0 1

+ 1 1 0 0
1 1 0 0 1 (Sum)

The initial carry
in is implicitly 0

most significant
bit (MSB)

least significant
bit (LSB)
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Binary-to-Decimal Conversion

• Each digit position of a binary number has 
a weight.
– Some power of 2.

• A binary number:
B = bn-1 bn-2 …..b1 b0 . b-1 b-2 ….. b-m

Corresponding value in decimal:
D = Σ bi 2i

i = -m

n-1
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Examples

1. 101011  1x25 + 0x24 + 1x23 + 0x22 + 1x21 + 1x20

= 43
(101011)2 = (43)10

2. .0101      0x2-1 + 1x2-2 + 0x2-3 + 1x2-4

= .3125
(.0101)2 = (.3125)10

3. 101.11    1x22 + 0x21 + 1x20 + 1x2-1 + 1x2-2

5.75
(101.11)2 = (5.75)10
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Decimal-to-Binary Conversion
• Consider the integer and fractional parts 

separately.
• For the integer part,

– Repeatedly divide the given number by 2, and 
go on accumulating the remainders, until the 
number becomes zero.

– Arrange the remainders in reverse order.
• For the fractional part,

– Repeatedly multiply the given fraction by 2.
• Accumulate the integer part (0 or 1).
• If the integer part is 1, chop it off.

– Arrange the integer parts in the order they are 
obtained.
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Example 1  ::  239

2 239
2     119    --- 1
2 59    --- 1
2      29    --- 1
2 14     --- 1
2       7     --- 0
2 3     --- 1
2       1     --- 1
2       0     --- 1

(239)10 = (11101111)2
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Example 2  ::  64

2 64
2      32    --- 0
2 16    --- 0
2        8    --- 0
2 4    --- 0
2        2    --- 0
2 1    --- 0
2        0    --- 1

(64)10 = (1000000)2
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Example 3  ::  .634

.634  x  2   =   1.268

.268  x  2   =   0.536

.536  x  2   =   1.072

.072  x  2   =   0.144

.144  x  2   =   0.288
:
:

(.634)10 = (.10100……)2
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Example 4  ::  37.0625

(37)10 =  (100101)2

(.0625)10 =  (.0001)2

∴(37.0625)10 =  (100101 . 0001)2
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Hexadecimal Number System

• A compact way of representing binary 
numbers.

• 16 different symbols (radix = 16).
0  0000 8  1000
1  0001 9  1001
2  0010 A  1010
3  0011 B  1011
4  0100 C  1100
5  0101 D  1101
6  0110 E  1110
7  0111 F  1111
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Binary-to-Hexadecimal Conversion

• For the integer part,
– Scan the binary number from right to left.
– Translate each group of four bits into the 

corresponding hexadecimal digit.
• Add leading zeros if necessary.

• For the fractional part,
– Scan the binary number from left to right.
– Translate each group of four bits into the 

corresponding hexadecimal digit.
• Add trailing zeros if necessary.
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Example

1. (1011 0100 0011)2 =   (B43)16

2. (10 1010 0001)2 =   (2A1)16

3. (.1000 010)2 =   (.84)16

4. (101 . 0101 111)2 =   (5.5E)16
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Hexadecimal-to-Binary Conversion

• Translate every hexadecimal digit into its 
4-bit binary equivalent.

• Examples:
(3A5)16 =   (0011 1010 0101)2

(12.3D)16 =   (0001 0010 . 0011 1101)2

(1.8)16 =   (0001 . 1000)2



Autumn Semester 2009 Programming and Data Structure 21

Unsigned Binary Numbers

• An n-bit binary number
B  =  bn-1bn-2 …. b2b1b0

• 2n distinct combinations are possible, 0 to 2n-1.

• For example, for n = 3, there are 8 distinct 
combinations.
– 000, 001, 010, 011, 100, 101, 110, 111

• Range of numbers that can be represented
n=8 0  to  28-1  (255)
n=16 0  to  216-1 (65535)
n=32 0  to  232-1 (4294967295)
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Signed Integer Representation

• Many of the numerical data items that are 
used in a program are signed (positive or 
negative).
– Question:: How to represent sign?

