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What is an algorithm ?

« A clearly specifiable set of instructions
— to solve a problem

e Given a problem
— decide that the algorithm is correct

e Determine how much resource the algorithm will
require

— Time
— Space
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Analysis of Algorithms

 How much resource is required ?

 Measures for efficiency
— Execution time — time complexity
— Memory space — space complexity

e Observation :

— The larger amount of input data an algorithm has,
the larger amount of resource it requires.

o Complexities are functions of the amount of input data
(input size).
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What do we use for a yardstick?

e The same algorithm will run at different speeds
and will require different amounts of space
when run on different computers, different
programming languages, different compilers.

e But algorithms usually consume resources in
some fashion that depends on the size of the
problem they solve : n.
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Sorting integers

void SOrt (int A[], int N)
{
Inti, j, X;
for (i=1; I<N; i++)
{
X = A[i];
for (J=I; j>0 && x<A[j-1]; j- -)
All = AD-1J;
Al] = x;
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 We run this sorting algorithm on two different

computers, and note the time (in ms) for
different sizes of input.

Array Size Home Desktop
n Computer | Computer
125 12.5 2.8
250 49.3 11.0
500 195.8 43.4
1000 780.3 72.9
2000 3114.9 690.5
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Contd.

e Home Computer :

e Desktop Computer :

— Both are quadratic function of n.

— The shape of the curve that expresses the running
time as a function of the problem size stays the
same.
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Complexity classes

e The running time for different algorithms fall
Into different complexity classes.

— Each complexity class is characterized by a different
family of curves.

— All curves in a given complexity class share the same
basic shape.

* The O-notation is used for talking about the
complexity classes of algorithms.
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Introducing the language of O-notation

e For the quadratic function
f(n)=an?+bn+c

we will say that f(n) is O(n?).

— We focus on the dominant term, and ignore the
lesser terms; then throw away the coefficient.
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Mathematical background

 T(N)=O(f(N)) If there are positive constants c and n, such
that T(N) < c f(N) when N > n,,
Meaning : As N increases, T(N) grows no faster
than f(N).

The function T is eventually bounded by some multiple of
f(N). f(N) gives an upper bound in the behavior of T(N).

* T(N)=Q(g(N)) if there are positive constants ¢ and n, such
that T(N) =c g(N) when N = n,,

Meaning : As N increases, T(N) grows no slower
than g(N) ; T(N) grows at least as fast as g(N).

T(N) belongs to a family of function.
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Contd.

. T(N) = O(h(N)) if and only if T(N) = O (h(N))
and T(N) = Q(h(N))

Meaning : As N increases, T(N) grows as fast as
h(N).

* T(N) =0o(p(N)) It T(N) = O(p(N)) and
T(N) # 0(p(N))

Meaning : As N increases, T(N) grows slower than
P(N). lim__._ T(N)/p(N) = 0.

N—0o0
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Examples

* log.,n=0O(n)
« ni0=0o(2")

e 3n?2+5n+1=06(n?
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Concepts in Analysis

1. Worst Case

2. Average case (expected value)

3. Operator count

Why Is the analysis of algorithms important ?

Can advance on hardware overcome inefficiency
of your algorithm ?

—> NO!
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Model of computation

* A normal computer, instructions executed
sequentially.

— addition, multiplication, comparison, assignment,
etc.

— all are assumed to take a single time unit.
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Running time of algorithms

Assume speed S is 107 instructions per second.

size (10 20 30 50 100 |[1000 |10000

n

N .001 |.002 |.003 |.005 |.01 1 ms |1ms
ms ms ms ms ms

nlogn {.003 |.008 |.015 |.03 .07 1ms [13 ms
ms ms ms ms ms

n2 .01 .04 .09 .25 1ms |100 |10s
ms ms ms ms ms

n3 A1 .8 2.7 12.5 |100 |100s |28 h
ms ms ms ms ms

2” 1 1ls |100s [3y 3X inf inf

10" ¢
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Observations

* There is a big difference between polynomial
time complexity and exponential time
complexity

 Hardware advances affect only efficient
algorithms and do not help inefficient
algorithms.
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Maximum subsequence sum problem

o Given (possibly negative) integers
<A; Az ... A\ find the maximum value of
ij:i Ak .

