
C the Code

Partha Bhowmick
Professor

CSE Department, IIT Kharagpur
http://cse.iitkgp.ac.in/~pb

November 8, 2024

http://cse.iitkgp.ac.in/~pb

Contents

1 Introduction 7
1.1 Computer . 7
1.2 Components of a computer . 7
1.3 Algorithm and flowchart . 8
1.4 Computer program . 8
1.5 Exercise problems . 9

2 Variables and expressions 11
2.1 Variables . 11
2.2 Data types . 12
2.3 Constants . 13
2.4 Statements . 13
2.5 Operands, operators, expressions . 14
2.6 Precedence of arithmetic operators . 14
2.7 Type casting . 15
2.8 Types of expressions . 15
2.9 Solved problems . 17
2.10 Exercise problems . 24

3 Conditionals 25
3.1 Solved problems . 26
3.2 Exercise problems . 32

4 Loops 34
4.1 Syntax of while loop and do-while loop . 34
4.2 Syntax of for loop . 35
4.3 break and continue . 35
4.4 Nested loops . 36
4.5 Solved problems . 38
4.6 Exercise problems . 43

5 One-dimensional arrays 44
5.1 What is array? . 44
5.2 Why array? . 44
5.3 Declaring arrays . 46
5.4 Initializing arrays . 46
5.5 Accessing and working with arrays . 47
5.6 Solved problems . 48
5.7 Exercise problems . 52

6 Functions 54
6.1 What is function? . 54
6.2 Defining a function . 55
6.3 Execution of a Function . 56

2

Contents 3

6.4 Prototype versus Definition . 57
6.5 The return statement . 59
6.6 Local and global variables . 60
6.7 Scope of a variable . 60
6.8 Parameter passing . 61

6.8.1 Passing by value . 61
6.8.2 Passing by reference . 62

6.9 Recursive function . 63
6.9.1 Activation record and recursion stack . 64
6.9.2 Tower of Hanoi . 66
6.9.3 Direct and indirect recursion . 68
6.9.4 Mutual recursion . 68

6.10 Passing an array to a function . 71
6.11 Macros (#define) . 71
6.12 #define with arguments . 72
6.13 Extra topics . 74

6.13.1 Generating random input using rand . 74
6.13.2 main() with arguments . 76

6.14 Solved problems . 78
6.15 Exercise problems . 83

7 Strings 85
7.1 Characters and strings . 85
7.2 Declaring a string . 86
7.3 Initializing a string . 86
7.4 Reading strings with %s . 87
7.5 Reading strings with white spaces . 88
7.6 String library . 89

7.6.1 strlen . 90
7.6.2 strcpy . 91
7.6.3 strcat . 92

7.7 Solved problems . 93
7.8 Exercise problems . 95

8 Pointers 96
8.1 What is a pointer? . 96
8.2 Types of pointer . 97
8.3 Use of pointer . 98
8.4 Operations with pointers and dereferenced pointers . 100

8.4.1 Dereferencing . 100
8.5 Pointer to 1D array . 101

8.5.1 Usefulness . 101
8.5.2 Indexing with pointer . 101

8.6 Pointer arithmetic . 102
8.7 Scale factor: sizeof() . 103
8.8 Passing pointers to a function . 104
8.9 Dynamic memory allocation . 105

8.9.1 Memory Allocation Functions . 106
8.9.2 Dynamic memory allocation and error handling . 107

8.10 Solved problems . 107
8.11 Exercise problems . 111

9 Two-dimensional arrays 113
9.1 Examples . 113

© Partha Bhowmick

4 Contents

9.2 Declaration (static) . 114
9.3 Initialization . 115
9.4 Operations . 116
9.5 2D array storage . 117
9.6 Passing 2D arrays to functions . 118
9.7 Dynamic memory allocation for 2D array . 119
9.8 Declaration (dynamic): A summary . 121
9.9 Arrays with higher dimension . 122
9.10 Solved problems . 123
9.11 Exercise problems . 130

10 Searching in 1D array 132
10.1 Linear search . 132
10.2 Binary search . 134
10.3 Solved problems . 137
10.4 Exercise problems . 140

11 Sorting 142
11.1 Bubble Sort: A basic sorting algorithm . 143
11.2 Selection Sort (Version 1) . 145
11.3 Selection Sort (Version 2) . 146
11.4 Insertion Sort: Another basic sorting algorithm . 148
11.5 Quick Sort . 150
11.6 Merge Sort . 155
11.7 Classification of sorting algorithms . 156
11.8 Recursive vs Iterative Algorithms . 157
11.9 Exercise problems . 158

12 Number systems 159
12.1 Representation of Integers . 159

12.1.1 Decimal number system . 159
12.1.2 Octal number system . 159
12.1.3 Hexadecimal number system . 160
12.1.4 Conversion from decimal number system . 160
12.1.5 Conversion from decimal to binary . 161
12.1.6 Unsigned binary number system . 161
12.1.7 Word of CPU . 161
12.1.8 Signed number . 162
12.1.9 Sign-magnitude . 162
12.1.10 1’s complement numeral . 163
12.1.11 2’s complement numeral . 164
12.1.12 Word extension in 2’s complement . 165
12.1.13 Carry-out and overflow in 2’s complement . 165
12.1.14 10’s complement . 166

12.2 Decimal numbers: Standard floating-point representation 167
12.2.1 Floating-point representation versus fixed-point representation 168

12.3 Binary numbers: Normalized floating-point representation 169
12.3.1 Data classes and normalization . 169
12.3.2 Examples . 171
12.3.3 nan . 172
12.3.4 About inf, +0, -0 . 172

12.4 Solved problems . 173
12.5 Exercise problems . 178

13 Structures 179

© Partha Bhowmick

Contents 5

13.1 Structure declaration . 179
13.2 Structure variable declaration . 180
13.3 The typedef construct . 180
13.4 Structures and typedef . 180
13.5 Operations with structure . 181

13.5.1 Accessing the members: dot operator . 181
13.5.2 Structure initialization . 182

13.6 Assignment of structure variables . 182
13.7 Array inside structure . 182
13.8 Size of a structure . 183
13.9 Array of structure . 183
13.10 Nested structure . 184
13.11 Self-referencing structure . 185
13.12 Structure as function argument . 185
13.13 Pointer to structure as function argument . 186
13.14 Operator Precedence . 187
13.15 Solved problems . 187
13.16 Exercise problems . 190

14 Abstract Data Types 192
14.1 List . 192
14.2 Set . 192
14.3 Stack . 193

14.3.1 Header Files . 194
14.4 Queue . 197

14.4.1 Applications . 197
14.4.2 Linear queue . 198
14.4.3 Circular queue . 201

14.5 Conceptual problems . 203
14.6 Solved problems . 207

15 Linked Lists 215
15.1 Essence of linked lists . 215

15.1.1 Scope and programmability . 215
15.1.2 Advantages of linked lists . 216
15.1.3 Disadvantages of linked lists . 216
15.1.4 Comparison with array-based datatypes . 216

15.2 Node of a linked list . 217
15.3 Operations on linear linked list . 218

15.3.1 Creating a linked list . 218
15.3.2 Inserting at the beginning of a linked list . 218
15.3.3 Inserting at the end of a linked list . 220
15.3.4 Inserting in an ordered linked list . 221
15.3.5 Deleting from a linked list . 222
15.3.6 Searching in a linked list . 223
15.3.7 Displaying a Linked List . 223

15.4 Stack as a linked list . 224
15.5 Queue as a linked list . 225
15.6 Solved problems . 227
15.7 Exercise problems . 230

© Partha Bhowmick

6 Contents

General note

1. Questions at the advanced level are marked with ♣ (harder) and ♠ (hardest).

© Partha Bhowmick

1 | Introduction

1.1 Computer

Computers have changed our world, making it easier to work, learn, and play. At the heart of every
computer is programming, which tells the computer what to do. Programming turns ideas into instructions
that computers can follow, enabling amazing things in science, medicine, and everyday life. As we dive into
C programming, we will learn the basics that allow these incredible machines to solve problems, run apps,
and power the digital world. Understanding programming is like unlocking a superpower, giving you the
skills to create and innovate with technology.

A computer is a rapidly evolving machine engineered to process data and extract information. The
processing is done according to a given sequence of instructions called a program or code. These programs
enable computers to perform a wide range of computational tasks. More importantly, many of these tasks
are performed at lightning speed—much faster than even the most brilliant minds—such as adding a million
numbers in less than a millisecond!

1.2 Components of a computer

All computations in a computer are carried out through arithmetic and logical operations, based on Boolean
logic and the binary number system. And all kinds of data in a computer—whether numbers or text or image
or audio-video signal—are stored in a computer just as binary numbers or binary strings. To store data and
to process them, the following components are required for manufacturing a computer system (Figure 1.1).

1. Computer hardware: Includes the physical parts of a computer, which are as follows.

(i) Central Processing Unit (CPU) with a microprocessor that carries out all arithmetic and logical
operations, and with a control unit to arrange the order of operations as the need be.

drwxrwxr-x 5 root root 4096 2008-07-23 02:32 kernel
drwxrwxr-x 5 root root 4096 2008-07-23 02:15 lib
drwxrwxr-x 2 root root 4096 2008-07-23 02:15 mm
drwxrwxr-x 41 root root 4096 2008-07-23 02:33 net
drwxrwxr-x 9 root root 4096 2008-07-23 02:12 scripts
drwxrwxr-x 4 root root 4096 2008-07-23 02:15 security
drwxrwxr-x 18 root root 4096 2008-07-23 02:15 sound
drwxrwxr-x 2 root root 56 2008-07-23 02:12 usr
-rw-r--r-- 1 root root 466 2008-07-23 02:33 ..tmp_kallsyms1.o.cmd
-rw-r--r-- 1 root root 466 2008-07-23 02:33 ..tmp_kallsyms2.o.cmd
-rw-r--r-- 1 root root 634 2008-07-23 02:33 ..tmp_vmlinux1.cmd
-rw-r--r-- 1 root root 650 2008-07-23 02:33 ..tmp_vmlinux2.cmd
-rw-r--r-- 1 root root 41410 2008-07-23 02:32 .config
-rw-r--r-- 1 root root 40956 2008-07-23 02:12 .config.old
-rw-rw-r-- 1 root root 572 2008-02-25 17:59 .gitignore
-rw-rw-r-- 1 root root 3657 2008-02-25 17:59 .mailmap
-rw-r--r-- 1 root root 70 2008-07-23 02:32 .missing-syscalls.d
-rw-r--r-- 1 root root 851087 2008-07-23 02:33 .tmp_System.map
-rw-r--r-- 1 root root 1244271 2008-07-23 02:33 .tmp_kallsyms1.S
-rw-r--r-- 1 root root 309464 2008-07-23 02:33 .tmp_kallsyms1.o
-rw-r--r-- 1 root root 1244271 2008-07-23 02:33 .tmp_kallsyms2.S
-rw-r--r-- 1 root root 309464 2008-07-23 02:33 .tmp_kallsyms2.o
-rwxr-xr-x 1 root root 4932528 2008-07-23 02:33 .tmp_vmlinux1
-rwxr-xr-x 1 root root 5129136 2008-07-23 02:33 .tmp_vmlinux2
-rw-r--r-- 1 root root 2 2008-07-23 02:33 .version
-rw-r--r-- 1 root root 638 2008-07-23 02:33 .vmlinux.cmd
-rw-rw-r-- 1 root root 18693 2008-02-25 17:59 COPYING
-rw-rw-r-- 1 root root 91435 2008-02-25 17:59 CREDITS
-rw-rw-r-- 1 root root 1530 2008-02-25 17:59 Kbuild
-rw-rw-r-- 1 root root 89876 2008-02-25 17:59 MAINTAINERS
-rw-rw-r-- 1 root root 50404 2008-02-25 17:59 Makefile
-rw-r--r-- 1 root root 182981 2008-07-23 02:33 Module.symvers
-rw-rw-r-- 1 root root 16930 2008-02-25 17:59 README
-rw-rw-r-- 1 root root 3119 2008-02-25 17:59 REPORTING-BUGS
-rw-r--r-- 1 root root 851087 2008-07-23 02:33 System.map
-rwxr-xr-x 1 root root 5129136 2008-07-23 02:33 vmlinux
root@rainbird:/usr/src/linux-2.6.22.19# _

Monitor Computer

Keyboard
Mouse

Printer

Figure 1.1: An example of a desktop computer system (source: wiki).

