CS13002 Programming and Data Structures, Spring 2005

Mid-semester examination : Solutions

Roll no: \qquad
FB1331
Section: \qquad
Name: \qquad Foolan Barik

- Answer all questions.
- Write your answers in the question paper itself. Your final answers must fit in the respective spaces provided. Strictly avoid untidiness or cancellations on the question-cum-answer paper.
- Do your rough work on the given answer-script or additional supplements. The rough work must be submitted, but will not be evaluated. Only answers in the question-cum-answer paper will be evaluated.
- Not all blanks carry equal marks for Questions 3, 4 and 5. Evaluation will depend on the overall correctness.

1. For each of the following parts, circle the letter corresponding to the correct answer.
(a) Which of the following is not a legal name of a C variable?
(A) _123var
(B) 123_var
(C) var_123
(D) var123_
(b) Assume that the integer variables a, b and c respectively store the values 5, 6 and 7 respectively. At that instance the following statement is executed:
```
a = a * b % c + a;
```

What value is assigned to the variable a?
(A) 5
(B) 6
(C) 7
(D) 30
(c) What value is assigned to the variable a ?
\#define N $10+10$
$a=N$ * N;
(A) 400
(B) 210
(C) 200
(D) 120
(d) Assume that a and b are int variables and x is a float variable holding the values 3,6 and 4.5 respectively. Which of the following conditions is true?
(A) $(a * b>x * x)$
(B) $\left(a * b>(\right.$ int $\left.) x^{*} x\right)$
(C) (a*b>(int) $\left.\left(x^{*} x\right)\right)$
(D) $(a * b>$ (int) $x *$ (int) $x)$
(e) Which of the following conditions is equivalent to the condition $(!((x>=y) \& \&(y>=z)))$?
(A) $(!(x>=z))$
(B) $(x<=z)$
(C) $((x<y) \& \&(y<z))$
(D) $((x<y) \mid l(y<z))$
(f) How many times is the body of the following loop executed?
int i;
for (i=0; i<100; i=i+3) printf("i = \%d\n", i);
(A) 100
(B) 97
(C) 34
(D) 33
(g) What does the following function return in terms of the argument n ?

```
unsigned int f ( unsigned int n )
{
    unsigned int s = 0, t = 0;
    while (n > 0) {
        s=s + n;
        t = t + n * n * n;
        n = n - 1;
    }
    return (t - s * s);
}
```

(A) 0
(B) 1
(C) $n^{3}-n^{2}$
(D) $\frac{1}{12} n\left(n^{2}-1\right)(3 n+2)$
(h) What does the following function return? Assume that $n>0$.

```
int g ( int A[] , int n )
{
    int i, s;
    for (s=A[0], i=1; i<n; ++i) s = s + A[i] - A[i-1];
    return s;
}
```

(A) 0
(B) $A[n-1]$
(C) $A[n]$
(D) $A[n-1]+A[0]$
(i) What value of s does the following program print?

```
#include <stdio.h>
void sum ( int a , int b , int s ) { s = a + b; }
main ()
{
    int a = 3, b = 2, s = 1;
    sum(a,b,s);
    printf("s = %d\n", s);
}
```

(A) 1
(B) 2
(C) 3
(D) 5
(j) What value does the call $h(5)$ return, where h is defined as follows?

```
int h ( int n )
{
    if (n == 0) return 1;
    return 2*h(n-1);
}
```

(A) 25
(B) 32
(C) 64
(D) 120
(k) What are the least and largest integers representable in the 10-bit signed 2's complement format?
(A) $-2^{9}, 2^{9}$
(B) $-2^{9}+1,2^{9}-1$
(C) $-2^{9}+1,2^{9}$
(D) $-2^{9}, 2^{9}-1$
(l) Given that a, b, c, d are very large floating point variables and we have to compute $(a * b) /(c * d)$, which will be the preferred way?
(A) $(a * b) /(c * d)$
(B) $a^{*}\left(b /\left(c^{*} d\right)\right)$
(C) $(a / c) *(b / d)$
(D) $((a * b) / c) / d$
2. (a) Consider the following program:

```
#include <stdio.h>
main ()
{
    int m, n;
    printf("Supply two integers: ");
    scanf("%d%d",&m,&n);
    m = m - n;
    n = m + n;
    m = n - m;
    printf("%d %d\n", m,n);
}
```

