Algorithm Analysis

What is an algorithm ?

- A clearly specifiable set of instructions
- to solve a problem
- Given a problem
- decide that the algorithm is correct
- Determine how much resource the algorithm will require
- Time
- Space

Analysis of Algorithms

- How much resource is required ?
- Measures for efficiency
- Execution time \rightarrow time complexity
- Memory space \rightarrow space complexity
- Observation :
- The larger amount of input data an algorithm has, the larger amount of resource it requires.
- Complexities are functions of the amount of input data (input size).

What do we use for a yardstick?

- The same algorithm will run at different speeds and will require different amounts of space when run on different computers, different programming languages, different compilers.
- But algorithms usually consume resources in some fashion that depends on the size of the problem they solve : n.

Sorting integers

```
void sort (int A[], int N)
{
    int i, j, x;
    for (i=1;i<N;i++)
    {
        x = A[i];
            for (j=i; j>0 & & x<A[j-1]; j- -)
                        A[j] = A[j-1];
            A[j] = x;
        }
}
```

- We run this sorting algorithm on two different computers, and note the time (in ms) for different sizes of input.

Array Size n	Home Computer	Desktop Computer
125	12.5	2.8
250	49.3	11.0
500	195.8	43.4
1000	780.3	72.9
2000	3114.9	690.5

Contd.

- Home Computer :

$$
f_{1}(n)=0.0007772 n^{2}+0.00305 n+0.001
$$

- Desktop Computer :

$$
f_{2}(n)=0.0001724 n^{2}+0.00040 n+0.100
$$

- Both are quadratic function of \mathbf{n}.
- The shape of the curve that expresses the running time as a function of the problem size stays the same.

Complexity classes

- The running time for different algorithms fall into different complexity classes.
- Each complexity class is characterized by a different family of curves.
- All curves in a given complexity class share the same basic shape.
- The O-notation is used for talking about the complexity classes of algorithms.

Introducing the language of O-notation

- For the quadratic function

$$
\begin{aligned}
& f(n)=a n^{2}+b n+c \\
& \text { we will say that } f(n) \text { is } O\left(n^{2}\right) \text {. }
\end{aligned}
$$

- We focus on the dominant term, and ignore the lesser terms; then throw away the coefficient.

Mathematical background

- $T(N)=O(f(N))$ if there are positive constants c and n_{0} such that $T(N) \leq \mathbf{c f}(N)$ when $N \geq n_{0}$.
Meaning : As N increases, $\mathrm{T}(\mathrm{N})$ grows no faster than $\mathrm{f}(\mathrm{N})$.
The function T is eventually bounded by some multiple of $f(N) . f(N)$ gives an upper bound in the behavior of $T(N)$.
- $T(N)=\Omega(g(N))$ if there are positive constants c and n_{0} such that $T(N) \geq c g(N)$ when $N \geq n_{0}$.
Meaning : As N increases, $\mathrm{T}(\mathrm{N})$ grows no slower than $g(N) ; T(N)$ grows at least as fast as $g(N)$.
$T(N)$ belongs to a family of function.

Contd.

- $T(N)=\theta(h(N))$ if and only if $T(N)=\mathbf{O}(\mathbf{h}(N))$ and $T(N)=\Omega(h(N))$
Meaning : As N increases, $\mathrm{T}(\mathrm{N})$ grows as fast as h(N).
- $T(N)=\mathbf{o}(p(N))$ if $T(N)=\mathbf{O}(p(N))$ and

$$
\mathbf{T}(\mathbf{N}) \neq \theta(\mathbf{p}(\mathbf{N}))
$$

Meaning : As N increases, $\mathrm{T}(\mathrm{N})$ grows slower than $p(N) . \lim _{\mathrm{n} \rightarrow \infty} \mathrm{T}(\mathrm{N}) / \mathrm{p}(\mathrm{N})=0$.

Examples

- $\log _{e} n=O(n)$
- $\left.\mathbf{n}^{10}=\mathbf{o (2 n}\right)$
- $3 \mathbf{n}^{2}+5 n+1=\theta\left(n^{2}\right)$

Concepts in Analysis

1. Worst Case

2. Average case (expected value)
3. Operator count

Why is the analysis of algorithms important ?
Can advance on hardware overcome inefficiency of your algorithm ?
\rightarrow NO!

Model of computation

- A normal computer, instructions executed sequentially.
- addition, multiplication, comparison, assignment, etc.
- all are assumed to take a single time unit.

Running time of algorithms

Assume speed S is 10^{7} instructions per second.

size n	$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{1 0 0 0}$	$\mathbf{1 0 0 0 0}$
n	.001 ms	.002 ms	.003 ms	.005 ms	.01 ms	.1 ms	1 ms
nlogn	.003 ms	.008 ms	.015 ms	.03 ms	.07 ms	1 ms	13 ms
n^{2}	.01 ms	.04 ms	.09 ms	.25 ms	1 ms	100 ms	10 s
n^{3}	.1 ms	.8 ms	2.7 ms	12.5 ms	100 ms	100 s	28 h
2^{n}	.1 ms	.1 s	100 s	3 y	3 x $10^{13} \mathrm{c}$	inf	inf

Observations

- There is a big difference between polynomial time complexity and exponential time complexity
- Hardware advances affect only efficient algorithms and do not help inefficient algorithms.

