February 25, 2008 (FN)
Total time: 2 hours

Roll no: \qquad Section: \qquad
Name: \qquad

- This question paper consists of five pages.
- Answer all questions.
- Write your answers on the question paper itself. Your final answers must fit in the respective spaces provided. Strictly avoid untidiness or cancellations on the question-cum-answer paper.
- Do your rough work on the given answer-script or additional supplements. The rough work must be submitted, but will not be evaluated. Only answers in the question-cum-answer paper will be evaluated.
- Use of calculators is allowed.

| (To be filled in by the examiners) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Question No $\mathbf{1}$ $\mathbf{2}$ $\mathbf{3}$ $\mathbf{4}$ Total
 Marks
 |

1. (a) Find the 32 -bit floating point representation of 35.6 in the IEEE 754 format. Show your calculations.

Write your final answer below.

(b) How many floating point numbers x can be represented in the 32 -bit IEEE 754 format with $1 \leqslant x \leqslant 2$?

In Parts (c)-(d), a 32-bit pattern is interpreted as an unsigned fractional number with the implicit binary point to the left of bit 15 . As an example, the following pattern is interpreted as 22.6875 in decimal.

31	16	15	0
0000	0000	0001	0110

(c) The smallest positive number that can be represented in this scheme is
(d) The largest number that can be represented in this scheme is \qquad . (2)
(e) Write a function that, given a floating point number x as a parameter, prints m and e, where $x=m \times 2^{e}$ with $0.5 \leqslant|m|<1$ and with e an integer. For $x=0$, take $m=e=0$.

```
void fracexp ( double x )
{
```

\}
2. (a) Consider the following recursive C function.

```
unsigned int f ( unsigned int n )
{
    if (n < 10) printf("%d",n);
    else { printf("%d", n % 10); f(n/10); printf("%d", n % 10); }
}
```

Parts (b)-(e) are based on the following recursive function. Assume that both n, k are positive.

```
int S ( int n, int k )
{
        if (k > n) return 0;
        if ( (k == 1) || (k == n) ) return 1;
        return S(n-1,k-1) + k * S(n-1,k);
}
```

(b) What is the value returned by $\mathbf{S}(5,3)$? Show your calculations.

Therefore, $S(5,3)$ returns \qquad
(c) How many times is $\mathbf{S}()$ called (including the outermost call) to compute $\mathbf{S}(5,3)$?
(d) How many multiplications are performed to compute the value of $\mathbf{s}(5,3)$?
(e) Write a recursive function $\operatorname{SMul}()$ to count the number of multiplications in the call $\mathbf{S}(\mathbf{n}, \mathbf{k})$.
int SMul (int n, int k)
\{
\}
3. Let $a_{0}, a_{1}, \ldots, a_{n-1}$ be $n \geqslant 1$ positive integers. The continued fraction $\left\langle a_{0}, a_{1}, \ldots, a_{n-1}\right\rangle$ stands for the rational number: $\left\langle a_{0}, a_{1}, \ldots, a_{n-1}\right\rangle=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+.} \begin{array}{r}+\frac{1}{a_{n-1}}\end{array} .}$
(a) Write an iterative function that reads positive integers $a_{0}, a_{1}, \ldots, a_{n-1}$ (not necessarily in that order). The function computes and prints the value of $\left\langle a_{0}, a_{1}, \ldots, a_{n-1}\right\rangle$ as a rational number in the form p / q and also its floating-point value. The number of terms, that is, n is supplied to the function as an argument. Make clear in your code in which order you are reading and processing $a_{0}, a_{1}, \ldots, a_{n-1}$. There is no need to use an array.

```
void cfracitr ( int n )
```

\{
int num, den; /* Numerator and denominator */
/* Declare other int variables, if necessary */

```
    printf("Value = %d/%d = %lf\n", num, den, (double)num / (double)den);
```

\}
(b) Complete the following recursive function that returns the floating point value of a continued fraction $\left\langle a_{0}, a_{1}, \ldots, a_{n-1}\right\rangle$. Note that $\left\langle a_{i}, a_{i+1}, \ldots, a_{n-1}\right\rangle=a_{i}+\frac{1}{\left\langle a_{i+1}, a_{i+2}, \ldots, a_{n-1}\right\rangle}$ for $i=0,1, \ldots, n-2$.

```
double cfracrec ( int i , int n )
```

\{
int a;
printf("Enter a_\%d: ", i); scanf("\%d", \&a); /* Read a_{i} in a */
/* The terminating case, no recursive call */
if (i ==
\qquad) return \qquad ;
/* Make a recursive call and return */
return \qquad ; \}

The outermost call for computing $\left\langle a_{0}, a_{1}, \ldots, a_{n-1}\right\rangle$ should be: cfracrec (\qquad , \qquad) (1)
4. Let $a_{1}, a_{2}, \ldots, a_{n}$ be a sequence of positive integers. An increasing subsequence of length l is a contiguous block $a_{i}, a_{i+1}, \ldots, a_{i+l-1}$ satisfying $a_{i} \leqslant a_{i+1} \leqslant \cdots \leqslant a_{i+l-1}$.

Write a C program to read a sequence of positive integers and to print the length of the longest increasing subsequence in it. In order to terminate the sequence, the user should enter zero or a negative value. Your program must contain only one loop. Both scanning the next integer and processing the scanned integer should be done in that loop. Write no functions other than main (). Do not use any array.

Here is a sample run of your program.

```
Enter an integer: 9
Enter an integer: 2
Enter an integer: 6
Enter an integer: 8
Enter an integer: 5
Enter an integer: 7
Enter an integer: -1
Length of the longest increasing subsequence = 3
```