7

8 1. Introduction

(ii) Memory Unit consisting of the following types:

(a) Random Access Memory (RAM), also known as primary memory or main memory or
simply memory. Anywhere if you get just the term ‘memory’, know that it is RAM.

(b) Secondary memory, also known as hard disk.
(c) Tertiary memory, such as an external disk or a pen-drive.

(iii) Input devices, such as keyboard, mouse, and joystick.
(iv) Output devices, such as monitor or display screen, speakers, printers, and plotters.
(v) Motherboard: The printed circuit board (PCB) within a computer, containing the main circuitry

where all other parts of the hardware plug into, in order to create a cohesive whole.

2. Operating system (OS) and other software: OS is the system software that manages computer hard-
ware and software resources, and provides necessary services to run computer programs. For hardware
functions related to input, output, and memory allocation, the OS acts as an intermediary between
programs and the computer hardware. A software consists of one or more computer programs along
with necessary documentation and other files.

1.3 Algorithm and flowchart

An algorithm provides a systematic method to solve a problem. It is visually represented by a flowchart
and practically implemented by a computer program. Flowchart aids programmers in grasping the logic
quickly, bypassing intricate programming details. Drawing a flowchart before writing the actual program
is a very good habit for beginners. Figure 1.2 shows a flowchart with the related algorithm and a part of
the C program needed to find and print the larger between two numbers. Another flowchart for the same
problem but with three numbers as input, is also shown in Figure 1.2. Notice that in this flowchart, no extra
variable is used but we need three comparisons. In §1.5 (Exercise), with the same input, you are asked to
construct a flowchart that will use two comparisons and one extra variable.

1.4 Computer program

A computer program is a sequence of instructions for a computer to execute. A computer program in its
human-readable form is called source code. A source code is written in a programming language (also called
high-level language or HLL), such as C, by a programmer. For example, a program a01-1.c written by you
in C language is the source code. In C language, the source code needs a compiler such as gcc to run on it,
in order to get the binary executable code (also called executable code, or simply executable, for brevity).
For example, the command gcc a01-1.c gives you the executable a.out corresponding to the source code
a01-1.c. Any executable code is basically a machine code, as it consists of machine-language instructions.
The compiler gcc that you run on any C code is just a machine code. There are several important stages
during the compilation process; the important ones are shown in Figure 1.3.

The source code a01-1.c and its executable a.out are all stored in the hard disk of your computer.
When the executable a.out is requested for execution, the operating system loads a.out from the hard disk
to the RAM and starts a process. The CPU switches to this process as soon as possible so that it can fetch,
decode, and then execute the machine-language instructions of a.out, one by one; we then say that the
process is running in the computer.

Library It contains many files written by experts. We call them header files or library files. One such
header file is stdio.h, which must be included in any C code in its first line, using the instruction
#include <stdio.h>. Any other header file, such as math.h or stdlib.h, should be included this way
in the beginning. Each header file contains detailed instructions for complicated tasks. For example, the
functions scanf and printf are contained in stdio.h, and the square-root function sqrt is contained in

© Partha Bhowmick

1. Introduction 9

Start

Read a and b

a ą b?

Print a Print b

End

Yes No
1. Read a and b
2. If (a > b) then
3. print a
4. Else
5. print b

scanf("%d%d", &a, &b);
if (a > b)

printf("%d", a);
else

printf("%d", b);

Flowchart Algorithm C program

Start

Read a, b, c

a ą b?

Print a Print b

End

Yes No

a ą c?
Yes No

Print c

b ą c?
Yes No

Print c

Figure 1.2: Top: The flowchart, the related algorithm, and a part of the C program needed to find and
print the larger between two numbers, a and b.
Bottom: The flowchart to find and print the largest among three numbers.

math.h. You have to include these library files in your C program to use their functions. For example, you
have to include stdio.h to use scanf or/and printf, by writing #include <stdio.h> in the beginning of
your code. Similarly, you you have to include math.h to use its sqrt function, by writing #include <math.h>
just after #include <stdio.h>.

1.5 Exercise problems

1. rLargest among three numberss Draw a flowchart to read three numbers and determine the largest.
You may use an extra variable but must not exceed two comparisons in total.

© Partha Bhowmick

10 1. Introduction

Compiler Linker

So
ur

ce
co

de

a01-1.c

gcc

stdio.h, math.h, stdlib.h, etc.
a.out

Ex
ec
ut

ab
le

co
de

Obj
ec
t co

de

Library

Figure 1.3: The steps of compilation in C using the command gcc a01-1.c.

2. rSum of 10 numberss Draw a flowchart to read 10 numbers one by one and compute their sum. You
may use two extra variables and a maximum of 9 additions in total.

3. rLargest among 10 numberss Draw a flowchart to read 10 numbers one by one and determine the
largest. You may use two extra variables and a maximum of 9 comparisons in total.

4. rLargest and smallest among 10 numberss Draw a flowchart to read 10 numbers one by one and
determine both the largest and the smallest. You may use three extra variables and should aim to
minimize the total number of comparisons.

© Partha Bhowmick

2 | Variables and expressions

2.1 Variables

The data used by any computer program are stored in variables. A variable is identified by its four attributes:
name, type, value, address. These are explained below.

The name of a variable is written by the programmer. It can be any word or string composed of letters,
digits, and the underscore character. It must begin with either a letter or an underscore. Uppercase and
lowercase letters are treated as distinct in the C language. Here are some examples of variable names:
x, dx, y12, sum_1, _MYvar, realNum, complexNum, point, area, tax_rate, list, Set, Vector

The type of a variable is determined based on the type of data it stores. Accordingly, we have different
types of variables, which are also termed as data types. Further details are given in §2.2.

Depending on the type, a variable has a specific value within a specific domain. This value is either
assigned or computed when the program runs. To store this value in the main memory (i.e., RAM), a variable
needs some space during execution of the program. The amount of space, referred to as size, depends on
the data type of the variable. Hence, before using any variable, its type must be declared in the program.
This is called variable declaration. For example, by the declaration int a, the variable name is a and its
type is declared as an integer; hence, a space of 4 bytes will be allocated in the memory during execution of
the program. As another example, by the declaration char c, the variable c is declared as a character, and
hence a space of 1 byte will be allocated in the memory.

The address of a variable specifies its storage location in the main memory, which is settled during the
execution of the code. The address is denoted by the ampersand character, i.e., &; for example, for the
declaration int a, the address of a is denoted by &a. While reading the value of a variable for taking input
using scanf, its address is needed to store the value; that’s why in scanf the address is passed as an argument.
For example, to take as input the value of the integer variable a, we have to write scanf("%d", &a) to tell
the compiler that an integer has to be scanned in the decimal number system ("%d" means that) and stored
at the address &a.

Apart from the above-mentioned attributes, every variable has a scope and an extent in its corresponding
code. Its scope describes the part or block of code where it can be used. The extent describes its lifetime in
the execution of the code, i.e., the duration for which it has a meaningful value. The scope of a variable is
actually a property of the name of the variable, and the extent is a property of the storage location of the
variable. Scope is an important part of the name resolution of a variable. Because two variables (in the same
code) may have the same name but with different scopes. For example, a variable with the name x can be
declared and used in one for loop, and another variable with the same name x may be declared in another
for loop. They will be assigned different memory locations and will work therefore without any conflict.

There are certain reserved words, called keywords, that have predefined meanings in C. These keywords
cannot be used as variable names. They are listed in Table 2.1. Note that the keywords are all written
in lowercase only. Since uppercase and lowercase characters are not equivalent in programming language,
it is not illegal to write a variable name as an uppercase keyword. However, this is considered a poor
programming practice.

11

12 2. Variables and expressions

Table 2.1: List of standard keywords in C language.

auto break case char const continue default do
double else enum extern float for goto if
int long register return short signed sizeof static
struct switch typedef union unsigned void volatile while

2.2 Data types

Table 2.2: Basic data types in C language.

Data type Meaning Size
char character 1 byte
short integer 2 bytes
int integer 4 bytes
long int integer 4 or 8 bytes
long long int integer 8 bytes
float real 4 bytes
double real 8 bytes
long double real 16 bytes

A handful of basic data types are defined in C language (Table 2.2). Clearly, all the above data types
basically store numbers. It should be understood that the data type char also stores just a number, which
actually represents a single character.1 Since the number of characters is limited, one byte is enough to
represent all of them in a unique manner. Unless specified as unsigned, each of the above data types is
signed. For example, the declaration unsigned int a specifies that the variable a is unsigned, i.e., all its 32
bits are used to represent its absolute value. If it is not unsigned, then its leftmost bit is used to represent
the sign and hence termed as sign bit. If the sign bit is 0, then it is a positive number, else it is negative.
In case of char, there are 8 bits; by default, it is considered unsigned, and hence its value ranges from
0000 0000“ 0 to 1111 1111“ 255. If it is declared as unsigned, then this range is same. However, if it
is declared as signed, e.g., signed char c, then the leftmost bit is used to fix its sign, and so its value
ranges from 1000 0000“ ´128 to 0111 1111“ 127. Know that the magnitude of 1000 0000 is given by
its 2’s complement as follows: 1’s complement of 1000 0000 “ 0111 1111 (by reversing each bit); now, the
2’s complement is given by adding 1 to the 1’s complement, thus giving 0111 1111 + 1 “ 1000 0000 “ 128;
taking the negative sign into account, we get ´128 in the decimal number system.

For every other basic data type, the default specifier is signed. Explicit declaration has to be done to
make it unsigned. For example, int a means a can be a positive or negative integer, and since it uses 32 bits,
its range is from ´231 to 231 ´ 1, which is ´2,147,483,648 (1 followed by 31 0’s in binary) to 2,147,483,647
(0 followed by 31 1’s in binary). If during execution of the code, the value of a goes out of this range, there
could be faulty output. If the declaration is unsigned int a, then the variable a can take only non-negative
integer values from 0 (32 0’s in binary) to 232 ´ 1 “ 4,294,967,295 (32 1’s in binary).

Apart from the above basic data types, there is also a special type specifier named void, which indicates
that no value is available. It is used to specify the data type returned by a function, which we shall see later.

1In this context, it should also be well-understood that all data in the computer are essentially binary numbers or binary
strings; the data may be simply a text or an image or an audio or a video or any other entity.

© Partha Bhowmick

2. Variables and expressions 13

We also have another useful data type called pointer that can store the memory-address of any variable.
This will also be discussed later.

Using the basic data types, a programmer can obtain new data types called derived data types. These
include string, array, structure, and union, which will come up in later chapters.

2.3 Constants

Constants are broadly of two types: numeric and character. A numeric character is either integer or real.
Character constant means either a single character or a string of characters. A single character is specified
within single quotes, e.g., ’0’, ’y’, ’+’. A string is specified within double quotes. Some typical examples
are as follows.

int a = 0; // a is an integer, initialized with the value 0.
float x = 0.5, y; // x is a real number in floating-point format.

// y is also a floating-point number but not initialized.
float z = 0.123e9 // z is a floating-point number,

// initialized with 0.123 times 10 raised to the power 9.
char c = ’y’; // c is a character, initialized with the letter y.
char s[10] = "iit\0" // s is a string, initialized with "iit\0" (we’ll study it later).

Integer constants can also be written in hexadecimal number system. A hexadecimal integer must begin
with 0x or 0X and then contain one or more hex digits. The hex digits are 0 through 9 and a through f
(or A through F). The six letters a through f (or A through F) represent the decimal numbers 10 through 15,
respectively. Following are some hexadecimal numbers: 0x, 0xA, 0X2D, 0xf5a; check that their respective
values in decimal number system are 0, 10, 45, 3930.

There are also multiple ways of representing a real number. For example, 5ˆ 104 can be represented by
any of the following floating-point constants: 50000, 5e4, 5e+4, 5E4, 5.0e+4, .5e5, 50E3, 50.E+3, 500e2.

