Number Systems

Number Representation

Topics to be Discussed

- How are numeric data items actually stored in computer memory?
- How much space (memory locations) is allocated for each type of data?
- int, float, char, etc.
- How are characters and strings stored in memory?

Number System :: The Basics

- We are accustomed to using the socalled decimal number system.
- Ten digits :: 0,1,2,3,4,5,6,7,8,9
- Every digit position has a weight which is a power of 10.
- Base or radix is 10.
- Example:
$234=2 \times 10^{2}+3 \times 10^{1}+4 \times 10^{0}$ $250.67=2 \times 10^{2}+5 \times 10^{1}+0 \times 10^{0}+6 \times 10^{-1}$ $+7 \times 10^{-2}$

Binary Number System

- Two digits:
- 0 and 1.
- Every digit position has a weight which is a power of 2.
- Base or radix is 2.
- Example:

$$
\begin{aligned}
& 110=1 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0} \\
& 101.01=1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}+0 \times 2^{-1}+1 \times
\end{aligned}
$$

$$
2^{-2}
$$

Counting with Binary Numbers

0
 1
 10
 11
 100
 101
 110
 111
 1000

Multiplication and Division with base

- Multiplication with 10 (decimal system)

$$
435 \times 10=4350 \sim \left\lvert\, \begin{aligned}
& \text { Left Shift and add } \\
& \text { zero at right end }
\end{aligned}\right.
$$

- Multiplication with 10 (2) (binary system)

$$
1101 \times 10=11010
$$

- Division by 10 (decimal systemb

Right shift and drop right most digit or shift after decimal point

- Division by 10 (=2) (binary system) $1101 / 10=110.1$

Adding two bits

Binary addition: Another example

Binary-to-Decimal Conversion

- Each digit position of a binary number has a weight.
- Some power of 2.
- A binary number:

$$
B=b_{n-1} b_{n-2} \ldots \ldots b_{1} b_{0} \cdot b_{-1} b_{-2} \ldots \ldots b_{-m}
$$

Corresponding value in decimal:

$$
D=\sum_{i=-m}^{n-1} b_{i} 2^{i}
$$

Examples

1. $101011 \rightarrow 1 \times 2^{5}+0 \times 2^{4}+1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}$ $=43$
$(101011)_{2}=(43)_{10}$
2. . $0101 \rightarrow 0 \times 2^{-1}+1 \times 2^{-2}+0 \times 2^{-3}+1 \times 2^{-4}$
$=.3125$
$(.0101)_{2}=(.3125)_{10}$
3. $101.11 \rightarrow 1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}+1 \times 2^{-1}+1 \times 2^{-2}$

$$
\begin{gathered}
5.75 \\
(101.11)_{2}=(5.75)_{10}
\end{gathered}
$$

Decimal-to-Binary Conversion

- Consider the integer and fractional parts separately.
- For the integer part,
- Repeatedly divide the given number by 2, and go on accumulating the remainders, until the number becomes zero.
- Arrange the remainders in reverse order.
- For the fractional part,
- Repeatedly multiply the given fraction by 2.
- Accumulate the integer part (0 or 1).
- If the integer part is 1, chop it off.
- Arrange the integer parts in the order they are obtained.

Example 1 :: 239

$$
(239)_{10}=(11101111)_{2}
$$

Example 2 :: 64

2	64	
2	32	--- 0
2	16	--- 0
2	8	--- 0
2	4	--- 0
2	2	--- 0
2	1	--- 0
2	0	--- 1

$$
(64)_{10}=(1000000)_{2}
$$

Example 3 :: . 634

Example 4 :: 37.0625

$(37)_{10}=(100101)_{2}$ $(.0625)_{10}=(.0001)_{2}$

$\therefore(37.0625)_{10}=(100101.0001)_{2}$

Hexadecimal Number System

- A compact way of representing binary numbers.
- 16 different symbols (radix = 16).

	$\rightarrow 0000$	$8 \rightarrow 1000$
1	$\rightarrow 0001$	$9 \rightarrow 1001$
2	$\rightarrow 0010$	$A \rightarrow 1010$
3	$\rightarrow 0011$	$B \rightarrow 1011$
4	$\rightarrow 0100$	$C \rightarrow 1100$
5	$\rightarrow 0101$	D $\rightarrow 1101$
6	$\rightarrow 0110$	$E \rightarrow 1110$
	$\rightarrow 0111$	$F \rightarrow 1111$

Binary-to-Hexadecimal Conversion

- For the integer part,
- Scan the binary number from right to left.
- Translate each group of four bits into the corresponding hexadecimal digit.
- Add leading zeros if necessary.
- For the fractional part,
- Scan the binary number from left to right.
- Translate each group of four bits into the corresponding hexadecimal digit.
- Add trailing zeros if necessary.

