Number Systems

Autumn Semester 2009

Number Representation

Autumn Semester 2009

Topics to be Discussed

- How are numeric data items actually stored in computer memory?
- How much space (memory locations) is allocated for each type of data?
 - int, float, char, etc.
- How are characters and strings stored in memory?

Number System :: The Basics

- We are accustomed to using the socalled decimal number system.
 - Ten digits :: 0,1,2,3,4,5,6,7,8,9
 - Every digit position has a weight which is a power of 10.
 - Base or radix is 10.
- Example:

 $234 = 2 \times 10^{2} + 3 \times 10^{1} + 4 \times 10^{0}$ $250.67 = 2 \times 10^{2} + 5 \times 10^{1} + 0 \times 10^{0} + 6 \times 10^{-1}$ $+ 7 \times 10^{-2}$

Binary Number System

- Two digits:
 - 0 and 1.
 - Every digit position has a weight which is a power of 2.
 - Base or radix is 2.
- Example:

 $110 = 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$

 $101.01 = 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} + 0 \times 2^{-1} + 1 \times 2^{-2}$

Counting with Binary Numbers

Autumn Semester 2009

Multiplication and Division with base

- Multiplication with 10 (decimal system)
 435 x 10 = 4350
- Multiplication with 10 (=2) (binary system)
 1101 x 10 = 11010
- Division by 10 (decimal system)
 435 / 10 = 43.5

Right shift and drop right most digit or shift after decimal point

Left Shift and add

zero at right end

Division by 10 (=2) (binary system) 1101 / 10 = 110.1

Adding two bits

Autumn Semester 2009

Binary addition: Another example

Binary-to-Decimal Conversion

- Each digit position of a binary number has a weight.
 - Some power of 2.
- A binary number:

 $B = b_{n-1} b_{n-2} \dots b_1 b_0 \dots b_{-1} b_{-2} \dots b_{-m}$ Corresponding value in decimal: $D = \sum_{i=-m}^{n-1} b_i 2^i$

Examples

1. 101011 \rightarrow 1x2⁵ + 0x2⁴ + 1x2³ + 0x2² + 1x2¹ + 1x2⁰ = 43 $(101011)_2 = (43)_{10}$ 2. .0101 \rightarrow 0x2⁻¹ + 1x2⁻² + 0x2⁻³ + 1x2⁻⁴ = .3125 $(.0101)_2 = (.3125)_{10}$ 3. 101.11 \rightarrow 1x2² + 0x2¹ + 1x2⁰ + 1x2⁻¹ + 1x2⁻² 5.75 $(101.11)_2 = (5.75)_{10}$

Decimal-to-Binary Conversion

- Consider the integer and fractional parts separately.
- For the integer part,
 - Repeatedly divide the given number by 2, and go on accumulating the remainders, until the number becomes zero.
 - Arrange the remainders *in reverse order*.
- For the fractional part,
 - Repeatedly multiply the given fraction by 2.
 - Accumulate the integer part (0 or 1).
 - If the integer part is 1, chop it off.
 - Arrange the integer parts *in the order* they are obtained.

Example 1 :: 239

 $(239)_{10} = (11101111)_2$

Example 2 :: 64

 $(64)_{10} = (1000000)_2$

Autumn Semester 2009

Example 3 :: .634

 $(.634)_{10} = (.10100....)_2$

:

Example 4 :: 37.0625

 $(37)_{10} = (100101)_2$ $(.0625)_{10} = (.0001)_2$

 $(37.0625)_{10} = (100101.0001)_2$

Autumn Semester 2009

Hexadecimal Number System

- A compact way of representing binary numbers.
- 16 different symbols (radix = 16).

0	\rightarrow	0000	8 → 1000
1	\rightarrow	0001	9 → 1001
2	\rightarrow	0010	$A \rightarrow 1010$
3	\rightarrow	0011	B → 1011
4	\rightarrow	0100	C → 1100
5	\rightarrow	0101	D → 1101
6	\rightarrow	0110	E → 1110
7	\rightarrow	0111	F → 1111

Binary-to-Hexadecimal Conversion

- For the integer part,
 - Scan the binary number from right to left.
 - Translate each group of four bits into the corresponding hexadecimal digit.
 - Add *leading* zeros if necessary.
- For the fractional part,
 - Scan the binary number from left to right.
 - Translate each group of four bits into the corresponding hexadecimal digit.
 - Add *trailing* zeros if necessary.

