Algorithm Analysis

July 21, 2009

Programming and Data Structure

What is an algorithm ?

« A clearly specifiable set of instructions
— to solve a problem

e Given a problem
— decide that the algorithm is correct

e Determine how much resource the algorithm will
require

— Time
— Space

July 21, 2009 Programming and Data Structure

Analysis of Algorithms

 How much resource is required ?

 Measures for efficiency
— Execution time — time complexity
— Memory space — space complexity

e Observation :

— The larger amount of input data an algorithm has,
the larger amount of resource it requires.

o Complexities are functions of the amount of input data
(input size).

July 21, 2009 Programming and Data Structure

What do we use for a yardstick?

e The same algorithm will run at different speeds
and will require different amounts of space
when run on different computers, different
programming languages, different compilers.

e But algorithms usually consume resources in
some fashion that depends on the size of the
problem they solve : n.

July 21, 2009

Programming and Data Structure 4

Sorting integers

void SOrt (int A[], int N)
{
Inti, j, X;
for (i=1; I<N; i++)
{
X = A[i];
for (J=I; j>0 && x<A[j-1]; j- -)
All = AD-1J;
Al] = x;

July 21, 2009 Programming and Data Structure

 We run this sorting algorithm on two different

computers, and note the time (in ms) for
different sizes of input.

Array Size Home Desktop
n Computer | Computer
125 12.5 2.8
250 49.3 11.0
500 195.8 43.4
1000 780.3 72.9
2000 3114.9 690.5

July 21, 2009

Programming and Data Structure

Contd.

e Home Computer :

e Desktop Computer :

— Both are quadratic function of n.

— The shape of the curve that expresses the running
time as a function of the problem size stays the
same.

July 21, 2009 Programming and Data Structure 7

Complexity classes

e The running time for different algorithms fall
Into different complexity classes.

— Each complexity class is characterized by a different
family of curves.

— All curves in a given complexity class share the same
basic shape.

* The O-notation is used for talking about the
complexity classes of algorithms.

July 21, 2009 Programming and Data Structure 8

Introducing the language of O-notation

e For the quadratic function
f(n)=an?+bn+c

we will say that f(n) is O(n?).

— We focus on the dominant term, and ignore the
lesser terms; then throw away the coefficient.

July 21, 2009 Programming and Data Structure

Mathematical background

 T(N)=O(f(N)) If there are positive constants c and n, such
that T(N) < c f(N) when N > n,,
Meaning : As N increases, T(N) grows no faster
than f(N).

The function T is eventually bounded by some multiple of
f(N). f(N) gives an upper bound in the behavior of T(N).

* T(N)=Q(g(N)) if there are positive constants ¢ and n, such
that T(N) =c g(N) when N = n,,

Meaning : As N increases, T(N) grows no slower
than g(N) ; T(N) grows at least as fast as g(N).

T(N) belongs to a family of function.

July 21, 2009 Programming and Data Structure 10

Contd.

. T(N) = O(h(N)) if and only if T(N) = O (h(N))
and T(N) = Q(h(N))

Meaning : As N increases, T(N) grows as fast as
h(N).

* T(N) =0o(p(N)) It T(N) = O(p(N)) and
T(N) # 0(p(N))

Meaning : As N increases, T(N) grows slower than
P(N). lim__._ T(N)/p(N) = 0.

N—0o0

July 21, 2009 Programming and Data Structure 11

Examples

* log.,n=0O(n)
« ni0=0o(2")

e 3n?2+5n+1=06(n?

July 21, 2009

Programming and Data Structure

12

Concepts in Analysis

1. Worst Case

2. Average case (expected value)

3. Operator count

Why Is the analysis of algorithms important ?

Can advance on hardware overcome inefficiency
of your algorithm ?

—> NO!

July 21, 2009 Programming and Data Structure 13

Model of computation

* A normal computer, instructions executed
sequentially.

— addition, multiplication, comparison, assignment,
etc.

— all are assumed to take a single time unit.

July 21, 2009 Programming and Data Structure 14

Running time of algorithms

Assume speed S is 107 instructions per second.

size (10 20 30 50 100 |[1000 |10000

n

N .001 |.002 |.003 |.005 |.01 1 ms |1ms
ms ms ms ms ms

nlogn {.003 |.008 |.015 |.03 .07 1ms [13 ms
ms ms ms ms ms

n2 .01 .04 .09 .25 1ms |100 |10s
ms ms ms ms ms

n3 A1 .8 2.7 12.5 |100 |100s |28 h
ms ms ms ms ms

2” 1 1ls |100s [3y 3X inf inf

10" ¢

July 21, 2009

Programming and Data Structure

15

Observations

* There is a big difference between polynomial
time complexity and exponential time
complexity

 Hardware advances affect only efficient
algorithms and do not help inefficient
algorithms.

July 21, 2009 Programming and Data Structure

16

Maximum subsequence sum problem

o Given (possibly negative) integers
<A; Az ... A\ find the maximum value of
ij:i Ak .

