
July 21, 2009 Programming and Data Structure 1

Algorithm Analysis

July 21, 2009 Programming and Data Structure 2

What is an algorithm ?

• A clearly specifiable set of instructions
– to solve a problem

• Given a problem
– decide that the algorithm is correct

• Determine how much resource the algorithm will
require
– Time
– Space

July 21, 2009 Programming and Data Structure 3

Analysis of Algorithms

• How much resource is required ?
• Measures for efficiency

– Execution time → time complexity
– Memory space → space complexity

• Observation :
– The larger amount of input data an algorithm has,

the larger amount of resource it requires.

• Complexities are functions of the amount of input data
(input size).

July 21, 2009 Programming and Data Structure 4

What do we use for a yardstick?

• The same algorithm will run at different speeds
and will require different amounts of space
when run on different computers, different
programming languages, different compilers.

• But algorithms usually consume resources in
some fashion that depends on the size of the
problem they solve : n.

July 21, 2009 Programming and Data Structure 5

Sorting integers

void sort (int A[], int N)
{

int i, j, x;
for (i=1; i<N; i++)
{

x = A[i];
for (j=i; j>0 && x<A[j-1]; j- -)

A[j] = A[j-1];
A[j] = x;

}
}

July 21, 2009 Programming and Data Structure 6

• We run this sorting algorithm on two different
computers, and note the time (in ms) for
different sizes of input.

Array Size
n

Home
Computer

Desktop
Computer

125 12.5 2.8

250 49.3 11.0

500 195.8 43.4

1000 780.3 72.9

2000 3114.9 690.5

July 21, 2009 Programming and Data Structure 7

Contd.

• Home Computer :
f1(n) = 0.0007772 n2 + 0.00305 n + 0.001

• Desktop Computer :
f2(n) = 0.0001724 n2 + 0.00040 n + 0.100

– Both are quadratic function of n.
– The shape of the curve that expresses the running

time as a function of the problem size stays the
same.

July 21, 2009 Programming and Data Structure 8

Complexity classes

• The running time for different algorithms fall
into different complexity classes.
– Each complexity class is characterized by a different

family of curves.
– All curves in a given complexity class share the same

basic shape.

• The O-notation is used for talking about the
complexity classes of algorithms.

July 21, 2009 Programming and Data Structure 9

Introducing the language of O-notation

• For the quadratic function
f(n) = an2 + bn + c

we will say that f(n) is O(n2).

– We focus on the dominant term, and ignore the
lesser terms; then throw away the coefficient.

July 21, 2009 Programming and Data Structure 10

Mathematical background

• T(N) = O(f(N)) if there are positive constants c and n0 such
that T(N) ≤ c f(N) when N ≥ n0.
Meaning : As N increases, T(N) grows no faster

than f(N).
The function T is eventually bounded by some multiple of
f(N). f(N) gives an upper bound in the behavior of T(N).

• T(N) = Ω(g(N)) if there are positive constants c and n0 such
that T(N) ≥c g(N) when N ≥ n0.

Meaning : As N increases, T(N) grows no slower
than g(N) ; T(N) grows at least as fast as g(N).

T(N) belongs to a family of function.

July 21, 2009 Programming and Data Structure 11

Contd.

• T(N) = θ(h(N)) if and only if T(N) = O (h(N))
and T(N) = Ω(h(N))

Meaning : As N increases, T(N) grows as fast as
h(N).

• T(N) = o(p(N)) if T(N) = O(p(N)) and

T(N) ≠ θ(p(N))
Meaning : As N increases, T(N) grows slower than

p(N). lim n→∞T(N)/p(N) = 0.

July 21, 2009 Programming and Data Structure 12

Examples

• logen = O(n)
• n10 = o(2n)
• 3 n2 + 5n + 1 = θ(n2)

July 21, 2009 Programming and Data Structure 13

Concepts in Analysis

1. Worst Case
2. Average case (expected value)
3. Operator count
Why is the analysis of algorithms important ?
Can advance on hardware overcome inefficiency

of your algorithm ?

→ NO !

July 21, 2009 Programming and Data Structure 14

Model of computation

• A normal computer, instructions executed
sequentially.
– addition, multiplication, comparison, assignment,

etc.
– all are assumed to take a single time unit.

July 21, 2009 Programming and Data Structure 15

Running time of algorithms

Assume speed S is 107 instructions per second.

size
n

10 20 30 50 100 1000 10000

n .001
ms

.002
ms

.003
ms

.005
ms

.01
ms

.1 ms 1 ms

nlogn

.003
ms

.008
ms

.015
ms

.03
ms

.07
ms

1 ms 13 ms

n2 .01
ms

.04
ms

.09
ms

.25
ms

1 ms 100
ms

10 s

n3 .1
ms

.8
ms

2.7
ms

12.5
ms

100
ms

100 s 28 h

2n .1
ms

.1 s 100 s 3 y 3x
1013c

inf inf

July 21, 2009 Programming and Data Structure 16

Observations

• There is a big difference between polynomial
time complexity and exponential time
complexity

• Hardware advances affect only efficient
algorithms and do not help inefficient
algorithms.