2.4 Statements

In C language, a statement is a complete instruction that tells the computer to perform a specific task.
Statements are the building blocks of a program and typically end with a semicolon (;). Statements can
include operations like assigning values to variables, controlling the flow of execution, or calling functions.
Following are some examples.

int a = 5, b = 10; // assignment statement
float x; // declaration statement
if (a < b) { // control statement

printf("a is less than b"); // function call statement
x = a + b/2; // assignment statement

}
else{

; // null statement
}

Note that the sign of equality (=) is used to assign values to variables. Assignment is an operation, and
hence = is called the assignment operator. The left of = is termed as l -value. In x = a + b/2, the l -value
refers to the value of x. An l -value has a definite address in memory during execution. On the contrary,
whatever occurs at the right side of = is referred to as the r -value. In the last example, it corresponds to
the expression a + b/2. It has no address of its own, although the variables a and b have definite addresses
in the memory during the execution.

© Partha Bhowmick

14 2. Variables and expressions

Types of l -value and r -value should preferably be the same; e.g., either both are integers or both are
real. If not, the type of the r -value will be converted to the type of the l -value, and then assigned to it.
Consider the following example.

double a;
a = 2*3;

In the assignment statement, the type of r -value is int because 2 and 3 are both integers, and so its value
is 6. However, since the type of l -value is double, the value stored for a is real, i.e., 6.0.

Now, consider another example:

int a;
a = 2*3.4;

Here, the type of r -value is real and the value is 6.8. But, since the type of l -value is int, so its integer part,
i.e., 6, is stored in a.

2.5 Operands, operators, expressions

An expression is an appropriate combination of variables, constants, and one or more operators. In general,
by the word ‘expression’, we mean an expression with at least one variable; an expression with no variable
at all, e.g., 2+3, is referred to as a ‘constant expression’ and seldom used in a code. An expression gets a
single numerical value when its variables are assigned appropriate values and all the necessary operations
are performed. Expressions can be of different types, as shown in Table 2.3.

An operand may be a constant or a variable or an expression. Its value can be an integer (int or
long int or long long int) or a real number (float or double or long double). It can be the ASCII
value of a character as well. For example, in ’f’+2, the operand is ’f’. Here, the English lowercase character
f is denoted precisely by ’f’ to indicate that its type is char. The value of the operand ’f’ is simply the
ASCII value of the character f. When this value is added with 2, the result will be the ASCII value of the
next-to-next lowercase character in the English alphabet, i.e., h. Similarly, ’h’-2 will give the ASCII value
of ’f’.

An operator defines the operation either on a single operand or on two operands; in the former case,
it is said to be a unary operator, while for the latter it is a binary operator. For example, ++ is a unary
operator, and + is a binary operator. In a++ or ++a, the value of the operand a increases by unity when the
operator ++ operates on a.

An expression can be used to build larger expressions. As a typical example, consider (a+b)*(--a) - 5.
It is an expression with two variables and one constant, having the operators for addition, multiplication,
decrement, and subtraction. The addition acts on two operands a and b, each being a variable. The
multiplication acts on two operands, each being an expression but not a variable. The decrement, denoted
by --, is the sole unary operator here and acts on a to decrease its value by unity. The subtraction is a
binary operation defined on the two operands, (a+b)*(--a) and 5, the first one being a typical expression
and the second being a constant. To understand how the value is computed, let us take a and b as 3 and 2
respectively. Then, the steps of computation are: (a+b)*(--a) - 5 “ (3+2)*(--3) - 5 “ (5)*(2) - 5 “

10 - 5 “ 5. In the actual process of computation in a computer, there are several other intermediate steps
involving computer memory and processing unit.

2.6 Precedence of arithmetic operators

It refers to the priority or order in which operations are performed when an expression contains multiple op-
erators. Operators with higher precedence are evaluated before those with lower precedence. The precedence

© Partha Bhowmick

2. Variables and expressions 15

order for arithmetic operators in C (from highest to lowest) is:

1. Parentheses: (...)
2. Unary minus: e.g., -5
3. Multiplication, Division, and Modulus: *, /, %
4. Addition and Subtraction: +, -

For operators of the same priority, evaluation is from left to right as they appear. For example, a*-b+d%e-f
means a*(-b)+(d%e)-f. Parenthesis may be used to change the precedence of operator evaluation.

While working with expressions, it is the responsibility of the programmer to write an expression in the
correct form. For example, 1.0 / 3.0 * 3.0 will produce the value 0.999999, while 1.0 * 3.0 / 3.0 will
produce the value 1.000000.

2.7 Type casting

While working with numbers, you have to be careful. See the following code.

int a=10, b=4, c;
float x;
c = a / b;
x = a / b;

The value of c will be the integer obtained by dividing 10 by 4. In the integer domain, this value is the
quotient of dividing 10 by 4, and so c receives the value 2. The value of x will be the integer obtained by
dividing 10 by 4, which is 2 again, and but mapping it to the real domain gives 2.0; hence, x gets the value
2.0. By type casting, we can store the value 2.5 to x. It can be done by:

x = (float)a / b;

Since the right side is a mix of real ((float)a) and integer (b), the operation is done in the real domain.
As another example, the following code won’t produce correct output when a+b is odd.

int a, b;
scanf("%d%d", &a, &b);
avg = (a + b)/2;
printf("%f\n", avg);

The correct one will be if you write the assignment as:

avg = ((float) (a + b))/2;

or as:

avg = (a + b) / 2.0;.

There are some restrictions on typecasting. Everything cannot be typecast to anything. For example,
float or double should not be typecast to int, as a variable of type int cannot store everything that a
float or double can store. For a similar reason, a variable of type int should not be typecast to char.

2.8 Types of expressions

The type of an expression is determined by the operators used in it. For example, if b and c are two integers,
then b+c is an arithmetic expression, b<c is a relational expression, b&&c is a logical expression, whereas b&c
is a bitwise expression. Following are some important points about different types of expression.

© Partha Bhowmick

16 2. Variables and expressions

Table 2.3: Different types of expressions.

Type of expression Operators Type of operands Value of expression

1. Arithmetic expression + - * / ++ -- integer or real integer or real

2. Relational expression < <= >= >= == != integer or real 0 or 1

3. Logical expression && || ! integer or real 0 or 1

4. Bitwise expression >> << ~ & | ^ integer integer

1. Arithmetic expression: b+c is an arithmetic expression in which the addition operator + acts on the
operands b and c. On assigning the values 2 and 3 to b and c respectively, the value of the expression
b+c becomes 5.

Although it may sound strange to one who is new to computer programming, a=b+c is also an
arithmetic expression with two operators, namely addition (+) and assignment (=). Here, the value of
the expression b+c is computed first, and that value is assigned to a, which eventually becomes the value
of the whole expression a=b+c. For example, on assigning the values 2 and 3 to b and c respectively,
the variable a gets the value 5, and hence the value of the expression a=b+c becomes 5. Note that the
value of a=b+c is same as the value of a, because in C language, due to the assignment operator, such
an expression always gets the value of the variable (i.e., operand) to the left side of the assignment
operator. It is the l -value and refers to the value of a, as explained in §2.4.

The value of an expression is important because that expression may be used as an operand in
another expression. For example, d=(a=b+c)+1 is an expression composed with the previous expression,
a=b+c. On assigning the respective values 2 and 3 to b and c, the value of a becomes 5, which means
the expression a=b+c receives the value 5, which gives 6 as the value of d, and this finally sets the value
of the whole expression d=(a=b+c)+1 to 6.

2. Relational expression: Consider the relational operator < used in the relational expression a<b. The
value of a<b will be 1 if a is less than b, and 0 otherwise.

A relational operator is used to compare an operand with another. The operand may be a variable
or a non-variable expression. For example, in the expression a != b the operand != is used between
two variables; it yields 1 if a and b are unequal, and yields 0 if not. On the contrary, in the expression
a != b*b+1, the same operand works between a variable and an expression.

3. Logical expression: Here we need to be careful — any nonzero integer means True, and only the
integer 0 means False. For example, a&&b evaluates to 0 if and only if at least one of a and b is 0. On
the contrary, a||b evaluates to 0 if and only if both a and b are 0. Equivalently, a&&b evaluates to 1 if
and only if both a and b are nonzero, whereas a||b evaluates to 1 if and only if at least one of a and b
is nonzero. The notation && denotes the logical and operator, whereas || denotes the logical or.

The notation ! denotes the logical not; it is a unary operator and hence acts on a single operand.
For example, the expression !a evaluates to 0 if and only if a is nonzero. That is, if a is any number
other than 0, then !a evaluates to 0, and it evaluates to 1 only if a is 0.

Clearly, since a logical expression basically works with the truth value of the associated operands,
the operands can be any real number.

Consider a practical expression: ((!weekday && hobby) || (weekday && study)). It has three
variables working as operands, namely weekday, hobby, and study; and it has four logical operators
in total. With weekday“ 0, hobby“ 1, study“ 0, it evaluates to (1 || 0) “ 1. With weekday“

1, 2, . . . , 6, it evaluates to 0 if study“ 0, no matter the value of hobby— can you check and argue?
4. Bitwise expression: An expression where bitwise operators are used for computation at the bit level.

It makes the computation fast. Bitwise operators work with integer -valued operands and cannot be
applied to non-integer real numbers such as float or double. The bitwise binary operators are & (and),
| (or), ^ (xor), << (left shift), and >> (right shift); the bitwise unary operator is ~ (1’s complement).

© Partha Bhowmick

2. Variables and expressions 17

For example, a<<k means a left shift of the bits of a by k places. Say a has the value 5; so, its
8-bit representation is 00000101; then a<<3 means a left shift of the bits of a by 3 places, appending
three 0’s at the right side so that it again has 8 bits. This gives 00101000, thereby changing the value
of a to 5 ˆ 23 “ 40. On the contrary, a>>3 does a right shift by 3 bits, changing the value of a to
00000000“ 0. Similarly, a>>1 applies a right shift by 1 bit, changing the value to 00000010“ 2; and
a>>2 applies a right shift by 2 bits, changing the value to 00000001“ 1. That is, bitwise left shift by k
bits is equivalent to multiplying by 2k, and bitwise right shift by k bits is equivalent to dividing by 2k.

The following code shows uses of the bitwise operators. Note that if the leftmost bit is 1, then it is
a negative number. For example, the 1’s complement of a (i.e., ~a) is a negative number. To print its
unsigned value, the format is %u. To print its signed value, the format is %d; and that value is given by
the 2’s complement of ~a, which, in turn, is given by the 1’s complement of ~a (i.e., a) plus 1.

1 #include <stdio.h>
2

3 int main() {
4 int a = 20; // 00...0 0001 0100 = 20
5 int b = 13; // 00...0 0000 1101 = 13
6

7 printf("Bitwise AND: a&b = %d\n", a&b); // 00...0 0000 0100 = 4
8 printf("Bitwise OR: a|b = %d\n", a|b); // 00...0 0001 1101 = 45
9 printf("Bitwise XOR: a^b = %d\n", a^b); // 00...0 0001 1001 = 25

10 printf("1’s Complement: ~a = %u\n", ~a); // 11...1 1110 1011
11 // = 4294967275 (unsigned)
12 printf("1’s Complement: ~a = %d\n", ~a); // 11...1 1110 1011
13 // = -21 (2’s complement)
14 printf("Left Shift: a<<2 = %d\n", a<<2); // 00...0 0101 0000 = 80
15 printf("Right Shift: a>>2 = %d\n", a>>2); // 00...0 0000 0101 = 5
16

17 return 0;
18 }

2.9 Solved problems

1. rOne-variable integer expressionss Given an integer a, compute and print the values of the following
expressions: ´a, 2a ´ 3, 2a2 ´ 3a ´ 4.

1 #include <stdio.h>
2

3 int main(){
4 int a;
5

6 printf("Enter the value of a: ");
7 scanf("%d", &a);
8

9 printf("-a = %d\n", -a);
10 printf("2a-3 = %d\n", 2*a-3);
11 printf("2a^2-3a-4 = %d\n", 2*a*a-3*a-4);
12

13 return 0;
14 }

© Partha Bhowmick

18 2. Variables and expressions

2. rTwo-variable integer expressionss Given two integers a and b as input, compute and print the val-
ues of the following expressions: a ` b, ´a ´ 2b ` 3, ´2ab, 1 ´ 2apb ´ 3q.

