
CS13002 Programming and Data Structures, Spring 2006

End-semester examination

Total marks: 60 April 26, 2006 Total time: 3 hours

Roll no: Section:

Name:

• This question paper consists of nine pages. Do not write anything on this front page except your name,
roll number and section.

• Answer all questions.

• Write your answers on the question paper itself. Your final answers must fit in the respective spaces
provided. Strictly avoid untidiness or cancellations on the question-cum-answer paper.

• Do your rough work on the rough sheets provided. The rough work must be submitted, but will not
be evaluated. Only answers in the question-cum-answer paper will be evaluated.

• Not all blanks carry equal marks in Questions 3–6. Evaluation will depend on the overall correctness.

(To be filled in by the examiners)
Question No 1 2 3 4 5 6 Total

Marks

— Page 1 of 9 —

1. For each of the following parts, circle the letter corresponding to the correct answer. (1×10)

(a) What string is printed by the callstrFunc("PDS 2006")?

void strFunc (char A[])
{

int d = ’a’-’A’, i = 0;

while (A[i]) {

if ((A[i] >= ’A’) && (A[i] <= ’Z’)) A[i] += d;

++i;

}

printf("%s", A);

}

(A) pds 2006 (B) PDS 2006 (C) pds (D) PDS

(b) What integer value is printed by the following program?

#include <stdio.h>

int *what (int *p)
{

++p; *p = 10; ++p;
return p;

}

int main ()
{

int A[] = {1,2,3,4,5}, *p;

p = what(A);

printf("%d\n", p[0]);

}

(A) 1 (B) 2 (C) 3 (D) 10

(c) What is the listing of the elements of the matrix

1 2
7 8
4 5

 in the row-major order?

(A) 1,2,4,5,7,8 (B) 1,2,7,8,4,5 (C) 1,2,8,7,4,5 (D) 1,7,4,2,8,5

(d) Which of the four assignments isnot legal after the following declaration?

int *A, *B, C[10];

(A) A = B; (B) B = A+10; (C) B = C+20; (D) C = B+30;

(e) Assume that my machine supports32-bit addresses. The structuremyStruct is declared as follows.
What value is returned bysizeof(struct myStruct)on my machine?

struct myStruct {

long A;

char B[10];

float C[10];

struct myStruct *D;

}

(A) 16 (B) 22 (C) 58 (D) 88

Question 1 is continued to the next page. . .

— Page 2 of 9 —

(f) How many bytes are allocated to the pointerp after the following call?

#define MAXSIZE 100

p = (long int *)malloc(MAXSIZE * sizeof(long int));

(A) 4 (B) 100 (C) 400 (D) 1600

(g) Consider the following sequence of push and pop operations on an initially empty stackS.

S = push(S,1);

S = pop(S);

S = push(S,2);

S = push(S,3);

S = pop(S);

S = push(S,4);

S = pop(S);

S = pop(S);

Which of the following is the correct order in which elementsare popped?

(A) 1,2,3,4 (B) 1,3,2,4 (C) 1,3,4,2 (D) 4,3,2,1

(h) Consider the three functionsf(n) = n3 + n + 1, g(n) = 56n2 + 78, andh(n) = 1.23n. Which of the
following statements isnot true?

(A) f(n) = O(h(n)) (B) g(n) = O(f(n)) (C) g(n) = O(h(n)) (D) h(n) = O(f(n))

(i) The callrecFunc("programming")is made, whererecFunc() is defined as follows.

void recFunc (char A[])
{

int t;

t = strlen(A);

if (t == 0) return;

else if (t % 2 == 0) recFunc(&A[t/2]);

else recFunc(&A[1]);

}

How many times isrecFunc()called? Include the outermost call ofrecFunc("programming")in the
count.

(A) 11 (B) 7 (C) 6 (D) 2

(j) Suppose that an arrayA of sizen > 1 is passed to the following function?

void someFunc (int A[] , int n)
{

int i,j,k;

for (i=0; i<n; ++i) {

for (j=1; j<=i; ++j) A[j] -= A[j-1];

for (k=j; k<n/2; ++k) A[k] += A[k+1];

}

}

What is the running time of the above function?

(A) O(n) (B) O(n log n) (C) O(n2) (D) None of the above

— Page 3 of 9 —

2. Consider the following recursive function in two non-negative integer argumentsm,n.

unsigned int A (unsigned int m , unsigned int n)

{

if (m == 0) return n+1;

if (n == 0) return A(m-1,1);

return A(m-1,A(m,n-1));

}

Denote byA(m,n) the value returned by this function.A(m,n) is called theAckermann function. We have
A(0, n) = n + 1 for all n > 0. Moreover,

A(1, n) = A(0, A(1, n − 1)) = 1 + A(1, n − 1) = 1 + [1 + A(1, n − 2)] = 2 + A(1, n − 2)

= · · · = n + A(1, 0) = n + A(0, 1) = n + 2 for all n > 0.

Derive closed-form mathematical formulas (as functions ofn) for the following special cases. Show the
details of your derivations.