Example

1. $(\underline{1011} 01000011)_{2}=(B 43)_{16}$
 2. $(\underline{10} 10100001)_{2}=(2 A 1)_{16}$
 3. $(.1000010)_{2}=(.84)_{16}$
 4. $(\underline{101} . \underline{0101} \underline{111})_{2}=(5.5 \mathrm{E})_{16}$

Hexadecimal-to-Binary Conversion

- Translate every hexadecimal digit into its 4-bit binary equivalent.
- Examples:
$(3 A 5)_{16}=(001110100101)_{2}$
$(12.3 \mathrm{D})_{16}=(00010010.0011 \text { 1101 })_{2}$
$(1.8)_{16}=(0001.1000)_{2}$

Unsigned Binary Numbers

- An n-bit binary number

$$
B=b_{n-1} b_{n-2} \ldots . . b_{2} b_{1} b_{0}
$$

- 2^{n} distinct combinations are possible, 0 to $2^{\mathrm{n}}-1$.
- For example, for $\mathrm{n}=3$, there are 8 distinct combinations.
- 000, 001, 010, 011, 100, 101, 110, 111
- Range of numbers that can be represented

$$
\begin{array}{lll}
\mathrm{n}=8 & \Rightarrow & 0 \text { to } 2^{8}-1(255) \\
\mathrm{n}=16 & \Rightarrow & 0 \text { to } 2^{16}-1(65535) \\
\mathrm{n}=32 & \Rightarrow & 0 \text { to } 2^{32}-1(4294967295)
\end{array}
$$

Signed Integer Representation

- Many of the numerical data items that are used in a program are signed (positive or negative).
- Question:: How to represent sign?
- Three possible approaches:
- Sign-magnitude representation
- One's complement representation
- Two's complement representation

Sign-magnitude Representation

- For an n-bit number representation
- The most significant bit (MSB) indicates sign
$0 \rightarrow$ positive
$1 \rightarrow$ negative
- The remaining $\mathbf{n - 1}$ bits represent magnitude.

Contd.

- Range of numbers that can be represented:

Maximum :: + (2n-1 -1$)$
Minimum :: -($\left.\mathbf{2}^{n-1}-1\right)$

- A problem:

Two different representations of zero.

$$
\begin{aligned}
& +0 \rightarrow 0000 \ldots .0 \\
& -0 \rightarrow 1000 \ldots .0
\end{aligned}
$$

One's Complement Representation

- Basic idea:
- Positive numbers are represented exactly as in sign-magnitude form.
- Negative numbers are represented in 1's complement form.
- How to compute the 1's complement of a number?
- Complement every bit of the number ($1 \rightarrow 0$ and $0 \rightarrow 1$).
- MSB will indicate the sign of the number.
$0 \rightarrow$ positive
$1 \rightarrow$ negative

Example :: n=4

$$
\begin{aligned}
& 0000 \rightarrow+0 \\
& 0001 \rightarrow+1 \\
& 0010 \rightarrow+2 \\
& 0011 \rightarrow+3 \\
& 0100 \rightarrow+4 \\
& 0101 \rightarrow+5 \\
& 0110 \rightarrow+6 \\
& 0111 \rightarrow+7
\end{aligned}
$$

To find the representation of, say, -4 , first note that

```
+4 = 0100
    -4 \(=1\) 's complement of \(0100=1011\)
```


Contd.

- Range of numbers that can be represented:

Maximum :: + (2 $\left.2^{n-1}-1\right)$
Minimum :: - (2 $\left.\mathbf{2 n}^{n-1}-1\right)$

- A problem:

Two different representations of zero.
$+0 \rightarrow 0000 . . .0$
$-0 \rightarrow 11111$

- Advantage of 1's complement representation
- Subtraction can be done using addition.
- Leads to substantial saving in circuitry.

Two's Complement Representation

- Basic idea:
- Positive numbers are represented exactly as in sign-magnitude form.
- Negative numbers are represented in 2's complement form.
- How to compute the 2's complement of a number?
- Complement every bit of the number ($1 \rightarrow 0$ and $0 \rightarrow 1$), and then add one to the resulting number.
- MSB will indicate the sign of the number.
$0 \rightarrow$ positive
$1 \rightarrow$ negative

Example :: n=4

$$
\begin{aligned}
& 0000 \rightarrow+0 \\
& 0001 \rightarrow+1 \\
& 0010 \rightarrow+2 \\
& 0011 \rightarrow+3 \\
& 0100 \rightarrow+4 \\
& 0101 \rightarrow+5 \\
& 0110 \rightarrow+6 \\
& 0111 \rightarrow+7
\end{aligned}
$$

To find the representation of, say, -4 , first note that

$$
\begin{aligned}
& +4=0100 \\
& -4=2 ' s \text { complement of } 0100=1011+1=1100
\end{aligned}
$$

Contd.

- In C
- short int
- 16 bits $\rightarrow+\left(2^{15}-1\right)$ to -2^{15}
- int
- 32 bits $\rightarrow+\left(2^{31}-1\right)$ to -2^{31}
- long int
- 64 bits $\rightarrow+\left(2^{63}-1\right)$ to -2^{63}

Contd.