1 #include <stdio.h>
2

3 int main(){
4 int a,b;
5

6 printf("Enter the values of a and b: ");
7 scanf("%d%d", &a, &b);
8

9 printf("a+b = %d\n", a+b);
10 printf("-a-2b+3 = %d\n", -a-2*b+3);
11 printf("-2ab = %d\n", -2*a*b);
12 printf("1-2a(b-3) = %d\n", -2*a*(b-3));
13

14 return 0;
15 }

3. rLeft shifts Given two integers a and b as input, compute and print the value of 2a ` 4b without using
any multiplication.

1 #include <stdio.h>
2

3 int main(){
4 int a,b;
5

6 printf("Enter the values of a and b: ");
7 scanf("%d%d", &a, &b);
8

9 a <<= 1;
10 b <<= 2;
11

12 printf("Answer = %d.\n", a+b);
13

14 return 0;
15 }

4. rReal-domain expressionss Compute and print the values of the x
y and 1

x ` 1
y in floating point, where

x, y are nonzero real numbers given as input. The value of the 1st expression should be printed up to
the 6th decimal place, and that of the 2nd expression up to the 3rd decimal place. For example, if x “ 2
and y “ 3, then the printed values should be 0.666667 and 0.833, respectively.

1 #include <stdio.h>
2

3 int main(){
4 float x, y, z;
5

6 printf("Enter the values of x and y: ");
7 scanf("%f%f", &x, &y);
8

9 printf("x/y = %f, 1/x + 1/y = %0.3f\n", x/y, 1/x + 1/y);

© Partha Bhowmick

2. Variables and expressions 19

10

11 return 0;
12 }

5. rInteger-to-real maps Compute and print the values of the following expressions in floating point
(rounded off to 3rd decimal place), where a, b are positive integers given as input.

a ` b,
a

b
,

˜

c

1

a
`

1

b

¸
1

a`b

.

For example, if a “ 2 and b “ 3, then the respective printed values will be 5.000, 0.667, 0.982.
As the values should be real, the computations should be in the real domain. You should use the math
library (math.h) and compile your code as follows: gcc <input file> -lm

1 #include <stdio.h>
2 #include <math.h>
3

4 int main(){
5 int a, b;
6

7 printf("Enter the values of a and b: ");
8 scanf("%d%d", &a, &b);
9

10 printf("1st expression: a+b = %0.3f\n", (float)(a+b));
11 printf("2nd expression: a/b = %0.3f\n", (float)a/b);
12 printf("3rd expression = %0.3f\n", pow(sqrt(1.0/a + 1.0/b), 1.0/(a+b)));
13

14 return 0;
15 }

6. rPre-increment and post-increments Write the new values obtained after the following statements
are executed one after the other.
int a, b, x; ÝÑ a, b, x all have ‘garbage values’
a = 10, b = 20, x; ÝÑ a gets 10, b gets 20
x = 50 + ++a; ÝÑ a = 11, x = 61 (a is first incremented and then added)
x = 50 + a++; ÝÑ x = 61, a = 12 (a is first added and then incremented)
x = a++ + --b; ÝÑ b = 19, x = 31, a = 13 (b is first decremented and then added)
x = a++ - ++a; ÝÑ x = -2, a = 15 (a++ is 13 as operand, ++a is 15 as operand)
In the last statement, there is a side effect: while calculating some values, something else get changed.
It is always better to avoid such complicated statements.

7. rOne-variable integer expressionss Given an integer a, compute and print the values of the following
expressions: ´a, 2a ´ 3, 2a2 ´ 3a ´ 4.

1 #include <stdio.h>
2

3 int main(){
4 int a;
5

6 printf("Enter the value of a: ");
7 scanf("%d", &a);
8

9 printf("-a = %d\n", -a);

© Partha Bhowmick

20 2. Variables and expressions

10 printf("2a-3 = %d\n", 2*a-3);
11 printf("2a^2-3a-4 = %d\n", 2*a*a-3*a-4);
12

13 return 0;
14 }

8. rTwo-variable integer expressionss Given two integers a and b as input, compute and print the val-
ues of the following expressions: a ` b, ´a ´ 2b ` 3, ´2ab, 1 ´ 2apb ´ 3q.

1 #include <stdio.h>
2

3 int main(){
4 int a,b;
5

6 printf("Enter the values of a and b: ");
7 scanf("%d%d", &a, &b);
8

9 printf("a+b = %d\n", a+b);
10 printf("-a-2b+3 = %d\n", -a-2*b+3);
11 printf("-2ab = %d\n", -2*a*b);
12 printf("1-2a(b-3) = %d\n", -2*a*(b-3));
13

14 return 0;
15 }

9. rMinimum multiplicationss Given two integers a and b as input, compute and print the values of
a2b, a2b2, and a2b4, using at most 6 multiplications for all three of them in total, without using any
extra variable, and without using the math library.

1 #include <stdio.h>
2

3 int main(){
4 int a,b;
5

6 printf("Enter the values of a and b: ");
7 scanf("%d%d", &a, &b);
8

9 a = a*a;
10 printf("Answers = %d, ", a*b);
11 b = b*b;
12 printf("%d, ", a*b);
13 b = b*b;
14 printf("%d.\n", a*b);
15

16 return 0;
17 }

10. rLeft shifts Given two integers a and b as input, compute and print the value of 2a ` 4b without using
any multiplication.

1 #include <stdio.h>
2

3 int main(){
4 int a,b;

© Partha Bhowmick

2. Variables and expressions 21

5

6 printf("Enter the values of a and b: ");
7 scanf("%d%d", &a, &b);
8

9 a <<= 1;
10 b <<= 2;
11

12 printf("Answer = %d.\n", a+b);
13

14 return 0;
15 }

11. rReal-domain expressionss Compute and print the values of the x
y and 1

x ` 1
y in floating point, where

x, y are nonzero real numbers given as input. The value of the 1st expression should be printed up to
the 6th decimal place, and that of the 2nd expression up to the 3rd decimal place. For example, if x “ 2
and y “ 3, then the printed values should be 0.666667 and 0.833, respectively.

1 #include <stdio.h>
2

3 int main(){
4 float x, y, z;
5

6 printf("Enter the values of x and y: ");
7 scanf("%f%f", &x, &y);
8

9 printf("x/y = %f, 1/x + 1/y = %0.3f\n", x/y, 1/x + 1/y);
10

11 return 0;
12 }

12. rAverages Read in three integers and print their average as a real number.

1 #include <stdio.h>
2

3 int main(){
4 int a, b, c;
5 printf("Enter three integers: ");
6 scanf("%d%d%d", &a, &b, &c);
7 printf("Average = %f\n", ((float)(a+b+c))/3);
8 return 0;
9 }

13. rArea of a triangles Read in the coordinates (as double-precision real numbers) of three points on
xy-plane, and print the area of the triangle formed by them.
You can use the Heron’s formula

a

sps ´ aqps ´ bqps ´ cq, where s “ 1
2 pa ` b ` cq, and a, b, c denote the

lengths of three sides.
You can use sqrt function of math.h library to compute the square root, but should not use any other
function.

1 #include <stdio.h>
2 #include <math.h>
3

4 int main(){

© Partha Bhowmick

22 2. Variables and expressions

5 double area, x1, y1, x2, y2, x3, y3, a, b, c, s;
6

7 printf("Enter the coordinates of 1st vertex: ");
8 scanf("%lf%lf", &x1, &y1); // read in double precision
9 printf("Enter the coordinates of 2nd vertex: ");

10 scanf("%lf%lf", &x2, &y2); // read in double precision
11 printf("Enter the coordinates of 3rd vertex: ");
12 scanf("%lf%lf", &x3, &y3); // read in double precision
13

14 a = sqrt((x2-x3)*(x2-x3) + (y2-y3)*(y2-y3));
15 b = sqrt((x1-x3)*(x1-x3) + (y1-y3)*(y1-y3));
16 c = sqrt((x1-x2)*(x1-x2) + (y1-y2)*(y1-y2));
17

18 s = (a+b+c)/2;
19 area = sqrt(s*(s-a)*(s-b)*(s-c));
20 printf("Area = %f\n", area);
21

22 return 0;
23 }

14. rCompound interests Read in the principal amount P, the interest rate R in percentage, the number
of years N, and print the compound interest C earned after N years. Read P and R as floating-point
numbers, and N as an integer. The compound interest C should be printed as the nearest whole number.
For example, if P = 100, R =10, N = 7, then the value of C is Rs. 94.871712, which should be printed as
Rs. 95.
You can use pow function of math.h.

1 #include <stdio.h>
2 #include <math.h>
3

4 int main(){
5 float P, R, C;
6 int N;
7 printf("Enter P: ");
8 scanf("%f", &P);
9 printf("Enter R: ");

10 scanf("%f", &R);
11 printf("Enter N: ");
12 scanf("%d", &N);
13

14 C = P*pow((double)(1+R/100.0), (double)N) - P;
15 printf("Compound interest = Rs. %0.0f\n", C);
16

17 return 0;
18 }

15. rOne-variable logical expressionss Compute and print the logical value of !a, where a is any integer
given as input. You should check (and know) that !a“ 1 if and only if a“ 0. That is, !a“ 1 when
a“ 0, and !a“ 0 when a“ 1,´1, 2,´2,

1 #include <stdio.h>
2

3 int main(){

© Partha Bhowmick

2. Variables and expressions 23

4 int a;
5

6 printf("Enter the value of a: ");
7 scanf("%d", &a);
8

9 printf("Logical value of !a = %d\n", !a);
10

11 return 0;
12 }

16. rMulti-variable logical expressionss Compute and print the logical values of the following expres-
sions, where a, b, c are the integers given as input.

(!a) && (!b) && c
(a && b) || (!c)

1 #include <stdio.h>
2

3 int main(){
4 int a, b, c;
5

6 printf("Enter the values of a, b, c: ");
7 scanf("%d%d%d", &a, &b, &c);
8

9 printf("Logical value of (!a) && (!b) && c = %d\n", (!a) && (!b) && c);
10 printf("Logical value of (a && b) || (!c) = %d\n", (a && b) || (!c));
11

12 return 0;
13 }

17. rSum of seriess Without using any loop, compute and print the value of
n
ř

i“1

i, where n is a positive

integer given as input.

1 #include <stdio.h>
2

3 int main(){
4 int n;
5

6 printf("Enter the value of n: ");
7 scanf("%d", &n);
8 printf("Sum = %d.\n", n*(n+1)/2);
9

10 return 0;
11 }

18. rNumber of digitss Read in a positive integer n. Assume that it has at most 4 digits. Without using
any conditional such as if-else or switch-case, print its number of digits. Also, print the expression
you have used to get the answer.

1 #include <stdio.h>
2

3 int main(){

© Partha Bhowmick

24 2. Variables and expressions

4 int n;
5 printf("Enter the value of n: ");
6 scanf("%d", &n);
7 printf("Number of digits in n = %d\n", 1 + (n>=10) + (n>=100) + (n>=1000));
8 printf("Expression used: 1 + (n>=10) + (n>=100) + (n>=1000)\n");
9 return 0;

10 }

2.10 Exercise problems

1. rMulti-variable logical expressionss Compute and print the logical values of the following expres-
sions, where a, b, c are the integers given as input.

a && (b || c)
a && ((b || c)==0)
!(a && (b || c))
(a && (b || c)) == 0
(a && (b || c)) == 1
(!a) && ((!b) || c)
((a == 1) || ((b == 0) && (c == 1))) || ((a == 0) || ((b == 1) && (c == 0)))
((0 <= a) && (a >= 10) && (11 <= b) && (b <= 20) && (15 <= a+b) && (c >= 5))

2. rRight shifts Given two integers a and b as input, compute and print the value of
X

a
2

\

`
X

b
4

\

without
using division. (Observe that

X

a
2

\

and
X

b
4

\

are the respective quotients obtained when a and b are divided
by 2 and 4 respectively.)

3. rInteger-to-real maps Compute and print the values of the following expressions in floating point
(rounded off to 3rd decimal place), where a, b, c are integers given as input. You can use the math
library.

a ` 2b ` 3c,
a

2
`

b

2
`

c

3
, p1.25a ` 2.75a2 ` 5.625a3qpb2{p1.25 ` c3qq,

?
2a `

?
3b2 `

ˆ

5

4

˙
1?
5

c3.