Describe, in terms of the scanned integers m and n, what integer values are printed at the end of the above program:

Answer: The three assignment statements swap the values of m and n and so the scanned integers are printed in the opposite order they are supplied by the user.
\qquad
\qquad
(b) Consider the following function that expects a non-negative integer argument:

```
unsigned int doit ( unsigned int n )
{
    unsigned int m;
    m = 0;
    while (n > 0) {
        m = (m*10) + (n%10);
        n = n/10;
    }
    return m;
}
```

What does doit (92429) return? 92429

Describe the return value of doit as a function of the input argument n.

The function doit returns the integer whose (decimal) digits are in the reverse order as they are present in the input argument n . For example, upon an input of 12345 as n , doit returns 54321.
3. Consider a game played between two players I and II. Initially there is a collection of N coins in a bag. Player I starts. Subsequently, moves alternate between the players. During a move of Player I, 1 or 2 or ... or M_{1} number of coins should be take out from the bag, whereas for a move of Player II, 1 or 2 or \ldots or M_{2} number of coins need be taken out. The player who makes the last move and empties the bag wins.

Let us now inductively define a winning stage of the game for a player. Suppose that at some stage of the game exactly C coins are left in the bag and it is Player I's turn to move next. (This is the situation initially with $C=N$.) If $C=0$, Player I cannot make a move and loses. If $1 \leqslant C \leqslant M_{1}$, Player I can remove all the remaining coins and wins. Finally, suppose $C>M_{1}$. A good move for Player I is taking out m coins for $1 \leqslant m \leqslant M_{1}$ such that $C-m$ is not a winning stage for Player II. If such an m exists, the current stage of the game is winning for Player I, and m is called a winning move for Player I. A winning move for Player II can be analogously defined.
Let us take an example: $M_{1}=2$ and $M_{2}=3$. The stage $C=0$ is losing for both the players, whereas the stages $C=1,2$ are winning for both of them. The stage $C=3$ is losing for Player I, since either 1 or 2 coins may only be taken out, leaving 2 or 1 coins respectively in the bag. Both these stages are winning for Player II. On the other hand, Player II can draw three coins, so the stage $C=3$ is winning for Player II.
(a) What is a winning move, if any, for Player I at stage $C=4$? \qquad None
(b) What is a winning move, if any, for Player II at stage $C=5$? $\quad 1$ or 2
(c) Complete the following recursive function that accepts the current stage C (number of coins left) and the limits M_{1}, M_{2} (not necessarily in that order) as the sole arguments and returns a winning move for the player who is going to make a move, provided that such a move exists. If no winning move exists, the function returns 0 .

```
unsigned int winningMove ( unsigned int C , unsigned int myM, unsigned int yourM )
{
    unsigned int m;
    /* If no coins are left, the player loses. */
    if (C == 0) return 0;
    /* If no more than myM coins are left, the player takes out all. */
    if (C <= myM) return C;
    /* The player cannot take out all coins. Search for a winning move m. */
    for (m=1;m<= myM ; m = m+1) {
        /* If taking out m coins leaves the opponent in a non-winning stage, */
        if ( winningMove( C-m , yourM , myM ) == 0
            /* then m is a winning move. */
            return m;
    }
    /* No good moves have been found. Return failure. */
    return 0;
}
```

