Algorithm Analysis

What is an algorithm ?

- A clearly specifiable set of instructions
 - to solve a problem
- Given a problem
 - decide that the algorithm is correct
- Determine how much resource the algorithm will require
 - Time
 - Space

Analysis of Algorithms

- How much resource is required ?
- Measures for efficiency
 - Execution time \rightarrow time complexity
 - Memory space \rightarrow space complexity
- Observation :
 - The larger amount of input data an algorithm has, the larger amount of resource it requires.
 - Complexities are functions of the amount of input data (input size).

What do we use for a yardstick?

- The same algorithm will run at different speeds and will require different amounts of space when run on different computers, different programming languages, different compilers.
- But algorithms usually consume resources in some fashion that depends on the size of the problem they solve : n.

Sorting integers

```
void sort (int A[], int N)
ł
    int i, j, x;
    for (i=1; i<N; i++)
           \mathbf{x} = \mathbf{A}[\mathbf{i}];
           for (j=i; j>0 && x<A[j-1]; j- -)
                      A[j] = A[j-1];
           A[j] = x;
```

• We run this sorting algorithm on two different computers, and note the time (in ms) for different sizes of input.

Array Size	Home	Desktop	
n	Computer	Computer	
125	12.5	2.8	
250	49.3	11.0	
500	195.8	43.4	
1000	780.3	72.9	
2000	3114.9	690.5	

Contd.

- Home Computer : $f_1(n) = 0.0007772 \ n^2 + 0.00305 \ n + 0.001$
- Desktop Computer : f₂(n) = 0.0001724 n² + 0.00040 n + 0.100
 - Both are quadratic function of n.
 - The shape of the curve that expresses the running time as a function of the problem size stays the same.

Complexity classes

- The running time for different algorithms fall into different *complexity classes*.
 - Each complexity class is characterized by a different family of curves.
 - All curves in a given complexity class share the same basic shape.
- The *O-notation* is used for talking about the complexity classes of algorithms.

Introducing the language of O-notation

- For the quadratic function

 f(n) = an² + bn + c
 we will say that f(n) is O(n²).
 - We focus on the dominant term, and ignore the lesser terms; then throw away the coefficient.

Mathematical background

• T(N) = O(f(N)) if there are positive constants c and n_0 such that $T(N) \le c f(N)$ when $N \ge n_0$.

Meaning : As N increases, T(N) grows no faster than f(N).

The function T is eventually bounded by some multiple of f(N). f(N) gives an upper bound in the behavior of T(N).

• $T(N) = \Omega(g(N))$ if there are positive constants c and n_0 such that $T(N) \ge c g(N)$ when $N \ge n_0$.

Meaning : As N increases, T(N) grows no slower than g(N) ; T(N) grows at least as fast as g(N).

T(N) belongs to a family of function.

Programming and Data Structure

Contd.

- $T(N) = \theta(h(N))$ if and only if T(N) = O(h(N))and $T(N) = \Omega(h(N))$
 - Meaning : As N increases, T(N) grows as fast as h(N).
- T(N) = o(p(N)) if T(N) = O(p(N)) and

 $\mathbf{T}(\mathbf{N}) \neq \boldsymbol{\theta}(\mathbf{p}(\mathbf{N}))$

Meaning : As N increases, T(N) grows slower than p(N). $\lim_{n\to\infty} T(N)/p(N) = 0$.

Examples

- $\log_e n = O(n)$
- $n^{10} = o(2^n)$
- $3 n^2 + 5n + 1 = \theta(n^2)$

Concepts in Analysis

- 1. Worst Case
- 2. Average case (expected value)
- 3. Operator count

Why is the analysis of algorithms important?

Can advance on hardware overcome inefficiency of your algorithm ?

 \rightarrow NO !

Model of computation

- A normal computer, instructions executed sequentially.
 - addition, multiplication, comparison, assignment, etc.
 - all are assumed to take a single time unit.