As the values should be real, the computations should be in the real domain. For example, if a “ 3, b “

2, c “ 1, then the value of a
2 ` b

2 ` c
3 would be 1.500 ` 1.000 ` 0.333 “ 2.833.

4. rLargest fractions Given as input six positive integers a, b, c, d, e, f , find a/the largest among a
d ,

b
e ,

c
f ,

using only integer computations.

5. rSum of seriess Without using any loop, compute and print the values of the following sums, where
n is a positive integer given as input.

n
ÿ

i“1

i2,
n
ÿ

i“1

i3,
n
ÿ

i“1

pi ` 1qpi ` 2qpi ` 3q.

© Partha Bhowmick

3 | Conditionals

Conditionals or conditional expressions are basically expressions used in codes for taking required decisions.
They have two possible constructs: (i) if or if-else and (ii) switch-case. The if construct means if
some condition is true, then do something. The if-else construct means if some condition is true, then do
something; otherwise do whatever is mentioned after else. The if-else construct can be extended to build
a logical chain of if-else, but should be carefully coded. The two curly braces, i.e., { and }, are used to
fix the logic.

Complications in the coding logic are often handled using switch-case or a combination of if-else
and switch-case constructs. In the switch-case construct, out of multiple cases, every particular case is
handled based on the value of a single expression in the argument of switch. The value of that expression
is computed only once and it is compared with the value of each case one by one. If there is a match, then
the block of code associated with only that case is executed, rest are not. The break statement breaks out
of the entire switch block. The default statement is optional, and its code is executed only if there is no
match with any case in that switch block.

Examples

1. Suppose weekday is an integer in r0, 6s, where 0 represents Sunday, 1 represents Monday, and so on.
Suppose that on Sunday, everyone wants to enjoy a movie. Its construct will be:

if (!weekday)
printf("Go for a movie!\n");

Now, suppose that movies are restricted other than on Sunday. Then its construct will be:

if (weekday)
printf("Try to avoid movies!\n");

Now, suppose that movies are prescribed on Sunday but music is prescribed for everyday. Then its
construct will be:

if (!weekday)
printf("Go for a movie or listen to music!\n");

else
printf("Avoid movie and listen to music!\n");

2. To complicate the above example, suppose that you need to write a code that will suggest for seeing a
movie on Sunday only, playing some sports on Monday, Wednesday, and Friday, going to a restaurant
on Tuesday, and visiting the library on Thursday and Saturday. Since there are several cases, they are a
little difficult to code using the if-else construct, but quite easier using switch-case, as shown below.

switch (weekday){
case 0:{

printf("It’s Sunday! Go for a movie!\n");
break;

25

26 3. Conditionals

};
case 1: case 3: case 5:{

printf("Go for sports!\n");
break;

};
case 2: {

printf("Enjoy your favorite food in some restaurant!\n");
break;

};
default:{ // all other cases

printf("Visit the library!\n");
break;

};
} // end switch

3.1 Solved problems

1. rLarger fractions Given as input four positive integers a, b, c, d, find a/the larger between a
c and b

d ,
using only integer computations.

1 #include <stdio.h>
2

3 int main(){
4 int a, b, c, d;
5

6 printf("Enter the values of a, b, c, d: ");
7 scanf("%d%d%d%d", &a, &b, &c, &d);
8

9 if(a*d < b*c)
10 printf("%d/%d is larger.\n", b, d);
11 else
12 printf("%d/%d is larger.\n", a, c);
13

14 return 0;
15 }
16

17 /* Examples:
18

19 Enter the values of a, b, c, d: 1 2 3 4
20 2/4 is larger.
21

22 Enter the values of a, b, c, d: 4 2 3 5
23 4/3 is larger. */

2. rPrime digitss User supplies a positive integer having value less than 100. Find and print its prime
digits if any. For example, in 47, the prime digit is 7.

1 #include <stdio.h>
2

3 int main(){
4 int n, a, b, k = 0; // k = no. of primes

© Partha Bhowmick

3. Conditionals 27

5

6 printf("Enter the value of n: ");
7 scanf("%d", &n);
8

9 a = n/10;
10 b = n - 10*a;
11

12 printf("Prime digits:");
13

14 if ((a==2) || (a==3) || (a==5) || (a==7)){
15 k++;
16 printf(" %d", a);
17 }
18

19 if ((b==2) || (b==3) || (b==5) || (b==7)){
20 k++;
21 printf(" %d", b);
22 }
23

24 if(k>0)
25 printf(".\n");
26 else
27 printf("None.\n");
28

29 return 0;
30 }

3. rLine intersections There are two straight lines ax`by`c “ 0 and px`qy`r “ 0, where a, b, c, p, q, r
are all integers and given as input. (a) Check whether they are parallel, and if not, (b) find their point
of intersection. Its coordinates should be printed up to the 3rd decimal place (using %0.3f instead of
%f in printf). 2024S

1 #include<stdio.h>
2

3 int main(){
4 int a, b, c, p, q, r;
5 float x, y;
6

7 printf("Enter a, b, c: ");
8 scanf("%d%d%d", &a, &b, &c);
9 printf("Enter p, q, r: ");

10 scanf("%d%d%d", &p, &q, &r);
11

12 if(q*a == b*p)
13 printf("Lines are parallel.\n");
14 else{
15 x = (float)(-q*c+b*r)/(q*a-b*p);
16 y = (float)(-p*c+a*r)/(p*b-a*q);
17 printf("Point of intersection = (%0.3f, %0.3f)\n", x, y);
18 }
19

20 return 0;
21 }

© Partha Bhowmick

28 3. Conditionals

4. rOne is sum of twos Read in three integers and print a message if any one of them is equal to the
sum of the other two.

1 #include <stdio.h>
2

3 int main() {
4 int a, b, c;
5

6 printf("Enter three integers: ");
7 scanf("%d %d %d", &a, &b, &c);
8

9 if (a == b + c) {
10 printf("a is equal to the sum of b and c.\n");
11 } else if (b == a + c) {
12 printf("b is equal to the sum of a and c.\n");
13 } else if (c == a + b) {
14 printf("c is equal to the sum of a and b.\n");
15 } else {
16 printf("None of the integers is equal to the sum of the other two.\n");
17 }
18

19 return 0;
20 }

5. rRoots of quadratic equations Read in the coefficients a, b, c of the quadratic equation ax2`bx`c “

0, and print its roots nicely. For complex roots, print in x ` iy form.

1 #include <stdio.h>
2 #include <math.h>
3

4 int main() {
5 float a, b, c;
6 float discriminant, realPart, imaginaryPart, root1, root2;
7

8 // Read coefficients a, b, c
9 printf("Enter coefficients a, b, and c: ");

10 scanf("%f %f %f", &a, &b, &c);
11

12 // Calculate the discriminant
13 discriminant = b*b - 4*a*c;
14

15 // Check for real and different roots
16 if (discriminant > 0) {
17 root1 = (-b + sqrt(discriminant)) / (2*a);
18 root2 = (-b - sqrt(discriminant)) / (2*a);
19 printf("Root 1 = %.2f\n", root1);
20 printf("Root 2 = %.2f\n", root2);
21 }
22 // Check for real and equal roots
23 else if (discriminant == 0) {
24 root1 = root2 = -b / (2*a);
25 printf("Root 1 = Root 2 = %.2f\n", root1);
26 }

© Partha Bhowmick

3. Conditionals 29

27 // If roots are complex
28 else {
29 realPart = -b / (2*a);
30 imaginaryPart = sqrt(-discriminant) / (2*a);
31 printf("Root 1 = %.2f + %.2fi\n", realPart, imaginaryPart);
32 printf("Root 2 = %.2f - %.2fi\n", realPart, imaginaryPart);
33 }
34

35 return 0;
36 }

6. rOperation selections Create a simple calculator program that takes two numbers and an operator
(+, -, *, /, %) as input and performs the corresponding operation using a switch-case statement.

1 #include <stdio.h>
2

3 int main() {
4 char operator;
5 float num1, num2, result;
6

7 // Read operator and two numbers
8 printf("Enter operator (+, -, *, /, %c): ", ’%’);
9 scanf(" %c", &operator);

10 printf("Enter two numbers: ");
11 scanf("%f%f", &num1, &num2);
12

13 // Perform operation based on the operator
14 switch (operator) {
15 case ’+’:
16 result = num1 + num2;
17 break;
18 case ’-’:
19 result = num1 - num2;
20 break;
21 case ’*’:
22 result = num1 * num2;
23 break;
24 case ’/’:
25 if (num2 != 0)
26 result = num1 / num2;
27 else {
28 printf("Error! Division by zero.\n");
29 return 1;
30 }
31 break;
32 case ’%’:
33 if ((int)num2 != 0)
34 result = (int)num1 % (int)num2;
35 else {
36 printf("Error! Division by zero.\n");
37 return 1;
38 }
39 break;
40 default:

© Partha Bhowmick

30 3. Conditionals

41 printf("Invalid operator!\n");
42 return 1;
43 }
44

45 printf("Result: %.2f\n", result);
46 return 0;
47 }

Mind the gap while scanning with %c

While coding in C, you may have experienced that scanning a single character using the
%c specifier can cause annoying issues during runtime, even though there are no compila-
tion errors. Specifically, scanf("%c", &choice); can lead to unexpected behavior, while
scanf(" %c", &choice); works correctly. Let’s explore why this happens.

When you read input using scanf, it may leave a newline character in the input buffer from
previous input, such as when the user presses Enter after entering the character y. If you do
not include a space before %c, scanf will interpret that Enter (i.e., \n) as the next input for
the char variable, resulting in unintended behavior.
The space before %c in the scanf function is used to ignore any leading whitespace characters,
including spaces, tabs, and newline characters. This ensures that the user’s intended input is
correctly identified.

7. rVowel or consonants Develop a program that takes a single character as input and determines
whether it is a vowel or a consonant using a switch-case statement.

1 #include <stdio.h>
2

3 int main() {
4 char ch;
5

6 printf("Enter a character: ");
7 scanf(" %c", &ch);
8

9 switch (ch) {
10 case ’a’:
11 case ’e’:
12 case ’i’:
13 case ’o’:
14 case ’u’:
15 case ’A’:
16 case ’E’:
17 case ’I’:
18 case ’O’:
19 case ’U’:
20 printf("%c is a vowel.\n", ch);
21 break;
22 default:
23 printf("%c is a consonant.\n", ch);
24 }
25

26 return 0;
27 }

8. rDay of the weeks Write a program that takes the day of the week as an input (1 for Monday, 2 for
Tuesday, etc.). If the day is Saturday or Sunday, print Weekend. For other days, print the name of

© Partha Bhowmick

3. Conditionals 31

the day. Additionally, check if the day is a special day (e.g., Wednesday) using if-else, and print an
appropriate message.

1 #include <stdio.h>
2

3 int main() {
4 int day;
5

6 printf("Enter day of the week (1 for Monday, 7 for Sunday): ");
7 scanf("%d", &day);
8

9 switch (day) {
10 case 1:
11 printf("Monday\n");
12 break;
13 case 2:
14 printf("Tuesday\n");
15 break;
16 case 3:
17 printf("Wednesday\n");
18 break;
19 case 4:
20 printf("Thursday\n");
21 break;
22 case 5:
23 printf("Friday\n");
24 break;
25 case 6:
26 case 7:
27 printf("Weekend\n");
28 return 0;
29 default:
30 printf("Invalid day\n");
31 return 0;
32 }
33

34 // Additional check for special day
35 if (day == 3) {
36 printf("It’s Wednesday, halfway through the week!\n");
37 } else if (day >= 1 && day <= 5) {
38 printf("It’s a weekday.\n");
39 }
40

41 return 0;
42 }

9. rMarks to grades Suppose that you have to print the grade of a student, with 90–100 marks getting
EX, 80–89 getting A, 70–79 getting B, 60–69 getting C, 50–59 getting D, 40–49 getting P, and less than
40 getting F. Read in the marks of a student and print his/her grade. You should use switch-case.