• Three possible approaches:
– Sign-magnitude representation
– One’s complement representation
– Two’s complement representation
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Sign-magnitude Representation

• For an n-bit number representation
– The most significant bit (MSB) indicates sign

0  positive
1  negative

– The remaining n-1 bits represent magnitude.

b0b1bn-2bn-1

MagnitudeSign
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Contd.

• Range of numbers that can be 
represented:

Maximum  ::  + (2n-1 – 1)
Minimum   ::  − (2n-1 – 1)

• A problem:
Two different representations of zero.

+0   0 000….0
-0    1 000….0
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One’s Complement Representation

• Basic idea:
– Positive numbers are represented exactly as in 

sign-magnitude form.
– Negative numbers are represented in 1’s 

complement form.
• How to compute the 1’s complement of a 

number?
– Complement every bit of the number (1 0 and 

0 1).
– MSB will indicate the sign of the number.

0  positive
1  negative
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Example  ::  n=4

0000  +0
0001  +1
0010  +2
0011  +3
0100  +4
0101  +5
0110  +6
0111  +7

1000  -7
1001  -6
1010  -5
1011  -4
1100  -3
1101  -2
1110  -1
1111  -0

To find the representation of, say, -4, first note that

+4  =  0100

-4   =  1’s complement of 0100  =  1011
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Contd.

• Range of numbers that can be represented:
Maximum  ::  + (2n-1 – 1)
Minimum   ::  − (2n-1 – 1)

• A problem:
Two different representations of zero.

+0   0 000….0
-0    1 111….1

• Advantage of 1’s complement representation
– Subtraction can be done using addition.
– Leads to substantial saving in circuitry.
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Two’s Complement Representation

• Basic idea:
– Positive numbers are represented exactly as in 

sign-magnitude form.
– Negative numbers are represented in 2’s 

complement form.
• How to compute the 2’s complement of a 

number?
– Complement every bit of the number (1 0 and 

0 1), and then add one to the resulting number.
– MSB will indicate the sign of the number.

0  positive
1  negative
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Example  ::  n=4

0000  +0
0001  +1
0010  +2
0011  +3
0100  +4
0101  +5
0110  +6
0111  +7

1000  -8
1001  -7
1010  -6
1011  -5
1100  -4
1101  -3
1110  -2
1111  -1

To find the representation of, say, -4, first note that

+4  =  0100

-4   =  2’s complement of 0100  =  1011+1  =  1100
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Contd.

• In C
– short int

• 16 bits   + (215-1)  to  -215

– int
• 32 bits   + (231-1)  to  -231

– long int
• 64 bits   + (263-1)  to  -263
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Contd.

• Range of numbers that can be represented:
Maximum  ::  + (2n-1 – 1)
Minimum   ::  − 2n-1

• Advantage:
– Unique representation of zero.
– Subtraction can be done using addition.
– Leads to substantial saving in circuitry.

• Almost all computers today use the 2’s 
complement representation for storing 
negative numbers.



Autumn Semester 2009 Programming and Data Structure 32

Subtraction Using Addition :: 1’s 
Complement

• How to compute A – B ?
– Compute the 1’s complement of B (say, B1).
– Compute R = A + B1

– If the carry obtained after addition is ‘1’
• Add the carry back to R  (called end-around carry).
• That is, R = R + 1.
• The result is a positive number.

Else
• The result is negative, and is in 1’s complement 

form.
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Example 1  ::  6 – 2

1’s complement of 2  =  1101

6   ::   0110
-2   ::   1101

1 0011
1

0100    +4

End-around 
carry

Assume 4-bit 
representations.

Since there is a carry, it is 
added back to the result.

The result is positive.

R
B1

A
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Example 2  ::  3 – 5

1’s complement of 5  =  1010

3   ::   0011
-5   ::   1010

1101                        
Assume 4-bit representations.

Since there is no carry, the 
result is negative.

1101 is the 1’s complement of 
0010, that is, it represents –2.

A
B1

R

-2
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Subtraction Using Addition :: 2’s 
Complement

• How to compute A – B ?

– Compute the 2’s complement of B (say, B2).

– Compute R = A + B2

– Ignore carry if it is there.