4. Fill in the blanks to complete the following program that partitions an array a with respect to a number key into three consecutive regions L, E, G, such that all elements in L, E, G are less than, equal to or greater than key respectively. Note that, the elements within the individual regions L and G don't have to satisfy any ordering among themselves. The program uses a function partition that takes four parameters: an array A, two indices start and end, and a number key and partitions the subarray $\mathrm{A}[$ start], ..., A [end] into three regions L, E, G described above. It does so by performing some exchanges, but without using an extra array. At any intermediate stage it maintains the following invariant: $A=$ LUEG, where L, E, and G are described above and u corresponds to the elements that are yet unclassified (i.e., unprocessed). Initially all elements are unclassified, and finally u should be empty. Three variables us, ve, ee in the function keep track of the boundaries of the four regions: us marks the start of the block U, ue the end of U and ee the end of E. In every iteration, $A[u e]$ is inspected and the boundaries are modified accordingly.

```
#include <stdio.h>
#define LENGTH 100
void partition ( int A[] , int key , int start , int end )
{
    int us,ue,ee; /* Boundaries */
    int t; /* Temporary variable that may be used for swapping */
    /* Initialize the boundaries us, ue and ee */
    us = start; ue = end; ee = end;
    /* Repeat the following loop as long as the unclassified region U is nonempty */
    while ( us <= ue ) {
        if ( A[ue] < key ) {
            /* Append A[ue] to the region L. You can use at most three assignments. */
                t = A[ue]; A[ue] = A[us]; A[us] = t;
            us = us + 1;
        } else if (A[ue] == key ) {
            /* The region E grows, so adjust the U-E boundary. */
            ue = ue - 1;
        } else { /* Now we are in the case A[ue] > key. */
            /* The region G grows. You can use at most three assignments. */
                t=A[ue]; A[ue] = A[ee]; A[ee] = t;
                ue = ue - 1; ee = ee - 1;
        }
    }
}
main ()
{
    int A[LENGTH];
    int i, j;
    /* Scan array elements */
    printf("Supply %d integers:\n",LENGTH);
    for (i = 0; i <= (LENGTH - 1); i = i + 1) scanf("%f", &A[i]);
    /* Now partition the entire array A with respect to the key A[0] */
    partition( A A[0] , , % LENGTH - 1 );
    printf("The partitioned array is\n");
    for (i = 0; i <= (LENGTH - 1); i = i + 1) printf("%f\n ", A[i]);
}
```

5. A crucial step in binary search (on a sorted array) is to split the array, when required, into two nearly equal parts. It is also possible to do the search on a sorted array by splitting the array using Fibonacci numbers F_{k}, when required. (Recall that Fibonacci numbers are defined as $F_{0}=0, F_{1}=1$ and $F_{k}=F_{k-1}+F_{k-2}$ for $k \geqslant 2$.) The Fibonacci search scheme works as follows:

- The initial search window is the whole (sorted) array.
- If there is only one element in the search window, the search fails or succeeds.
- Otherwise, suppose that there are n elements in the search window.
- Find F_{k} such that $F_{k} \geqslant n$ and $F_{k-1} \leqslant n$.
- If the element at position F_{k-2} from the beginning of the search window matches the key, then the search succeeds.
- If the key is smaller, then continue the search among the first F_{k-2} elements from the start of the current window.
- Otherwise, continue searching among the rest of the elements in the search window. Note that the size of the window for the remaining elements need not be a Fibonacci number.

Fill in the missing parts of the program given below to perform Fibonacci search.

```
#include <stdio.h>
void fS(int keyAr[], int key, int sIdx, int n, int Fk, int Fk_1)
{
    int t, Fk_2, loc;
    if (n == 1) {
            loc = SIdx
            if (key == keyAr[loc])
                printf("Search succeeded at location %d\n", loc);
            else
            printf("Search failed at location %d\n", loc);
    } else {
        Fk_2 = Fk - Fk_1;
        loc = sIdx + Fk_2 - 1 ;
        if (key == keyAr[loc]) {
            printf("Search succeeded at location %d\n", loc);
            return;
        } else if (key < keyAr[loc]) {
            fS(keyAr, key, _ SIdx _' F_ Fk_2_, FEk_2_, [_Fk_1 - Fk_2_);
        } else {
            for (Fk = Fk_1 = 1; n - Fk_2 > Fk; t = Fk + Fk_1, Fk_1 = Fk, Fk = t);
            fS(keyAr, key, __SIdx + Fk_2 , __ n - Fk_2 , _ Fk__ __Ek_1_);
        }
    }
}
fSWrap(int keyAr[], int key, int n )
/* First call to fS with appropriate values for sIdx, n, Fk and Fk_1 respectively. */
{
    int t, Fk, Fk_1, Fk_2;
    for (Fk = Fk_1 = 1; n > Fk; t = Fk + Fk_1, Fk_1 = Fk, Fk = t);
    fS(keyAr, key, _ 0 _ _ n__ _ Fk__, Fk_1__);
}
main()
{
    int keyAr[] = { -34, -14, 5, 35, 53, 350, 376, 456, 785, 975 };
    fSWrap(keyAr, 376, 10);
}
```

