
CS11001/11002/13002 Programming and Data Structures, Spring 2008

Mid-semester examination

Maximum marks: 50 February 25, 2008 (FN) Total time: 2 hours

Roll no: Section:

Name:

• This question paper consists of five pages.

• Answer all questions.

• Write your answers on the question paper itself. Your final answers must fit in the respective spaces
provided. Strictly avoid untidiness or cancellations on the question-cum-answer paper.

• Do your rough work on the given answer-script or additional supplements. The rough work must
be submitted, but will not be evaluated. Only answers in the question-cum-answer paper will be
evaluated.

• Use of calculators is allowed.

(To be filled in by the examiners)
Question No 1 2 3 4 Total

Marks

1. (a) Find the32-bit floating point representation of35.6 in the IEEE 754 format. Show your calculations.(4)

Solution: 35 = 32 + 2 + 1 = 25 + 21 + 20 = (100011)2 . Also, we have

0.6 × 2 = 1.2,

0.2 × 2 = 0.4,

0.4 × 2 = 0.8,

0.8 × 2 = 1.6,

that is,0.6 = (0.1001 1001 1001 1001 1001 1001 . . .)2. Therefore,

35.6 = (1.00011 1001 1001 1001 1001 1001 1001 . . .)2 × 2132−127.

Finally, 132 = 128 + 4 = (10000100)2 .

Write your final answer below.
0 1 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

(b) How many floating point numbersx can be represented in the32-bit IEEE 754 format with1 6 x 6 2?

223 + 1 (2)

— Page 1 of 5 —

In Parts (c)–(d), a32-bit pattern is interpreted as an unsigned fractional number with the implicit binary
point to the left of bit15. As an example, the following pattern is interpreted as22.6875 in decimal.

31 16 15 0

0000 0000 0001 0110 . 1011 0000 0000 0000

(c) The smallest positive number that can be represented in thisscheme is 2−16 . (2)

(d) The largest number that can be represented in this scheme is 216 − 2−16 . (2)

(e) Write a function that, given a floating point numberx as a parameter, printsm ande, wherex = m×2e

with 0.5 6 |m| < 1 and withe an integer. Forx = 0, takem = e = 0. (7)

void fracexp (double x)

{

int sign = 0, e = 0;
double m;

m = x;
if (m) {

if (m < 0) { sign = 1; m = -m; }
if (m >= 1) {

while (m >= 1) { m /= 2.0; ++e; }
} else if (m < 0.5) {

while (m < 0.5) { m *= 2.0; --e; }
}

}

if (sign) m = -m;
printf("%lf = (%lf) x 2^(%d)\n", x, m, e);

}

2. (a) Consider the following recursive C function.

unsigned int f (unsigned int n)

{

if (n < 10) printf("%d",n);

else { printf("%d", n % 10); f(n/10); printf("%d", n % 10); }

}

What does the callf(351274) print? 47215351274 (2)

— Page 2 of 5 —

Parts (b)–(e) are based on the following recursive function. Assume that bothn, k are positive.

int S (int n, int k)

{

if (k > n) return 0;

if ((k == 1) || (k == n)) return 1;

return S(n-1,k-1) + k * S(n-1,k);

}

(b) What is the value returned byS(5,3)? Show your calculations. (3)

S(5, 3) = S(4, 2) + 3 × S(4, 3)

=
[

S(3, 1) + 2 × S(3, 2)
]

+ 3 ×
[

S(3, 2) + 3 × S(3, 3)
]

=

[

1 + 2 ×
(

S(2, 1) + 2 × S(2, 2)
)

]

+ 3 ×

[

(

S(2, 1) + 2 × S(2, 2)
)

+ 3 × 1

]

=
[

1 + 2 × (1 + 2 × 1)
]

+ 3 ×
[

(1 + 2 × 1) + 3 × 1
]

= 25.

Therefore,S(5,3) returns 25 .

(c) How many times isS() called (including the outermost call) to computeS(5,3)? 11 times (1)

(d) How many multiplications are performed to compute the valueof S(5,3)? 5 (1)

(e) Write a recursive functionSMul() to count the number of multiplications in the callS(n,k). (5)

int SMul (int n , int k)

{

if (k > n) return 0;
if ((k == 1) || (k == n)) return 0;
return SMul(n-1,k-1) + SMul(n-1,k) + 1;

}

3. Let a0, a1, . . . , an−1 ben > 1 positive integers. Thecontinued fraction 〈a0, a1, . . . , an−1〉 stands for the

rational number:〈a0, a1, . . . , an−1〉 = a0 +
1

a1 +
1

a2 + . . .
+

1

an−1

.

— Page 3 of 5 —

(a) Write an iterative function that reads positive integersa0, a1, . . . , an−1 (not necessarily in that order).
The function computes and prints the value of〈a0, a1, . . . , an−1〉 as a rational number in the formp/q and
also its floating-point value. The number of terms, that is,n is supplied to the function as an argument. (6)

void cfracitr (int n)

{

int num, den; /* Numerator and denominator */

/* Declare other int variables, if necessary */

int i, tmp, a;

num = 1; den = 0;
for (i = n-1; i >= 0; --i) {

printf("a_%d = ", i); scanf("%d", &a);
tmp = num;
num = a * num + den;
den = tmp;

}

printf("Value = %d/%d = %lf\n", num, den, (double)num / (double)den);

}

(b) Complete the following recursive function that returns thefloating point value of a continued fraction

〈a0, a1, . . . , an−1〉. Note that〈ai, ai+1, . . . , an−1〉 = ai +
1

〈ai+1, ai+2, . . . , an−1〉
for i = 0, 1, . . . , n − 2. (6)

double cfracrec (int i , int n)

{

int a;

printf("Enter a_%d: ", i); scanf("%d", &a); /* Read ai in a */

/* The terminating case, no recursive call */

if (i == n-1) return (double)a ;

/* Make a recursive call and return */

return (double)a + 1.0 / cfracrec(i+1,n) ;

}

The outermost call for computing〈a0, a1, . . . , an−1〉 should be:cfracrec(0 , n) (1)

— Page 4 of 5 —

4. Let a1, a2, . . . , an be a sequence of positive integers. An increasing subsequence of lengthl is a contiguous
block ai, ai+1, . . . , ai+l−1 satisfyingai 6 ai+1 6 · · · 6 ai+l−1.

Write a C program to read a sequence of positive integers and to print the length of the longest increasing
subsequence in it. In order to terminate the sequence, the user should enter zero or a negative value. Your
program must containonly one loop. Both scanning the next integer and processing the scanned integer
should be done in that loop. Write no functions other thanmain(). Do not use any array.

Here is a sample run of your program. (8)

Enter an integer: 9

Enter an integer: 2

Enter an integer: 6

Enter an integer: 8

Enter an integer: 5

Enter an integer: 7

Enter an integer: -1

Length of the longest increasing subsequence = 3

#include <stdio.h>

int main ()
{

int a, prev = -1, runningmaxlen = 0, maxlen = 0;

while (1) {
printf("Enter an integer: "); scanf("%d", &a);
if (a <= 0) {

if (runningmaxlen > maxlen) maxlen = runningmaxlen;
break;

}
if (a >= prev) {

++runningmaxlen;
} else {

if (runningmaxlen > maxlen) maxlen = runningmaxlen;
runningmaxlen = 1;

}
prev = a;

}
printf("Length of the longest increasing sequence = %d\n", maxlen);

}

— Page 5 of 5 —