(a) A(2, n) = (5)

(b) A(3, n) = (5)

— Page 4 of 9 —

3. You are given anr × c matrix A. Your task is to compute the transpose ofA and store the transpose inA
itself, without using an additional matrix.

The computation of the transpose is easy ifA is a square matrix, i.e., ifr = c. So assume thatr 6= c. Let
D = max(r, c). We may treatA as aD × D matrix with garbage (possibly uninitialized) values stored in
some entries. Transposing thisD × D matrix solves the problem, but involves some unwanted work.For
example, ifr = 10 andc = 100, then the matrix contains1000 elements. HereD = 100. Transposing a
D × D matrix means consideration ofD2 = 10, 000 elements, 90% of which are garbage values.

We avoid this problem as follows. Letd = min(r, c). We first transpose the initiald × d part of the matrix.
Next we look at the remaining elements and relocate them to appropriate places. Complete the following
function that implements this algorithm. (10)

#define MAXSIZE 100

void transpose (int A[MAXSIZE][MAXSIZE] , int r , int c)
/* In-place transposition of the r x c matrix A*/
{

int i,j; /* i runs over row indices, j over column indices*/
int d; /* d is the minimum dimension*/
int t; /* temporary variable used for swapping*/

/* Assign to d the minimum of the row and column dimensions of A*/

/* First transpose the initial d x d part*/

for (i = 0; i < ; ++i)

for (j = 0; j < ; ++j) {
/* Swap the i,j-th and the j,i-th elements*/

}

if (r < c) {

for (i = ; i < ; ++i)

for (j = ; j < ; ++j)

/* Relocate the i,j-th element to the j,i-th location*/

} else if (r > c) {

for (i = ; i < ; ++i)

for (j = ; j < ; ++j)

/* Relocate the i,j-th element to the j,i-th location*/

}

}

— Page 5 of 9 —

4. For a pair of real numbersa, b with a < b, the interval[a, b] is defined as the set of all real numbers between
a andb, i.e., [a, b] = {x | x > a andx 6 b}. Represent an interval by the following structure:

typedef struct { float a, b; } interval;

We are given an arrayA of n intervals[ai, bi] for i = 0, 1, . . . , n − 1. We look at the union of all these
intervals, namely, at the setS =

⋃n−1

i=0
[ai, bi]. The given intervals may be overlapping. Our task is to write

S as the union of non-overlapping intervals, i.e., as an arrayB of m non-overlapping intervals[cj , dj] for
j = 0, 1, . . . ,m − 1 (for somem 6 n). As an example, consider the ten intervals:

[3, 5], [8, 12], [10, 19], [11, 18], [19, 28], [23, 29], [27, 31], [33, 42], [33, 40], [35, 38].

The corresponding array of non-overlapping intervals is asfollows. We havem = 3 in this case.

[3, 5], [8, 31], [33, 42].

In order to solve this problem, we sort the input intervals with respect to their left end-points. Then we enter
a loop. We store the next unprocessed interval[ai, bi] in a temporary structure variablet. Then we look at
the interval[ai+1, bi+1]. If ai+1 6 t.b, the interval[ai+1, bi+1] can be merged witht. This merging step
alters the right end-point oft if and only if the right end-point of[ai+1, bi+1] is strictly bigger than that ofb.
Then consider the intervals[ai+2, bi+2], [ai+3, bi+3], . . . , [ai+l, bi+l] as long as merging can be done. When
merging is no longer possible, we writet in the output arrayB. We then go to the top of the loop, store
[ai+l+1, bi+l+1] in t, and repeat the same procedure, until all of then input intervals are taken care of.

(a) Complete the following function that implements this algorithm. The function should return the number
of intervals in the output array. You do not have to write the sorting functionsortIntervals(). (8)

int mergeIntervals (interval A[] , int n , interval B[])
/* A is the input array of size n and B is the output array*/
{

int i = 0, j = 0; /* i is for reading from A, j is for writing to B*/
interval t; /* temporary variable */

sortIntervals(A,n); /* Sort A with respect to the left end-points*/

while (1) {

/* Store in t the next unprocessed input interval*/

t = ; ++i;

/* As long as merging is possible*/

while ((i < n) && ()) {

/* Look at the possibility of extending the right end-point of t*/

if () t.b = ;

++i;

}

/* Write the accumulated interval t to the output array B*/

/* Check whether all input intervals are processed*/

if () return ; /* Return the size of B */

}

}

(b) Suppose thatsortIntervals()runs inO(n log n) time. What is the running time of the function
mergeIntervals()(Circle the best answer)? (2)

(A) O(n) (B) O(n log n) (C) O(n2) (D) O(2n)

— Page 6 of 9 —

5. [Josephus problem] Imagine a situation wheren convicts numbered1, 2, . . . , n are sitting (in that order) at
a round table in a prison. The prosecutor keeps on circling around the table in the order1, 2, . . . , n and then
back to1. He starts his rotation at convict1 and kills (and removes) everym-th convict he encounters. After
n − 1 iterations, only one convict survives and is set free. As an example, taken = 10 andm = 3. The
convicts are killed in the order3, 6, 9, 2, 7, 1, 8, 5, 10, and convict4 survives.