Example

- 1. $(1011 \ 0100 \ 0011)_2 = (B43)_{16}$
- 2. $(10 \ 1010 \ 0001)_2 = (2A1)_{16}$
- 3. $(.1000 \ 010)_2 = (.84)_{16}$
- 4. $(101 \cdot 0101 \cdot 111)_2 = (5.5E)_{16}$

Hexadecimal-to-Binary Conversion

- Translate every hexadecimal digit into its 4-bit binary equivalent.
- Examples:

 $(3A5)_{16} = (0011\ 1010\ 0101)_2$

- $(12.3D)_{16} = (0001\ 0010\ .\ 0011\ 1101)_2$
- $(1.8)_{16} = (0001.1000)_2$

Unsigned Binary Numbers

- An n-bit binary number
 - $B = b_{n-1}b_{n-2} \dots b_2b_1b_0$
 - 2ⁿ distinct combinations are possible, 0 to 2ⁿ-1.
- For example, for n = 3, there are 8 distinct combinations.

- 000, 001, 010, 011, 100, 101, 110, 111

- Range of numbers that can be represented
 - $n=8 \rightarrow 0$ to 2^8-1 (255)
 - n=16 → 0 to 2¹⁶-1 (65535)
 - n=32 -> 0 to 2³²-1 (4294967295)

Signed Integer Representation

- Many of the numerical data items that are used in a program are signed (positive or negative).
 - Question:: How to represent sign?
- Three possible approaches:
 - Sign-magnitude representation
 - One's complement representation
 - Two's complement representation

Sign-magnitude Representation

- For an n-bit number representation
 - The most significant bit (MSB) indicates sign
 - $0 \rightarrow \text{positive}$
 - 1 → negative

The remaining n-1 bits represent magnitude.

Contd.

• Range of numbers that can be represented:

Maximum :: $+(2^{n-1}-1)$ Minimum :: $-(2^{n-1}-1)$

• A problem:

Two different representations of zero.

+0 → 0 000....0 -0 → 1 000....0

One's Complement Representation

• Basic idea:

- Positive numbers are represented exactly as in sign-magnitude form.
- Negative numbers are represented in 1's complement form.
- How to compute the 1's complement of a number?
 - Complement every bit of the number $(1 \rightarrow 0$ and $(0 \rightarrow 1)$.
 - MSB will indicate the sign of the number.
 - $0 \rightarrow \text{positive}$
 - $1 \rightarrow negative$

Example :: n=4

 $0000 \rightarrow +0$ $1000 \rightarrow -7$ $0001 \rightarrow +1$ $1001 \rightarrow -6$ $0010 \rightarrow +2$ $1010 \rightarrow -5$ $1011 \rightarrow -4$ $0011 \rightarrow +3$ $0100 \rightarrow +4$ $1100 \rightarrow -3$ $0101 \rightarrow +5$ $1101 \rightarrow -2$ $0110 \rightarrow +6$ $1110 \rightarrow -1$ $0111 \rightarrow +7$ $1111 \rightarrow -0$

To find the representation of, say, -4, first note that +4 = 0100 -4 = 1's complement of 0100 = 1011

Autumn Semester 2009

Contd.

- Range of numbers that can be represented:
 - Maximum :: $+(2^{n-1}-1)$
 - Minimum :: $-(2^{n-1}-1)$
- A problem:

Two different representations of zero.

+0 → 0 000....0

-0 → 1 111....1

- Advantage of 1's complement representation
 - Subtraction can be done using addition.
 - Leads to substantial saving in circuitry.

Two's Complement Representation

• Basic idea:

- Positive numbers are represented exactly as in sign-magnitude form.
- Negative numbers are represented in 2's complement form.
- How to compute the 2's complement of a number?
 - Complement every bit of the number (1→0 and 0→1), and then add one to the resulting number.
 - MSB will indicate the sign of the number.
 - $0 \rightarrow \text{positive}$
 - 1 → negative

Example :: n=4

0000 → +0	1000 → -8
0001 → +1	1001 → -7
0010 → +2	1010 → -6
0011 → +3	1011 → -5
0100 → +4	1100 → -4
0101 → +5	1101 → -3
0110 → +6	1110 → -2
0111 → +7	1111 → -1

To find the representation of, say, -4, first note that +4 = 0100 -4 = 2's complement of 0100 = 1011+1 = 1100

Autumn Semester 2009

Contd.

- In C
 - short int
 - 16 bits → + (2¹⁵-1) to -2¹⁵
 - int
 - 32 bits \rightarrow + (2³¹-1) to -2³¹
 - long int
 - 64 bits \rightarrow + (2⁶³-1) to -2⁶³

Contd.

- Range of numbers that can be represented: Maximum :: + (2ⁿ⁻¹ - 1) Minimum :: - 2ⁿ⁻¹
- Advantage:
 - Unique representation of zero.
 - Subtraction can be done using addition.
 - Leads to substantial saving in circuitry.
- Almost all computers today use the 2's complement representation for storing negative numbers.