- Range of numbers that can be represented:

Maximum :: + (2 $\left.\mathbf{2}^{n-1}-1\right)$
Minimum :: -2^{n-1}

- Advantage:
- Unique representation of zero.
- Subtraction can be done using addition.
- Leads to substantial saving in circuitry.
- Almost all computers today use the 2's complement representation for storing negative numbers.

Subtraction Using Addition :: 1's Complement

- How to compute A - B ?
- Compute the 1's complement of B (say, B_{1}).
- Compute R = A + B ${ }_{1}$
- If the carry obtained after addition is ' 1 '
- Add the carry back to R (called end-around carry).
- That is, R = R + 1.
- The result is a positive number.

Else

- The result is negative, and is in 1's complement form.

Example 1 :: 6-2

1's complement of $2=1101$

Assume 4-bit representations.

Since there is a carry, it is added back to the result. The result is positive.

Example 2 :: 3-5

1's complement of $5=1010$

```
3 :: 0011 A
-5 :: 1010 B
    1101 R
```



```
-2
```

Assume 4-bit representations.
Since there is no carry, the result is negative.

1101 is the 1's complement of 0010, that is, it represents $\mathbf{- 2}$.

Subtraction Using Addition :: 2's Complement

- How to compute $\mathrm{A}-\mathrm{B}$?
- Compute the 2's complement of B (say, B_{2}).
- Compute $\mathrm{R}=\mathrm{A}+\mathrm{B}_{2}$
- Ignore carry if it is there.
- The result is in 2's complement form.

Example 1 :: 6-2

2's complement of $2=1101+1=1110$

Example 2 :: 3-5

2's complement of 5 = $1010+1=1011$

Example 3 :: -3-5

2's complement of 3 = $1100+1=1101$ 2's complement of 5 = 1010 + 1 = 1011

Floating-point Numbers

- The representations discussed so far applies only to integers.
- Cannot represent numbers with fractional parts.
- We can assume a decimal point before a 2's complement number.
- In that case, pure fractions (without integer parts) can be represented.
- We can also assume the decimal point somewhere in between.
- This lacks flexibility.
- Very large and very small numbers cannot be represented.

Representation of Floating-Point Numbers

- A floating-point number F is represented by a doublet <M,E>:
$F=M \times B^{E}$
- B \rightarrow exponent base (usually 2)
- $M \rightarrow$ mantissa
- E \rightarrow exponent
- M is usually represented in 2's complement form, with an implied decimal point before it.
- For example,

In decimal, 0.235×10^{6}
In binary,
0.101011×20110

Example :: 32-bit representation

- M represents a 2 's complement fraction $1>\mathrm{M}>-1$
- E represents the exponent (in 2's complement form)

$$
127>E>-128
$$

- Points to note:
- The number of significant digits depends on the number of bits in M .
- 6 significant digits for 24-bit mantissa.
- The range of the number depends on the number of bits in E.
- 10^{38} to 10^{-38} for 8-bit exponent.

A Warning

- The representation for floating-point numbers as shown is just for illustration.
- The actual representation is a little more complex.
- In C:
- float :: 32-bit representation
- double :: 64-bit representation

Representation of Characters

- Many applications have to deal with non-numerical data.
- Characters and strings.
- There must be a standard mechanism to represent alphanumeric and other characters in memory.
- Three standards in use:
- Extended Binary Coded Decimal Interchange Code (EBCDIC)
- Used in older IBM machines.
- American Standard Code for Information Interchange (ASCII)
- Most widely used today.
- UNICODE
- Used to represent all international characters.
- Used by Java.

ASCII Code

- Each individual character is numerically encoded into a unique 7-bit binary code.
- A total of 2^{7} or 128 different characters.
- A character is normally encoded in a byte (8 bits), with the MSB not been used.
- The binary encoding of the characters follow a regular ordering.
- Digits are ordered consecutively in their proper numerical sequence (0 to 9).
- Letters (uppercase and lowercase) are arranged consecutively in their proper alphabetic order.

Some Common ASCII Codes

```
'A' :: 41 (H) }65\mathrm{ (D)
'B' :: 42 (H) }66\mathrm{ (D)
..........
'Z' :: 5A (H) 90 (D)
'a' :: 61 (H) }97\mathrm{ (D)
'b' :: 62 (H) }98\mathrm{ (D)
'z' :: 7A (H) 122 (D)
```

```
'0' :: 30 (H) 48 (D)
'1' :: }31\mathrm{ (H) 49 (D)
'9` :: }39\mathrm{ (H) }57\mathrm{ (D)
`` :: 28 (H) }40\mathrm{ (D)
‘+` :: 2B (H) }43\mathrm{ (D)
'?' :: 3F (H) }63\mathrm{ (D)
`In' :: OA (H) 10 (D)
`10` :: 00 (H) 00 (D)
```


Character Strings

- Two ways of representing a sequence of characters in memory.
- The first location contains the number of characters in the string, followed by the actual characters.

- The characters follow one another, and is terminated by a special delimiter.

String Representation in C

- In C, the second approach is used.
- The ' 10 ' character is used as the string delimiter.
- Example: "Hello"

- A null string "" occupies one byte in memory.
- Only the ' 10 ’ character.