Maximum subsequence sum problem

- Given (possibly negative) integers $<A_{1} A_{2} \ldots A_{N}>$ find the maximum value of $\sum_{k=i}^{j} A_{k}$ 。
- For convenience, the maximum subsequence sum is considered to be 0 if all the integers are negative.
- Example :
- For input <-2,11,-4,13,-5,2> the answer is 20 (A_{2} to A4)

Algorithm 1

```
int MaxSubSum (int A[], int N) {
    int thissum, maxsum, i,j,k;
1. maxsum = 0;
2. for (i=0;i<N; i++)
3. for (j=i;j<N; j++) {
4. thissum = 0;
5. for (k=i;k<= j; k++)
6.
7.
8. if (thissum > maxsum) maxsum = thissum;
\}
9. return maxsum;
\}
```

- The loop at line 2 is of size \mathbf{N}.
- The second loop has size \mathbf{N} - i .
- The third loop has size j-i+1
- Total : about \mathbf{N}^{3} steps
- $\sum_{k=\mathrm{i}}^{\mathrm{j}} 1=\mathrm{j}-\mathrm{i}+1$
- $\sum_{\mathrm{k}=\mathrm{i}}^{\mathrm{j}}(\mathrm{j}-\mathrm{i}+1)=(\mathrm{N}-\mathrm{i}+1)(\mathrm{N}-\mathrm{i}) / 2$
- $\sum^{\mathrm{N}-1}{ }_{\mathrm{i}=0}(\mathrm{~N}-\mathrm{i}+1)(\mathrm{N}-\mathrm{i}) / 2=\left(\mathrm{N}^{3}+3 \mathrm{~N}^{2}+2 \mathrm{~N}\right) / 6$

Improve the running time

- Remove the second for loop
- Observe :

$$
-\sum_{k=i}^{j} \mathbf{A}_{\mathbf{k}}=\mathbf{A}_{\mathbf{j}}+\sum^{\mathrm{j}-1}{ }_{k=i} \mathbf{A}_{\mathbf{k}}
$$

Algorithm 2

Search in a sorted array

- Given an integer X , and integers $<\mathrm{A}_{0} \mathrm{~A}_{1} \ldots \mathrm{~A}_{\mathrm{N}-1}>$ which are presorted and already in memory, find i such that $A_{i}=X$, or return $i=-1$ if X is not in the input.

Linear Search

```
int search (int A[], int X, int N)
{
    int i;
    for (i=0; i<N; i++)
        if (A[i] == X)
        return i;
    return -1;
}
```


Binary Search

```
int BinarySearch (int A[], int X, int N)
    int low, mid, high;
    while (low <= high)
                {
        mid = (low+high)/2;
        if (A[mid] < X) low = mid+1;
        else if (A[mid] > X) high = mid-1;
        else return mid;
    }
    return -1;
}
```


Binary Search Illustrated

 possible positions for what we are looking for
\square ruled out as a possible position for what we are looking for

Analysis of binary search

- All the work done inside the loop takes $\mathbf{O}(1)$ time per iteration.
- Number of times the loop is executed :
- The loop starts with high -low = N-1
- Finishes with high -low ≥ 1
- Every time through the loop the value of high -low is at least halved from its previous value. is at most $\left\lceil\log _{2}(\mathrm{~N}-1)\right\rceil+2=\mathbf{O}(\log \mathrm{N})$.

Sorting integers

```
void sort (int A[], int N) {
    int i, j, x;
    for (i=1;i<N; i++) {
        x = A[i];
        for (j=i; j>0 && x<A[j-1]; j--)
        A[j] = A[j-1];
        A[j] = x;
    }
}
```


Worst Case Analysis

- Suppose that all the cases fall in one of \mathbf{n} cases: $\mathbf{x}_{1}, \mathrm{x}_{2}, \ldots$
, \mathbf{X}_{n}
c_{i} denotes the cost for case X_{i}.
- Worst case complexity $=\max \left\{\mathbf{c}_{\mathbf{i}} \mid 1<=\mathbf{i}<=\mathbf{n}\right\}$
- Example : Sequential search on a table.
- There are $\mathbf{n + 1}$ cases
- Worst case time complexity = \mathbf{n}

Average Case Analysis

- Suppose that all the cases fall in one of \mathbf{n} cases:

$$
x_{1}, x_{2}, \ldots, x_{n}
$$

c_{i} denotes the cost for case \mathbf{x}_{i}.
p_{i} denotes the probability of X_{i}.

- Average case complexity $=\Sigma_{i=1}^{n} p_{i} c_{i}$
- Example : Sequential search on a table (the key is in the table and every key is equally likely)
- There are \mathbf{n} cases, each w.p. $1 / n$.
- Average case time complexity $=\sum_{i=1}^{n} i / n$

$$
=(n+1) / 2
$$