Subtraction Using Addition :: 1's Complement

- How to compute A B ?
 - Compute the 1's complement of B (say, B_1).
 - Compute $R = A + B_1$
 - If the carry obtained after addition is '1'
 - Add the carry back to R (called end-around carry).
 - That is, R = R + 1.
 - The result is a positive number.

Else

• The result is negative, and is in 1's complement form.

Example 1 :: 6 – 2

1's complement of 2 = 1101

Assume 4-bit representations.

Since there is a carry, it is added back to the result.

The result is positive.

Example 2 :: 3 – 5

1's complement of 5 = 1010

Assume 4-bit representations.

Since there is no carry, the result is negative.

1101 is the 1's complement of 0010, that is, it represents -2.

Subtraction Using Addition :: 2's Complement

- How to compute A B ?
 - Compute the 2's complement of B (say, B₂).
 - Compute $R = A + B_2$
 - Ignore carry if it is there.
 - The result is in 2's complement form.

Example 1 :: 6 – 2

2's complement of 2 = 1101 + 1 = 1110

Example 2 :: 3 – 5

2's complement of 5 = 1010 + 1 = 1011

Example 3 :: -3 – 5

2's complement of 3 = 1100 + 1 = 11012's complement of 5 = 1010 + 1 = 1011

Floating-point Numbers

- The representations discussed so far applies only to integers.
 - Cannot represent numbers with fractional parts.
- We can assume a decimal point before a 2's complement number.
 - In that case, pure fractions (without integer parts) can be represented.
- We can also assume the decimal point somewhere in between.
 - This lacks flexibility.
 - Very large and very small numbers cannot be represented.

Representation of Floating-Point Numbers

- A floating-point number F is represented by a doublet <M,E> :
 - $F = M \times B^{E}$
 - B → exponent base (usually 2)
 - M → mantissa
 - E \rightarrow exponent
 - M is usually represented in 2's complement form, with an implied decimal point before it.
- For example,
 - In decimal, 0.235 x 10⁶ In binary,
 - 0.101011 x 2⁰¹¹⁰

Example :: 32-bit representation

M represents a 2's complement fraction

1 > M > -1

- E represents the exponent (in 2's complement form)
 127 > E > -128
- Points to note:
 - The number of significant digits depends on the number of bits in M.
 - 6 significant digits for 24-bit mantissa.
 - The range of the number depends on the number of bits in E.
 - 10³⁸ to 10⁻³⁸ for 8-bit exponent.

A Warning

- The representation for floating-point numbers as shown is just for illustration.
- The actual representation is a little more complex.
- In C:
 - float :: 32-bit representation
 - double :: 64-bit representation

Representation of Characters

- Many applications have to deal with non-numerical data.
 - Characters and strings.
 - There must be a standard mechanism to represent alphanumeric and other characters in memory.
- Three standards in use:
 - Extended Binary Coded Decimal Interchange Code (EBCDIC)
 - Used in older IBM machines.
 - American Standard Code for Information Interchange (ASCII)
 - Most widely used today.
 - UNICODE
 - Used to represent all international characters.
 - Used by Java.

ASCII Code

- Each individual character is numerically encoded into a unique 7-bit binary code.
 - A total of 2⁷ or 128 different characters.
 - A character is normally encoded in a byte (8 bits), with the MSB not been used.
- The binary encoding of the characters follow a regular ordering.
 - Digits are ordered consecutively in their proper numerical sequence (0 to 9).
 - Letters (uppercase and lowercase) are arranged consecutively in their proper alphabetic order.

Some Common ASCII Codes

'A' :: 41 (H) 65 (D)	'0' :
'B' :: 42 (H) 66 (D)	'1' :
'Z' :: 5A (H) 90 (D)	'9' :
'a' :: 61 (H) 97 (D)	"("
'b' :: 62 (H) 98 (D)	'+'
	'?'
'z' :: 7A (H) 122 (D)	ʻ\n'
	40 ²

'0'	:: 30 (H) 48 (D)
'1'	:: 31 (H) 49 (D)
•••••	
'9'	:: 39 (H) 57 (D)
"("	:: 28 (H) 40 (D)
'+'	:: 2B (H) 43 (D)
'?'	:: 3F (H) 63 (D)
' \n '	:: 0A (H) 10 (D)
'\0'	:: 00 (H) 00 (D)

Character Strings

- Two ways of representing a sequence of characters in memory.
 - The first location contains the number of characters in the string, followed by the actual characters.

 The characters follow one another, and is terminated by a special delimiter.

String Representation in C

- In C, the second approach is used.
 - The '\0' character is used as the string delimiter.
- Example: "Hello" →

- A null string "" occupies one byte in memory.
 - Only the '\0' character.