— For convenience, the maximum subsequence sum is
considered to be O if all the integers are negative.

o Example :

— For input <-2,11,-4,13,-5,2> the answer is 20 (A2 to
As)
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Algorithm 1

int MaxSubSum (int A[], int N) {

1.
2.

oo =1 e Pl o= e

Int thissum, maxsum, i,J,K;
maxsum = 0;
for (1=0; I<N; 1++)
for (j=i; j<N; j++) {
thissum = 0;
for (k=i; k <=J; k++)
thissum += A[K];
If (thissum > maxsum)
maxsum = thissum;

}

return maxsum,
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ne loop at line 2 iIs of size N.
ne second loop has size N-I.

ne third loop has size j-i+1

Total : about N° steps

« X 1=j-i+l
o ¥ _ (j-i+1) = (N-i+1)(N-i)/2
o ¥NL_(N-i+1)(N-i)/2 = (N3 + 3N2 + 2N)/6
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Improve the running time

 Remove the second for loop
 Observe:

_ij:i A=A+ Zj-lk:i Ak
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Algorithm 2

iInt MaxSubSum?2 (int A[], int N)
{

Int thissum, maxsum, i, |;
1. maxsum = 0;

2. for (i=0; i<N; i++) Complexity :
3. { O(N™)
3. thissum = 0;
4, for (j=i; j < N; j++)
5. {
5. thissum += A[j];
6. If (thissum > maxsum)
1. maxsum = thissum;
}
}

8. return maxsum;
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Search In a sorted array

e Given an integer X, and integers
<A A1. .. An.1> Which are presorted and
already in memory, find i such that Aj = X, or
return 1 = -1 iIf X Is not in the input.
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Linear Search

Int search (int A[], int X, int N)
{
INt 1;
for (1=0; I<N; I++4)
If (A[1] == X)
return i;
return -1;

July 21, 2009 Programming and Data Structure

Complexity :

o(N)
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Binary Search

Int BinarySearch (int A[], int X, int N)
Int low, mid, high;
while (low <= high) {
mid = (low+high)/2;
If (A[mid] < X) low = mid+1;
else if (A[mid] > X) high = mid-1;
else return mid;

}

return -1;

{

July 21, 2009 Programming and Data Structure

24




Binary Search lllustrated

possible positions for what we are looking for

] ruled out as a possible position for what
we are looking for
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Analysis of binary search

 All the work done inside the loop takes O(1)
time per iteration.

 Number of times the loop Is executed :
— The loop starts with high -low = N-1
— Finishes with high -low >1

— Every time through the loop the value of high -low is
at least halved from its previous value.

is at most [ loga(N-1) |+ 2 = O(log N).
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Sorting integers

void sort (int A[], int N) {
Int 1, J, X;
for (I=1; I<N; i1++) {
x = All];
for (J=1; >0 && x<A[j-1]; J--)
Al] = AD-1];
AlJ] = x;
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T(N) =

1+2+ ... + N-1
= N(N-1)/2

e 0(N?)
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Worst Case Analysis

e Suppose that all the cases fall in one of n cases: X;, X,, ...
y Xn
c; denotes the cost for case X;.

« Worst case complexity = max{c;|1<=i<=n}
 Example : Sequential search on a table.

e There are n+1 cases

e \Worst case time complexity = n
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Average Case Analysis

o Suppose that all the cases fall in one of n cases:
X1s Xi vy Xy
c; denotes the cost for case X;.
p; denotes the probability of x;.

» Average case complexity = X"._; p; C;
 Example : Sequential search on a table (the key
IS In the table and every key is equally likely)

 There are n cases, each w.p. 1/n.

 Average case time complexity =X"._,i/n
= (n+1)/2
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