1 #include <stdio.h>
2

3 int main() {

© Partha Bhowmick

32 3. Conditionals

4 int marks;
5 char grade;
6

7 // Read the student’s marks
8 printf("Enter the student’s marks: ");
9 scanf("%d", &marks);

10

11 // Determine the grade based on marks
12 switch (marks / 10) {
13 case 10: // Handles marks 100
14 case 9:
15 grade = ’E’; // For EX
16 break;
17 case 8:
18 grade = ’A’;
19 break;
20 case 7:
21 grade = ’B’;
22 break;
23 case 6:
24 grade = ’C’;
25 break;
26 case 5:
27 grade = ’D’;
28 break;
29 case 4:
30 grade = ’P’;
31 break;
32 default:
33 grade = ’F’;
34 }
35

36 // Print the corresponding grade
37 if (grade == ’E’) {
38 printf("Grade: EX\n");
39 } else {
40 printf("Grade: %c\n", grade);
41 }
42

43 return 0;
44 }

3.2 Exercise problems

1. rLargest fractions Given as input six positive integers a, b, c, d, e, f , find a/the largest among a
d ,

b
e ,

c
f ,

using only integer computations.

2. rLargest elements Given as input five numbers a, b, c, d, e, find a/the largest among them using at
most four comparisons. You can use an extra variable.

3. rTemperature alert systems Create a program that takes the current temperature as input and
provides a message based on the following conditions:

© Partha Bhowmick

3. Conditionals 33

• Above 100˝F: "Heat Alert!"

• 85˝F to 100˝F: "Warm Weather"

• 60˝F to 84˝F: "Pleasant Weather"

• 32˝F to 59˝F: "Cool Weather"

• Below 32˝F: "Cold Alert!"

Use if-else to evaluate the temperature and display the corresponding message.

4. rTraffic light simulations Create a program that simulates a traffic light. The program should take a
character input (’r’ or ’R’ for Red, ’y’ or ’Y’ for Yellow, ’g’ or ’G’ for Green) and display a message
indicating whether to stop, slow down, or go. Use a switch-case to handle the different light colors.

© Partha Bhowmick

4 | Loops

Loops are needed to perform repeated tasks of same nature. For example, to compute the value of 1`
?
2`?

3 ` ¨ ¨ ¨ `
?
99, we have to compute the square root of a number, 98 times, and so a loop will be useful. A

loop essentially executes a block of code as long as a specified expression is true. The specified expression is
treated as a Boolean condition.

Loops are of three types: while loop, do-while loop, and for loop. They are all equivalent in the sense
that one can be used in place of another, but sometimes one is a little more convenient than the others while
writing the code.

4.1 Syntax of while loop and do-while loop

The general syntax of the while loop and the do-while loop are as follows. As mentioned above, the
expression written inside while(...) is treated as a Boolean condition. A loop iterates till the condition
is true.

// declare and initialize variables
while (expression){

// code block to be executed
}

// declare and initialize variables
do{

// code block to be executed
} while (expression);

The above two loops for the specific problem of computing the value of 1 `
?
2 `

?
3 ` ¨ ¨ ¨ `

?
99 are

written below. Notice that the condition for either of these two loops is i < 100, which is just an expression
(as explained earlier in Section 2.5). The value of this expression is nonzero (i.e., true) if and only if i is
less than 100. In every iteration, the value of i is increased by unity. So, here the variable i acts as the
loop variable and determines how many times the loop will iterate. Check that in this example, the loop
iterates for 98 times; and when the value of i becomes 100, it terminates. This happens for both the while
loop and the do-while loop.

int i = 1;
double sum = 1.0;
while (i < 100){

i++;
sum += sqrt((double)i);

}

int i = 1;
double sum = 1.0;
do{

i++;
sum += sqrt((double)i);

} while (i < 100);

34

4. Loops 35

4.2 Syntax of for loop

The general syntax of a for loop is given below. Here, expression 2 is treated as a Boolean con-
dition. expression 1 is used for initialization of the loop variable and of other variables if needed,
while expression 3 is usually used for modifying the value of the loop variable. During each iteration,
expression 3 is evaluated first, followed by expression 2. None of these three expressions is mandatory;
in fact, for(; ;) is also a valid syntax.

// declare and initialize variables if any
for (expression 1; expression 2; expression 3){

// code block to be executed
}

The for loop to compute 1 `
?
2 `

?
3 ` ¨ ¨ ¨ `

?
99 is written below. Notice that the condition here is

i < 100, which is just same as in the while and the do-while loops. So, here also the variable i acts here
as the loop variable. Check that this loop iterates 98 times, as in the case of while or do-while loop.

int i;
double sum;
for (i=2, sum=1.0; i < 100; i++){

sum += sqrt((double)i);
}

With the 1st expression empty in for(...), we can rewrite the code as follows.

int i = 2;
double sum = 1.0;
for (; i < 100; i++){

sum += sqrt((double)i);
}

With all three expressions empty, we can rewrite the code as follows.

int i = 2;
double sum = 1.0;
for (; ;){

sum += sqrt((double)i);
i++;
if(i==100)

break;
}

All three are correct, but it is a bad practice to write a for loop as the last one.

4.3 break and continue

A break statement makes the program immediately exit from a while loop, do-while loop, for loop, or a
switch-case block. Its use in switch-case is already shown in Chapter 3. On encountering a break, the
program execution resumes with the next statement following the loop or switch-case. Note that the break
statement is not applicable within if or if-else constructs.

A continue statement makes the program skip the remaining statements in the body of a while, for,
or do-while loop in the ongoing iteration. Afterward, program execution proceeds with the next iteration
of the loop. The continue statement is not used in switch-case.

A break statement or continue statement has to be used judiciously, when it is really needed. The
logical flow of the program should be well-understood for using such statements.

© Partha Bhowmick

36 4. Loops

Examples: The following code finds the smallest number n such that n! exceeds 1000. See how it uses a
break statement.

int fact = 1, n = 1;
while(1){

fact = fact * n;
if (fact > 1000){

printf ("Factorial of %d exceeds 1000", n)
break; // breaks the while loop

}
i++ ;

}

The following code goes on adding positive integers until a 0 is encountered, ignoring all negative
numbers that appear in between. See how it uses break and continue statements.

int sum = 0, next;
while (1){

scanf("%d", &next);
if (next < 0)

continue; // scans the next element
if (next == 0)

break; // breaks the while loop
sum = sum + next;

}
printf ("Sum = %d\n", sum) ;

4.4 Nested loops

Nested loops are loops that operate within another loop, allowing for more complex iteration patterns. In
a nested loop structure, the inner loop completes all its iterations for each iteration of the outer loop. This
means that the inner loop’s execution depends on the number of iterations specified by the outer loop. For
example, if the outer loop runs m times and the inner loop runs n times, then the total number of iterations
will be mn. Nested loops are often used for tasks that require multi-dimensional iteration, such as traversing
a 2D array or matrix, where the outer loop handles the rows and the inner loop handles the columns.
While nested loops can be powerful, they can also lead to significant increase in computational complexity,
particularly if the loops are deeply nested or the iteration ranges are large. Therefore, it is important to
manage them carefully to avoid performance issues.

The following program prints a multiplication table for numbers from 10 to 20. It uses nested loops to
generate the table.

#include <stdio.h>
int main(){

int i, j;
for (i = 10; i <= 20; i++){ // outer loop

for (j = 10; j <= 20; j++){ // inner loop
printf("%3d\t", i * j);

}
printf("\n");

}
return 0;

In the outer loop, the variable i iterates from 10 to 20, representing the rows of the multiplication table.
In the inner loop, for each iteration of the outer loop, the variable j iterates from 10 to 20, representing

© Partha Bhowmick

4. Loops 37

the columns. After the multiplication, the product of i and j is calculated and printed, with each value
separated by a tab (\t) to format the table neatly. After each row is printed, the program moves to the next
line using \n. The output looks as follows.

100 110 120 130 140 150 160 170 180 190 200
110 121 132 143 154 165 176 187 198 209 220
120 132 144 156 168 180 192 204 216 228 240
130 143 156 169 182 195 208 221 234 247 260
140 154 168 182 196 210 224 238 252 266 280
150 165 180 195 210 225 240 255 270 285 300
160 176 192 208 224 240 256 272 288 304 320
170 187 204 221 238 255 272 289 306 323 340
180 198 216 234 252 270 288 306 324 342 360
190 209 228 247 266 285 304 323 342 361 380
200 220 240 260 280 300 320 340 360 380 400

© Partha Bhowmick

38 4. Loops

4.5 Solved problems

1. rASCII of English alphabets Print as integers (in decimal number system) the ASCII values of ’a’
to ’z’ and those of ’A’ to ’Z’. Don’t directly use in your code the value of any character.

1 #include <stdio.h>
2

3 int main(){
4

5 for (int i=0; i<26; i++)
6 printf("%c: %3d\t ", ’a’+i, ’a’+i);
7 printf("\n");
8

9 for (int i=0; i<26; i++)
10 printf("%c: %3d\t ", ’A’+i, ’A’+i);
11 printf("\n");
12

13 return 0;
14 }

See that in the expression ’a’+i, ’a’ is a character, whereas i is an integer. The operator + is used to
add the ASCII value (which is always an integer) of ’a’ with the value of i. Consequently, the value of
’a’+i is also an integer. The same holds for the expression ’A’+i as well. The overall output will be
as follows:

a: 97 b: 98 c: 99 d: 100 e: 101 f: 102 g: 103 h: 104 i: 105
j: 106 k: 107 l: 108 m: 109 n: 110 o: 111 p: 112 q: 113 r: 114
s: 115 t: 116 u: 117 v: 118 w: 119 x: 120 y: 121 z: 122

A: 65 B: 66 C: 67 D: 68 E: 69 F: 70 G: 71 H: 72 I: 73
J: 74 K: 75 L: 76 M: 77 N: 78 O: 79 P: 80 Q: 81 R: 82
S: 83 T: 84 U: 85 V: 86 W: 87 X: 88 Y: 89 Z: 90

2. rSums Given n real numbers from the keyboard, find their sum. User input is n and the numbers.

1 #include <stdio.h>
2

3 int main(){
4 int i, n;
5 float x, sum;
6

7 printf("Enter n: ");
8 scanf("%d", &n);
9

10 printf("Enter the numbers: ");
11 for (i=0, sum=0.0; i<n; i++){
12 scanf("%f", &x);
13 sum += x;
14 }
15

16 printf("Sum = %f\n", sum);
17

18 return 0;
19 }

© Partha Bhowmick

4. Loops 39

3. rReading characterss Read in characters until the n character is typed. Count and print the number
of lowercase letters, the number of uppercase letters, and the number of digits entered.

1 #include <stdio.h>
2

3 int main() {
4 char ch;
5 int lower_count = 0, upper_count = 0, digit_count = 0;
6

7 while ((ch = getchar()) != ’\n’) {
8 if (ch >= ’a’ && ch <= ’z’) {
9 lower_count++;

10 } else if (ch >= ’A’ && ch <= ’Z’) {
11 upper_count++;
12 } else if (ch >= ’0’ && ch <= ’9’) {
13 digit_count++;
14 }
15 }
16

17 printf("Lowercase letters: %d\n", lower_count);
18 printf("Uppercase letters: %d\n", upper_count);
19 printf("Digits: %d\n", digit_count);
20

21 return 0;
22 }

4. r5th-power sums Given a positive integer n, compute the value of
n
ř

k“1

k5, without using math.h.

1 #include <stdio.h>
2

3 int main(){
4 int k, n;
5 long long int sum;
6

7 printf("Enter n: ");
8 scanf("%d", &n);
9

10 for (k=1, sum=0; k<=n; k++){
11 sum += k*k*k*k*k;
12 }
13

14 printf("Sum = %lld\n", sum);
15

16 return 0;
17 }

5. rBit-lengths Given a positive integer n, determine the integer ℓ such that 2ℓ´1 ď n ă 2ℓ. Here, ℓ is
called the bit-length of n.

1 #include <stdio.h>
2

3 int main(){
4 int n, i=1, len=0;
5

© Partha Bhowmick

40 4. Loops

6 printf("Enter an integer: ");
7 scanf("%d", &n);
8

9 while(i<=n){
10 i <<= 1; len++;
11 }
12 printf("Bit-length = %d\n", len);
13

14 return 0;
15 }

6. rDecimal to binary, 8 bitss Given an integer n P r0, 255s, print its 8-bit binary representation. You
can use at most 3 integer variables and no character variables.