— For convenience, the maximum subsequence sum is
considered to be O if all the integers are negative.

o Example :

— For input <-2,11,-4,13,-5,2> the answer is 20 (A2 to
As)

July 21, 2009 Programming and Data Structure 17

Algorithm 1

int MaxSubSum (int A[], int N) {

1.
2.

oo =1 e Pl o= e

Int thissum, maxsum, i,J,K;
maxsum = 0;
for (1=0; I<N; 1++)
for (j=i; j<N; j++) {
thissum = 0;
for (k=i; k <=J; k++)
thissum += A[K];
If (thissum > maxsum)
maxsum = thissum;

}

return maxsum,

July 21, 2009 Programming and Data Structure

18

ne loop at line 2 iIs of size N.
ne second loop has size N-I.

ne third loop has size j-i+1

Total : about N° steps

« X 1=j-i+l
o ¥ _ (j-i+1) = (N-i+1)(N-i)/2
o ¥NL_(N-i+1)(N-i)/2 = (N3 + 3N2 + 2N)/6

July 21, 2009 Programming and Data Structure

19

Improve the running time

 Remove the second for loop
 Observe:

_ij:i A=A+ Zj-lk:i Ak

July 21, 2009

Programming and Data Structure

20

Algorithm 2

iInt MaxSubSum?2 (int A[], int N)
{

Int thissum, maxsum, i, |;
1. maxsum = 0;

2. for (i=0; i<N; i++) Complexity :
3. { O(N™)
3. thissum = 0;
4, for (j=i; j < N; j++)
5. {
5. thissum += A[j];
6. If (thissum > maxsum)
1. maxsum = thissum;
}
}

8. return maxsum;

July 21, 2009 Programming and Data Structure

21

Search In a sorted array

e Given an integer X, and integers
<A A1. .. An.1> Which are presorted and
already in memory, find i such that Aj = X, or
return 1 = -1 iIf X Is not in the input.

July 21, 2009 Programming and Data Structure

22

Linear Search

Int search (int A[], int X, int N)
{
INt 1;
for (1=0; I<N; I++4)
If (A[1] == X)
return i;
return -1;

July 21, 2009 Programming and Data Structure

Complexity :

o(N)

23

Binary Search

Int BinarySearch (int A[], int X, int N)
Int low, mid, high;
while (low <= high) {
mid = (low+high)/2;
If (A[mid] < X) low = mid+1;
else if (A[mid] > X) high = mid-1;
else return mid;

}

return -1;

{

July 21, 2009 Programming and Data Structure

24

Binary Search lllustrated

possible positions for what we are looking for

] ruled out as a possible position for what
we are looking for

July 21, 2009 Programming and Data Structure 25

Analysis of binary search

 All the work done inside the loop takes O(1)
time per iteration.

 Number of times the loop Is executed :
— The loop starts with high -low = N-1
— Finishes with high -low >1

— Every time through the loop the value of high -low is
at least halved from its previous value.

is at most [loga(N-1) |+ 2 = O(log N).

July 21, 2009 Programming and Data Structure 26

Sorting integers

void sort (int A[], int N) {
Int 1, J, X;
for (I=1; I<N; i1++) {
x = All];
for (J=1; >0 && x<A[j-1]; J--)
Al] = AD-1];
AlJ] = x;

July 21, 2009 Programming and Data Structure

T(N) =

1+2+ ... + N-1
= N(N-1)/2

e 0(N?)

27

Worst Case Analysis

e Suppose that all the cases fall in one of n cases: X;, X,, ...
y Xn
c; denotes the cost for case X;.

« Worst case complexity = max{c;|1<=i<=n}
 Example : Sequential search on a table.

e There are n+1 cases

e \Worst case time complexity = n

July 21, 2009 Programming and Data Structure 28

Average Case Analysis

o Suppose that all the cases fall in one of n cases:
X1s Xi vy Xy
c; denotes the cost for case X;.
p; denotes the probability of x;.

» Average case complexity = X"._; p; C;
 Example : Sequential search on a table (the key
IS In the table and every key is equally likely)

 There are n cases, each w.p. 1/n.

 Average case time complexity =X"._,i/n
= (n+1)/2

July 21, 2009 Programming and Data Structure 29

	Algorithm Analysis
	What is an algorithm ?
	Analysis of Algorithms
	What do we use for a yardstick?
	Sorting integers
	Contd.
	Complexity classes
	Introducing the language of O-notation
	Mathematical background
	Contd.
	Examples
	Concepts in Analysis
	Model of computation
	Running time of algorithms
	Observations
	Maximum subsequence sum problem
	Algorithm 1
	Improve the running time
	Algorithm 2
	Search in a sorted array
	Linear Search
	Binary Search
	Analysis of binary search
	Sorting integers
	Worst Case Analysis
	Average Case Analysis