Running time of algorithms

Assume speed S is 10⁷ instructions per second.

size	10	20	30	50	100	1000	10000
n							
n	.001	.002	.003	.005	.01	.1 ms	1 ms
	ms	ms	ms	ms	ms		
nlogn	.003	.008	.015	.03	.07	1 ms	13 ms
	ms	ms	ms	ms	ms		
n ²	.01	.04	.09	.25	1 ms	100	10 s
	ms	ms	ms	ms		ms	
n ³	.1	.8	2.7	12.5	100	100 s	28 h
	ms	ms	ms	ms	ms		
2 ⁿ	.1	.1 s	100 s	3 у	3x	inf	inf
2	ms				10 ¹³ c		

Observations

- There is a big difference between polynomial time complexity and exponential time complexity
- Hardware advances affect only efficient algorithms and do not help inefficient algorithms.

Maximum subsequence sum problem

- Given (possibly negative) integers $<A_1 A_2 \dots A_N >$ find the maximum value of $\sum_{k=i}^{j} A_k$.
 - For convenience, the maximum subsequence sum is considered to be 0 if all the integers are negative.
- Example :
 - For input <-2,11,-4,13,-5,2> the answer is 20 (A₂ to A₄)

Algorithm 1

```
int MaxSubSum (int A[], int N) {
  int thissum, maxsum, i,j,k;
1. maxsum = 0;
2. for (i=0; i<N; i++)
       for (j=i; j<N; j++) {
3.
              thissum = 0;
4.
5.
              for (k=i; k <= j; k++)
                     thissum += A[k];
6.
7.
              if (thissum > maxsum)
8.
                     maxsum = thissum;
9.
       return maxsum;
```

- The loop at line 2 is of size N.
- The second loop has size N-i.
- The third loop has size j-i+1
- Total : about N³ steps
- $\Sigma_{k=i}^{j} 1 = j i + 1$
- $\Sigma_{k=i}^{j}$ (j-i+1) = (N-i+1)(N-i)/2
- $\sum_{i=0}^{N-1} (N-i+1)(N-i)/2 = (N^3 + 3N^2 + 2N)/6$

Improve the running time

- Remove the second for loop
- Observe :

$$-\Sigma^{j}_{k=i} A_{k} = A_{j} + \Sigma^{j-1}_{k=i} A_{k}$$

Complexity:

Search in a sorted array

Given an integer X, and integers

 <A₀ A₁... A_{N-1}> which are presorted and already in memory, find i such that A_i = X, or return i = -1 if X is not in the input.

Linear Search

```
int search (int A[], int X, int N)
{
    int i;
    for (i=0; i<N; i++)
        if (A[i] == X)
            return i;
    return -1;
}</pre>
```

Complexity : $\theta(N)$

Binary Search

```
int BinarySearch (int A[], int X, int N)
  int low, mid, high;
  while (low <= high)
       mid = (low+high)/2;
       if (A[mid] < X) low = mid+1;
       else if (A[mid] > X) high = mid-1;
       else return mid;
  return -1;
```

Binary Search Illustrated

Analysis of binary search

- All the work done inside the loop takes O(1) time per iteration.
- Number of times the loop is executed :
 - The loop starts with <u>high -low = N-1</u>
 - Finishes with <u>high -low ≥ 1 </u>
 - Every time through the loop the value of <u>high -low</u> is at least halved from its previous value.

is at most $\lceil \log_2(N-1) \rceil + 2 = O(\log N)$.

Sorting integers

```
void sort (int A[], int N)
                                     - {
   int i, j, x;
   for (i=1; i<N; i++) {
         \mathbf{x} = \mathbf{A}[\mathbf{i}];
         for (j=i; j>0 && x<A[j-1]; j--)
                   A[j] = A[j-1];
         A[j] = x;
```

```
T(N) = 
1+2+ ... + N-1 
= N(N-1)/2 
∈ θ(N<sup>2</sup>)
```

Worst Case Analysis

- Suppose that all the cases fall in one of n cases: x₁, x₂, ..., x_n
 , x_n
 c_i denotes the cost for case x_i.
- Worst case complexity = max{c_i|1<=i<=n}
- Example : Sequential search on a table.
- There are n+1 cases
- Worst case time complexity = n

Average Case Analysis

- Suppose that all the cases fall in one of n cases:
 x₁, x₂, ..., x_n

 c_i denotes the cost for case x_i.
 p_i denotes the probability of x_i.
- Average case complexity = $\sum_{i=1}^{n} p_i c_i$
- Example : Sequential search on a table (the key is in the table and every key is equally likely)
- There are n cases, each w.p. 1/n.
- Average case time complexity = $\sum_{i=1}^{n} i / n$ = (n+1)/2