In this exercise, you write a program that, givenn andm, determines the survivor. You are asked to use
a circular linked list which is like an ordinary linked list with the only exceptionthat the pointer of the
last node points to the first node (instead of beingNULL). The following program first creates a circular list
on n persons and then simulates the prosecutor by traversing around the circular list. The program finally
prints the survivor. No dummy node is maintained at the head.However, in order to make deletion easy, the
running pointer points to the node immediately before the node to be deleted. (10)

#include <stdio.h>

typedef struct _node {
int number;
struct _node *next;

} node;

int main ()
{

node *head, /* the header */

p; / the running pointer (prosecutor)*/
int n, m, i;

scanf("%d%d",&n,&m);

/* Allocate memory for the first node*/

p = head = (node *)malloc(sizeof(node)); p -> number = 1;

/* Allocate memory for the remaining nodes*/

for (i=2; i<=n; ++i) {

}

/* Let the last link point to the head*/

/* As long as there are two or more living convicts*/

while () {

/* Skip m-1 convicts */

for (i=1; ; ++i)

printf("Convict %d killed\n",);

/* Delete the node from the list*/

}

printf("Convict %d survives\n",);

}

— Page 7 of 9 —

6. You are given anm×n grid of points, wherem is counted along thex-direction andn along they-direction.
The grid points are numbered as(i, j) for i = 1, 2, . . . ,m, j = 1, 2, . . . , n. The lower left corner has the
number(1, 1) and the top right corner has the number(m,n). We plan to locate all the paths from(1, 1) to
(m,n) such that each step in each path is either a forward or an upward movement from one grid point to a
neighboring point (i.e., backward and downward movements are not allowed). Since there is a total ofm−1
forward andn−1 upward movements in each path, the total number of paths is

(m+n−2

m−1

)

which corresponds
to the choice of the forward steps in a sequence ofm + n − 2 steps. The following figure describes a3 × 3
mesh and the

(

4

2

)

= 6 admissible paths through it (consider the bold edges).

Path 2Path 1 Path 3 Path 4 Path 5 Path 6

Path 1 : (1,1) (2,1) (3,1) (3,2) (3,3)
Path 2 : (1,1) (2,1) (2,2) (3,2) (3,3)
Path 3 : (1,1) (2,1) (2,2) (2,3) (3,3)
Path 4 : (1,1) (1,2) (2,2) (3,2) (3,3)
Path 5 : (1,1) (1,2) (2,2) (2,3) (3,3)

Path 6 : (1,1) (1,2) (1,3) (2,3) (3,3)

We print these paths using a stack. We initially push the point (1, 1) to the top of the stack. Against every
point in the stack, we maintain a direction indicator which implies the next direction to explore from this
point: 0 means alongx direction,1 means alongy direction and2 means that both directions are explored
from this point. Whenever we push a point, we set its direction indicator to0. When the indicator becomes
2, we pop it from the stack.

We then enter a loop which repeats as long as the stack is not empty. If the top stores the point(m,n),
then the stack contains a path from(1, 1) to (m,n). We print this path. We then determine whether further
movement from this point is possible. If not, we pop the pointfrom the stack. Otherwise we first check
whether a movement in they direction is possible. If so, we push the point vertically above the current
point, otherwise we push the point to the right of the currentpoint. Before this push operation, the direction
indicator of the current top is modified appropriately.

Complete the following program that implements this algorithm. Here we do not use the stack ADT calls,
but write in-line codes for the push and pop operations. The top of the stack is copied to the variabletop,
and the index of the top of the stack is maintained in the variable topidx. The direction indicator is stored
in the fielddir of the structureelement. (10)

#include <stdio.h>

#define MAXSIZE 100

typedef struct { int x, y, dir; } element;

void printPath (element stack[] , int m , int n)
/* This function prints the current path stored in the stack*/
{

int i;

for (i=0; i<=m+n-2; ++i) printf("(%d,%d) ", stack[i].x, stack[i].y);
printf("\n");

}

Question 6 is continued to the next page. . .

— Page 8 of 9 —

int main ()
{

int m, n, count, topidx;
element stack[MAXSIZE], top;

scanf("%d%d",&m,&n);

/* Initialize the stack */

stack[0].x = 1; stack[0].y = 1; stack[0].dir = 0; topidx = 0; count = 0;

/* while the stack is not empty*/

while () {

/* store the current top of the stack*/

top = stack[topidx];

if ((top.x == m) && (top.y == n)) {

/* Reached end of path. Print the path.*/

++count; printf("Path %d : ", count); printPath(stack,m,n);

top.dir = 2; /* no further exploration*/

}

if (top.dir == 2) {

/* Both directions explored. Pop the current top.*/

} else if ((top.dir == 1) || ((top.dir == 0) && (top.x == m))) {

/* Explore next step in y direction*/

if (top.y == n) /* pop */

else { /* push */

stack[topidx].dir = ;

topidx = ;

stack[topidx].x = ;

stack[topidx].y = ;

stack[topidx].dir = ;

}

} else {

/* Explore next step in x direction*/

}

}

}

— Page 9 of 9 —