1 #include <stdio.h>
2

3 int main(){
4 int n, i, j;
5

6 printf("Enter an integer in [0,255]: ");
7 scanf("%d", &n);
8 printf("Binary: ");
9

10 for (j=128; j>0; j/=2){
11 if(n/j == 1)
12 printf("1"),
13 n-=j;
14 else
15 printf("0");
16 }
17 printf("\n");
18

19 return 0;
20 }

7. rGCDs Given two positive integers a, b, compute their GCD. Use the fact that if a ď b, then

gcdpa, bq “

"

b if a “ 0
gcdpb mod a, aq otherwise. (4.1)

Since no function other than main() is allowed in this section, you have to do it iteratively using a loop.

1 #include <stdio.h>
2

3 int main(){
4 int a, b, c;
5 printf("\nEnter two positive integers: ");
6 scanf("%d%d", &a, &b);
7 while(a!=0){
8 c = a;
9 a = b%a;

10 b = c;
11 printf("a b c = %7d %7d %7d\n", a, b, c);
12 }
13 printf("GCD = %d\n\n", b);
14 return 0;
15 }

© Partha Bhowmick

4. Loops 41

8. rex as a finite sums We know that in the infinite sum ex “ 1 ` x ` x2

2! ` x3

3! ` ¨ ¨ ¨ , the trailing terms
have negligible values. Given a positive value of x, compute the sum up to its nth term and return that
value as the approximate value of ex as soon as the nth term is found to be less than ε. Also print the
value of n. Needless to say, you should not use the math library.

1 /* e^x approximate value */
2

3 #include <stdio.h>
4

5 int main(){
6 double x, epsilon, ex = 1.0, current = 1.0, previous = 0.0;
7 int n = 1;
8

9 printf("Enter x: ");
10 scanf("%lf", &x);
11 printf("Enter epsilon: ");
12 scanf("%lf", &epsilon);
13

14 while(current > epsilon){
15 n++;
16 previous = current;
17 current = previous*x/(double)(n-1);
18 printf("%lf ", current);
19 ex += current;
20 }
21

22 printf("\nApproximate e^x = %lf (up to term %d)\n", ex, n);
23 return 0;
24 }

9. rInfinite sums With b P r3, 7s as the only input, do the following.

(i) Compute and print the values of
8
ř

i“0

p´1qi
`

a
b

˘i as fractions in increasing order, for a P r1, b ´ 1s.

Note that there are b ´ 1 fractions, each one less than 1 because a ă b.
(ii) Also compute and print the sum of the above fractions, as a simple fraction. A simple fraction

is one in which the GCD of the numerator and the denominator is 1.

1 /* sum = 1/(1+x) = 1/(1+(a/b)) = b/(a+b).*/
2

3 #include <stdio.h>
4

5 int main(){
6 int a, b, p, q, r, s, t;
7 printf("Enter b: ");
8 scanf("%d", &b);
9

10 p = b, q = 2*b-1;
11 printf("%d/%d ", b, 2*b-1);
12

13 for(a=b-2; a>0; a--){
14 printf("%d/%d ", b, a+b);
15 p = p*(a+b)+q*b; q = q*(a+b);
16 }
17

© Partha Bhowmick

42 4. Loops

18 //To make p/q simple, divide p and q by gcd(p,q)
19 r = p, s = q;
20 while(r!=0){ // find GCD(r,s)
21 t = r;
22 r = s%r;
23 s = t;
24 } // GCD = s
25 printf("\nSum = %d/%d\n", p/s, q/s);
26 return 1;
27 }
28

10. rPrint squares Print a 5 ˆ 5 square filled up with ’*’.

1 #include <stdio.h>
2

3 int main(){
4 const int SIZE = 5;
5 int row, col;
6 for (row = 0; row < SIZE; ++row){
7 for (col = 0; col < SIZE; ++col){
8 printf("* ");
9 }

10 printf("\n");
11 }
12 return 0;
13 }

Note that const indicates that the value of SIZE cannot be modified after it is initialized. It is a
constant, so trying to change its value later in the code will result in a compilation error.
The output is shown in Figure 4.1(a).

11. rPrint lower triangles Print the lower triangle of a 5 ˆ 5 square filled up with ’*’. The output is
shown in Figure 4.1(b).

1 #include <stdio.h>
2

3 int main(){
4 const int SIZE = 5;
5 int row, col;
6 for (row = 0; row < SIZE; ++row){
7 for (col = 0; col <= row; ++col){
8 printf("* ");
9 }

10 printf("\n");
11 }
12 return 0;
13 }

12. rPrint upper triangles Print the upper triangle of a 5 ˆ 5 square filled up with ’*’. The output is
shown in Figure 4.1(c).

1 #include <stdio.h>
2

3 int main(){
4 const int SIZE = 5;

© Partha Bhowmick

4. Loops 43

* * * * *
* * * * *
* * * * *
* * * * *
* * * * *

*
* *
* * *
* * * *
* * * * *

* * * * *
* * * *

* * *
* *

*

(a) square (b) lower triangle (c) upper triangle

Figure 4.1: Output of the codes for printing a square, its lower triangle, and its upper triangle.

5 int row, col;
6 for (row = 0; row < SIZE; ++row){
7 for (col = 1; col <= row; ++col)
8 printf(" ");
9 for (col = 1; col <= SIZE-row; ++col)

10 printf("* ");
11 printf ("\n");
12 }
13 return 0;
14 }

4.6 Exercise problems

1. rASCIIs Print all the characters with ASCII values from 0 to 127.
2. rmax and 2nd maxs Read in an integer n. Then read in n numbers and print their maximum and

second maximum. Assume that all numbers are distinct.

3. rPower sums Given a positive integer n, compute
n
ř

k“1

kk, without using math.h.

4. rDigit counts Given any integer in decimal number system, compute its number of digits. For example,
for 3180, it is 4.

5. rPrimess Find all the prime numbers less than a given positive integer n.
6. rCo-primess Two positive integers are said to be co-prime with each other if their GCD is 1. Given a

positive integer n, find the co-primes that are all less than n. For example, for 9, they are 2, 4, 5, 7, 8.
7. rTwo-prime sums Given a positive integer n, determine whether it can be written as the sum of two

primes.
8. rsin, coss Using x as input in the double-precision format, compute and print the values of sinx and

cosx using the following equations.

sinx “

8
ÿ

n“0

p´1qn

p2n ` 1q!
x2n`1, cosx “

8
ÿ

n“0

p´1qn

p2nq!
x2n. (4.2)

Use #define DIFF 0.00001 to terminate the summation when the sum up to nth term differs by less
than DIFF from the sum up to pn ´ 1qst term. Needless to say, you should not use the math library.

© Partha Bhowmick

5 | One-dimensional arrays

Suppose that you have lots of storybooks, poetry books, comic books, etc.,
and also have many other books on different subjects such as Physics, Chem-
istry, Biology, Mathematics, etc. While keeping them in a bookshelf, you will
naturally try to keep them in an organized way so that you can get any book
down from the shelf right away, whenever needed. The same idea is used
when you have to keep many elements in the computer memory. You have
to arrange them in an organized way in the memory so that any of them can
immediately be accessed when the code is running. For this arrangement, the
concept of data structure comes into use. One such data structure is array—it
is just analogous to your bookshelf!

5.1 What is array?

A data structure, often referred to as a data type in programming, is a collection of distinct or non-distinct
items arranged in a specific order. Common examples of simple data structures include lists, queues, and
stacks. Among these, the list is the simplest and can be implemented using an array or a linked list.1

An array is a data structure used to represent and store items of the same data type. This data type
can be a basic one such as char, int, or float, or it can be a user-defined data type or structure (e.g.,
struct, which will be discussed later). In fact, the items stored in an array can themselves be arrays!2

An array is similar to a set. Just as a set is a collection of items of the same type, so too is an array.
However, unlike a set, which always contains distinct items, an array does not have this restriction. When
a set A stores n items, they are typically denoted by a1, a2, . . . , an. Similarly, when a one-dimensional array
a[] contains n items, they are represented by a[0], a[1], . . . , a[n-1]. For any i ranging from 0 to n-1, i
is called the index of the element a[i] in the array a[]. That is, the elements a[0], a[1], . . . , a[n-1] have
indexes 0, 1, . . . , n-1, respectively. Figure 5.1 shows an example of an integer array with 5 elements. Note
that in this array, the elements at index 2 and index 4 are identical.

5.2 Why array?

First, the concept of array is useful to store in memory a large number of items of similar data type, using
a single declaration. For example, if we need 1000 integers, then we can simply declare int a[1000]; the
elements here are indexed from 0 to 999 and denoted by a[0], a[1], . . . , a[999] in the language of C. Had
the concept of array not been there, we could have no other way than to denote the 1000 integers by 1000
variables with 1000 different names—something as int a000, a001, . . . , a999—a nightmare!

1A linked list is implemented using pointers. We will explore this concept later in the course.
2For example, a two-dimensional array is simply a one-dimensional array of one-dimensional arrays. We will study two-

dimensional arrays later. In this chapter, the term ‘array’ refers specifically to a one-dimensional or linear array.

44

5. One-dimensional arrays 45

7 ´2 6 3 6

0 1 2 3 4indexes

byte addresses
(in hexadecimal) 8D

2C

8D
30

8D
34

8D
38

8D
3C8D
2D

8D
2E

8D
2F

8D
31

8D
32

8D
33

8D
35

8D
36

8D
37

8D
39

8D
3A

8D
3B

8D
3D

8D
3E

8D
3F

main memory (RAM)

byte address lines

main memory (RAM)

8D
41

8D
42

8D
43

8D
40

Figure 5.1: An array with 5 elements having values 7,´2, 6, 3, 6. Each element is a 4-byte integer, so the
total space allocated in the memory for this array is 4ˆ5 “ 20 bytes. Its first and last byte have
the addresses 8D2C and 8D3F, respectively. The address of an element is basically the address
of its first byte (expressed as a hexadecimal number, a typical convention). So, the respective
addresses of the five elements here are 8D2C, 8D30, 8D34, 8D38, and 8D3C.

Second, the elements of an array occupy contiguous locations in the memory when the executable file
is executed. As a result, any element of the array can be accessed directly, just by specifying its index.
In particular, a[i] gives the element with the index i in a[]. The direct accessing is possible because the
address of the element with index i easily follows from the address of the element with index 0. The simple
reason is that all elements have the same data type and hence they all take equal amount of space (measured
in bytes) in the memory. Further, every byte in the memory has a unique address, and two contiguous bytes
have consecutive addresses. To see this, suppose that the amount of space for each element is k bytes. As
&a[0] is the address of the element with index 0, the indexes of the subsequent elements are &a[0]+k for
index 1, &a[0]+2*k for index 2, &a[0]+3*k for index 3, and so on. That is, the address of a[i] will be

&a[i] “ &a[0] + i*k.

As an example, see Figure 5.1. Here a[] is an integer array and its 1st element a[0] has the address 8D2C; so,
its 2nd element a[1] has the address 8D2C + 4 “ 8D30, 3rd element a[2] will have the address 8D2C + 2*4
“ 8D34, and so on. If b[] is an array of characters, then &b[i] “ &b[0] + i. If the 1st character of b[]
(i.e., b[0]) has the address AC8F, then its 2nd character b[1] will have the address AC8F + 1 “ AC90, its
3rd character b[2] will have the address AC8F + 2 “ AC91, and so on.

Third, the index need not be just a single variable but can also be an expression whose value is an integer
in the interval r0, n-1s, where n is the number of elements in the array. For example, in an array a[] with
100 elements, a[i+2*j] is a valid element with i and j as two integers, as long as the value of the expression
i+2*j lies in r0, 99s.

Another example could be a[b[i]], where the element b[i] of an array b[] acts as the index of an
element in the array a[]. Such kinds of indexing are sometimes required while writing codes for tricky
problems. For example, see the following code. It takes as input some integers in r0, 9s, stores them in an
array a[], and then prints them in increasing order, avoiding repetitions. It uses an additional array b[],
initialized with all zeros, to count the frequency of each distinct element stored in a[]. Since there will be
at most 10 distinct elements in a[], the size of b[] is set to 10. The trick is that b[a[i]] means how many
times an element a[i] appears in a[].