– The result is in 2’s complement form.
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Example 1  ::  6 – 2

2’s complement of 2  =  1101 + 1  =  1110

6   ::   0110
-2   ::   1110

1 0100

A
B2

R

Ignore carry +4
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Example 2  ::  3 – 5

2’s complement of 5  =  1010 + 1  =  1011

3   ::   0011
-5   ::   1011

1110                      

A
B2

R

-2
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Example 3  ::  -3 – 5

2’s complement of 3  =  1100 + 1  =  1101
2’s complement of 5  =  1010 + 1  =  1011

-3   ::   1101
-5   ::   1011

1 1000

Ignore carry -8
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Floating-point Numbers
• The representations discussed so far applies only 

to integers.
– Cannot represent numbers with fractional parts.

• We can assume a decimal point before a 2’s 
complement number.
– In that case, pure fractions (without integer parts) can 

be represented.
• We can also assume the decimal point 

somewhere in between.
– This lacks flexibility.
– Very large and very small numbers cannot be 

represented.
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Representation of Floating-Point 
Numbers

• A floating-point number F is represented 
by a doublet  <M,E> :

F  =  M  x  BE

• B  exponent base (usually 2)
• M mantissa
• E  exponent

– M is usually represented in 2’s complement 
form, with an implied decimal point before it.

• For example, 
In decimal,

0.235 x 106

In binary,
0.101011 x 20110



Autumn Semester 2009 Programming and Data Structure 41

Example  ::  32-bit representation

– M represents a 2’s complement fraction
1  >  M  >  -1

– E represents the exponent (in 2’s complement form)
127  >  E  >  -128

• Points to note:
– The number of significant digits depends on the number 

of bits in M.
• 6 significant digits for 24-bit mantissa.

– The range of the number depends on the number of bits 
in E.

• 1038 to  10-38 for 8-bit exponent.

M E

24 8
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A Warning

• The representation for floating-point 
numbers as shown is just for illustration.

• The actual representation is a little more 
complex.

• In C:
– float      ::   32-bit representation
– double  ::   64-bit representation
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Representation of Characters
• Many applications have to deal with non-numerical 

data.
– Characters and strings.
– There must be a standard mechanism to represent 

alphanumeric and other characters in memory.
• Three standards in use:

– Extended Binary Coded Decimal Interchange Code (EBCDIC)
• Used in older IBM machines.

– American Standard Code for Information Interchange (ASCII)
• Most widely used today.

– UNICODE
• Used to represent all international characters.
• Used by Java.
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ASCII Code

• Each individual character is numerically 
encoded into a unique 7-bit binary code.
– A total of 27 or 128 different characters.
– A character is normally encoded in a byte (8 

bits), with the MSB not been used.
• The binary encoding of the characters 

follow a regular ordering.
– Digits are ordered consecutively in their 

proper numerical sequence (0 to 9).
– Letters (uppercase and lowercase) are 

arranged consecutively in their proper 
alphabetic order.
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Some Common ASCII Codes

‘A’  ::  41 (H) 65 (D)
‘B’  ::  42 (H) 66 (D)
………..
‘Z’  ::  5A (H) 90 (D)

‘a’  ::  61 (H) 97 (D)
‘b’  ::  62 (H) 98 (D)
………..
‘z’  ::  7A (H) 122 (D)

‘0’  ::  30 (H) 48 (D)
‘1’  ::  31 (H) 49 (D)
………..
‘9’  ::  39 (H) 57 (D)

‘(‘   ::  28 (H) 40 (D)
‘+’  ::  2B (H) 43 (D)
‘?’  ::   3F (H) 63 (D)
‘\n’ ::  0A (H) 10 (D)
‘\0’ ::   00 (H) 00 (D)
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Character Strings

• Two ways of representing a sequence of 
characters in memory.
– The first location contains the number of 

characters in the string, followed by the actual 
characters.

– The characters follow one another, and is 
terminated by a special delimiter.

oeH5 ll

⊥leH ol
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String Representation in C

• In C, the second approach is used.
– The ‘\0’ character is used as the string 

delimiter.
• Example:

“Hello”       

• A null string “” occupies one byte in 
memory.
– Only the ‘\0’ character.

‘\0’leH ol
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