July 21, 2009 Programming and Data Structure 17

Maximum subsequence sum problem

• Given (possibly negative) integers
<A1 A2 . . . AN> find the maximum value of
Σj

k=i Ak .
– For convenience, the maximum subsequence sum is

considered to be 0 if all the integers are negative.

• Example :
– For input <-2,11,-4,13,-5,2> the answer is 20 (A2 to

A4)

July 21, 2009 Programming and Data Structure 18

Algorithm 1
int MaxSubSum (int A[], int N) {

int thissum, maxsum, i,j,k;
1. maxsum = 0;
2. for (i=0; i<N; i++)
3. for (j=i; j<N; j++) {
4. thissum = 0;
5. for (k=i; k <= j; k++)
6. thissum += A[k];
7. if (thissum > maxsum)
8. maxsum = thissum;

}
9. return maxsum;

}

July 21, 2009 Programming and Data Structure 19

• The loop at line 2 is of size N.
• The second loop has size N-i.
• The third loop has size j-i+1
• Total : about N3 steps

• Σj
k=i 1 = j-i+1

• Σj
k=i (j-i+1) = (N-i+1)(N-i)/2

• ΣN-1
i=0 (N-i+1)(N-i)/2 = (N3 + 3N2 + 2N)/6

July 21, 2009 Programming and Data Structure 20

Improve the running time

• Remove the second for loop
• Observe :

–Σj
k=i Ak = Aj +Σj-1

k=i Ak

July 21, 2009 Programming and Data Structure 21

Algorithm 2
int MaxSubSum2 (int A[], int N)
{

int thissum, maxsum, i, j;
1. maxsum = 0;
2. for (i=0; i<N; i++)
3. {
3. thissum = 0;
4. for (j=i; j < N; j++)
5. {
5. thissum += A[j];
6. if (thissum > maxsum)
7. maxsum = thissum;

}
}

8. return maxsum;

}

Complexity :
O(N2)

July 21, 2009 Programming and Data Structure 22

Search in a sorted array

• Given an integer X, and integers
<A0 A1. . . AN-1> which are presorted and
already in memory, find i such that Ai = X, or
return i = -1 if X is not in the input.

July 21, 2009 Programming and Data Structure 23

Linear Search

int search (int A[], int X, int N)
{

int i;
for (i=0; i<N; i++)

if (A[i] == X)
return i;

return -1;
}

Complexity :
θ(N)

July 21, 2009 Programming and Data Structure 24

Binary Search

int BinarySearch (int A[], int X, int N) {
int low, mid, high;
while (low <= high) {

mid = (low+high)/2;
if (A[mid] < X) low = mid+1;
else if (A[mid] > X) high = mid-1;
else return mid;

}
return -1;

}

July 21, 2009 Programming and Data Structure 25

possible positions for what we are looking for
ruled out as a possible position for what
we are looking for

Binary Search Illustrated

July 21, 2009 Programming and Data Structure 26

Analysis of binary search

• All the work done inside the loop takes O(1)
time per iteration.

• Number of times the loop is executed :
– The loop starts with high -low = N-1
– Finishes with high -low ≥1
– Every time through the loop the value of high -low is

at least halved from its previous value.
is at most ⎡log2(N-1)⎤ + 2 = O(log N).

July 21, 2009 Programming and Data Structure 27

Sorting integers

void sort (int A[], int N) {
int i, j, x;
for (i=1; i<N; i++) {

x = A[i];
for (j=i; j>0 && x<A[j-1]; j--)

A[j] = A[j-1];
A[j] = x;

}
}

T(N) =
1+2+ ... + N-1
= N(N-1)/2
∈ θ(N2)

July 21, 2009 Programming and Data Structure 28

Worst Case Analysis

• Suppose that all the cases fall in one of n cases: x1, x2, ...
, xn
ci denotes the cost for case xi.

• Worst case complexity = max{ci|1<=i<=n}
• Example : Sequential search on a table.
• There are n+1 cases
• Worst case time complexity = n

July 21, 2009 Programming and Data Structure 29

Average Case Analysis

• Suppose that all the cases fall in one of n cases:
x1, x2, ... , xn

ci denotes the cost for case xi.
pi denotes the probability of xi.

• Average case complexity = Σn
i=1 pi ci

• Example : Sequential search on a table (the key
is in the table and every key is equally likely)

• There are n cases, each w.p. 1/n.
• Average case time complexity = Σn

i=1 i / n
= (n+1)/2

	Algorithm Analysis
	What is an algorithm ?
	Analysis of Algorithms
	What do we use for a yardstick?
	Sorting integers
	Contd.
	Complexity classes
	Introducing the language of O-notation
	Mathematical background
	Contd.
	Examples
	Concepts in Analysis
	Model of computation
	Running time of algorithms
	Observations
	Maximum subsequence sum problem
	Algorithm 1
	Improve the running time
	Algorithm 2
	Search in a sorted array
	Linear Search
	Binary Search
	Analysis of binary search
	Sorting integers
	Worst Case Analysis
	Average Case Analysis