1 #include <stdio.h>
2

3 int main() {
4 int n, i, j;
5 printf("Enter the number of elements: ");
6 scanf("%d", &n);
7 int a[n], b[10];
8 for (i = 0; i < 10; i++)
9 b[i] = 0;

10

11 printf("Enter the elements (0 to 9):\n");

© Partha Bhowmick

46 5. One-dimensional arrays

12 for (i = 0; i < n; i++)
13 scanf("%d", &a[i]);
14

15 for (i = 0; i < n; i++)
16 b[a[i]]++; // the trick
17

18 printf("Sorted array: ");
19 for (i = 0; i < 10; i++) {
20 if (b[i] > 0) // i appears in a[]
21 printf("%d ", i);
22 }
23 printf("\n");
24

25 return 0;
26 }
27 /*
28 Enter the number of elements: 13
29 Enter the elements (0 to 9): 5 4 7 8 4 0 4 4 0 5 7 8 7
30 Sorted array: 0 4 5 7 8
31 */

5.3 Declaring arrays

Like other variables, an array should be declared first before using it. The general syntax is

type array_name[size];

where type specifies the type of elements (char, int, float, etc.) that will be stored in the array, array_name
denotes the name of the array, and size is the maximum number of elements that can be stored in the array.
Here are some examples:

int roll_num[100]; // array name is roll_num, can store up to 100 integers
char gender[100]; // array name is gender, can store up to 100 characters
float marks[100]; // array name is marks, can store up to 100 floating-point numbers

5.4 Initializing arrays

The general form is:

type array_name[size] = {comma-separated values};

And here are some examples:

int roll_num[5] = {31, 32, 33, 34, 35};
char gender[5] = {’F’, ’M’, ’M’, ’F’, ’M’};
float marks[10] = {72.5, 83.25, 65.5, 80, 76.25};

In the above examples, all three arrays are declared to contain 5 elements each, and their values are initialized.
We can also declare them to contain more elements, say 10 each, but only the first five are initialized. Here
is how:

© Partha Bhowmick

5. One-dimensional arrays 47

int roll_num[10] = {31, 32, 33, 34, 35};
char gender[10] = {’F’, ’M’, ’M’, ’F’, ’M’};
float marks[10] = {72.5, 83.25, 65.5, 80, 76.25};

When you partially initialize an array in C, the uninitialized elements are automatically set to 0 for numeric
arrays and ‘\0’ (null character) for character arrays. The non-initialized as well as the initialized values
can be changed later if needed. Here’s what happens in the above cases:

roll_num = {31, 32, 33, 34, 35, 0, 0, 0, 0, 0};
gender = {’F’, ’M’, ’M’, ’F’, ’M’, ’\0’, ’\0’, ’\0’, ’\0’, ’\0’};
marks = {72.5, 83.25, 65.5, 80.0, 76.25, 0.0, 0.0, 0.0, 0.0, 0.0};

5.5 Accessing and working with arrays

In order to populate or write to an array, we must use a loop, as follows.

int a[5], i;
for (i=0; i<5; i++){ // writing to a[]

scanf("%d", &a[i]);
}

Similarly, to read from the array a[], here is how:

int p;
for (i=0; i<5; i++){ // reading from a[]

p = a[i];
}

We cannot use the operator = to assign one array to another; i.e., even if a[] and b[] are two arrays of
same type and same size, then a = b; or a[] = b[]; cannot copy the elements of b[] to a[] (it will give
compilation error). For copying the elements of b[] to a[], we have to use a loop as follows:

int i;
for (i=0; i<n; i++){ // n = number of elements in a[] and in b[]

a[i] = b[i];
}

As a specific example, suppose that there are at most 100 students in a class. Now, consider the problem
of getting their marks and finding how many of them have marks above the average. Clearly, following are
there main tasks:

1. Read the marks as input and write them in an array.
2. Compute the total marks.
3. Count how many students meet the given criterion.

Clearly, Task 1 and Task 2 can be done in a single loop. But Task 3 needs an additional loop after that
because it can be done only after Task 2 is over. That is, it is impossible to write a code for this problem
using a single loop only. (Understand the importance of this observation!) The following code is written
based on this observation. Notice that for Task 1, we are writing into the array using the indexes, while for
Task 2 and Task 3, we are reading from the array using the indexes again. In either case, the integer i is
used as the index variable.

© Partha Bhowmick

48 5. One-dimensional arrays

1 #include <stdio.h>
2 int main(){
3 int n, i, k;
4 float marks[100], total, avg;
5 printf("Enter the number of students: ");
6 scanf("%d", &n);
7 printf("Enter their marks: ");
8 for (i=0, total=0; i<n; i++){ // Task 1 and Task 2
9 scanf("%f", &marks[i]);

10 total = total + marks[i];
11 }
12 avg = total/n;
13 for (i=0, k=0; i<n; i++){ // Task 3
14 k += (marks[i] > avg) ? 1 : 0;
15 }
16 printf("Number of students above the average = %d\n", k);
17 }

5.6 Solved problems

Note the following regarding the problems stated in this section.

i. All arrays here are one-dimensional. The number of elements that an array can store, is referred to as
the size of array. However, the full array may not be used. For example, the size of an array a[] may
be 10, but we store and work with only 7 elements from a[0] to a[6], whereby a[7] to a[9] are of no
use.

ii. Unless mentioned, for an array, assume that its size is at most 1000.
iii. Unless mentioned, assume that the input elements need not be distinct.

1. rmaxs Given a positive integer n as the first input, take in as the next input n integer elements from
the user, store them in an array, and find the largest among them. The total number of comparisons
should be at most n ´ 1.

1 // Find the largest element in an array
2

3 #include <stdio.h>
4 #define SIZE 1000
5

6 int main(){
7 int a[SIZE], n, i, max;
8

9 printf("Enter n: ");
10 scanf("%d", &n);
11 printf("Enter the elements: ");
12

13 for(i=0; i<n; i++)
14 scanf("%d", &a[i]);
15

16 max = a[0];
17

18 for(i=1; i<n; i++)

© Partha Bhowmick

5. One-dimensional arrays 49

19 if (max<a[i])
20 max = a[i];
21

22 printf("Max = %d\n", max);
23 return 0;
24 }

2. rCheck distinctnesss Given a positive integer n as the first input, take in as the next input n integer
elements from the user, store them in an array, and check whether all elements in that array are distinct.

1 // Check whether all elements are distinct
2

3 #include <stdio.h>
4 #define SIZE 1000
5

6 int main(){
7 int a[SIZE], n, i, j, flag = 1;
8

9 printf("Enter n: ");
10 scanf("%d", &n);
11 printf("Enter the elements: ");
12

13 for(i=0; i<n; i++)
14 scanf("%d", &a[i]);
15

16 for(i=1; i<n && flag; i++){
17 for(j=0; j<i && flag; j++){
18 if(a[i]==a[j]){
19 flag = 0;
20 printf("Not distinct: a[%d] = a[%d] = %d.\n", j, i, a[i]);
21 }
22 }
23 }
24

25 if(flag)
26 printf("Distinct.\n");
27

28 return 0;
29 }

3. rFibonacci sequences The Fibonacci sequence tfpiq : i “ 0, 1, 2, . . .u is defined as

fp0q “ 0, fp1q “ 1, and fpiq “ fpi ´ 1q ` fpi ´ 2q if i ě 2. (5.1)

Given a non-negative integer n, compute fpiq for i “ 0, 1, 2, . . . , n, store them in an array of n ` 1
integers, and print the elements of this array.

1 // Fibonacci sequence
2

3 #include <stdio.h>
4 #define SIZE 1000
5

6 int main(){
7 int a[SIZE], n, i;
8

© Partha Bhowmick

50 5. One-dimensional arrays

9 printf("Enter n: ");
10 scanf("%d", &n);
11 a[0] = 0, a[1] = 1;
12

13 for(i=2; i<=n; i++)
14 a[i] = a[i-1] + a[i-2];
15

16 printf("Fibonacci elements: ");
17 for(i=0; i<n; i++)
18 printf("%d ", a[i]);
19 printf("\n");
20

21 return 0;
22 }

4. rSelection Sort: positive elements, extra arrays Given a positive integer n as the first input, take
in as the next input n positive integers from the user and store them in an array A. Take another
array B of the same size and put the elements of A into B in non-decreasing order. For example, if
A “ r4, 2, 3, 2, 6, 4s, then B “ r2, 2, 3, 4, 4, 6s.

1 // Selection Sort: positive elements, extra array
2

3 #include <stdio.h>
4 #define SIZE 1000
5

6 int main(){
7 int a[SIZE], b[SIZE], n, i, j, max;
8

9 printf("Enter n: ");
10 scanf("%d", &n);
11 printf("Enter the elements (all positive): ");
12

13 for(i=0; i<n; i++)
14 scanf("%d", &a[i]);
15

16 // max = index of the largest element in a[]
17

18 for(i=max=0; i<n; i++){
19 for(j=0; j<n; j++){
20 if(a[j] > a[max]) // the 1st trick!
21 max = j;
22 }
23 b[n-1-i] = a[max];
24 a[max] = 0; // the 2nd trick!
25 }
26

27 printf("Elements in b[] after sorting a[]: ");
28 for(i=0; i<n; i++)
29 printf("%d ", b[i]);
30 printf("\n");
31

32 return 0;
33 }

5. rArray unions Given two arrays A and B containing m and n integer elements respectively, find the

© Partha Bhowmick

5. One-dimensional arrays 51

elements in A Y B, store them in another array C, and print C. Assume that all elements of A are
distinct, and so also for B, although an element of A may be present in B.

1 // Array union
2

3 #include <stdio.h>
4 #define SIZE 1000
5

6 int main(){
7 int a[SIZE], b[SIZE], c[2*SIZE], m, n, i, j, k, flag;
8

9 printf("Enter m: ");
10 scanf("%d", &m);
11 printf("Enter the elements of a[]: ");
12 for(i=0; i<m; i++)
13 scanf("%d", &a[i]);
14

15 printf("Enter n: ");
16 scanf("%d", &n);
17 printf("Enter the elements of b[]: ");
18 for(i=0; i<n; i++)
19 scanf("%d", &b[i]);
20

21 // copy a[] to c[]
22 for(i=k=0; i<m; i++, k++)
23 c[k] = a[i];
24

25 // Now copy each element of b[] to c[] if it’s not in a[]
26 for(i=0; i<n; i++){
27 flag = 0; // assume that b[i] is not in a[]
28 for(j=0; j<m; j++){
29 if(b[i]==a[j]){ // b[i] is in a[]
30 flag = 1;
31 break;
32 }
33 }
34 if(!flag) // b[i] is not in a[], so copy it to c[]
35 c[k++] = b[i];
36 }
37

38 printf("c[] = ");
39 for(i=0; i<k; i++)
40 printf("%d ", c[i]);
41 printf("\n");
42

43 return 0;
44 }

6. rClosest pair in 2Ds Given an integer n ě 2, followed by a sequence of n distinct points with real
coordinates, determine a pair of closest points. You can store the x-coordinates and the y-coordinates
in two arrays.

1 #include<stdio.h>
2 #include <float.h>

© Partha Bhowmick

52 5. One-dimensional arrays

3

4 int main(){
5 float x[100], y[100]; // assuming that there are at most 100 points
6 int n, i, j, p, q;
7 float dcur, dmin; // we consider the squares of distances; need not use math library
8 dmin = FLT_MAX; // the maximum value of a float
9

10 printf("Enter #points: ");
11 scanf("%d", &n);
12 printf("Enter the coordinates:\n");
13 for(i=0; i<n; i++){
14 printf("%2d: ", i+1);
15 scanf("%f%f", &x[i], &y[i]);
16 }
17

18 for(i=1; i<n; i++){
19 for(j=0; j<i; j++){
20 dcur = (x[i]-x[j])*(x[i]-x[j]) + (y[i]-y[j])*(y[i]-y[j]);
21 if (dcur < dmin)
22 p = i+1, q = j+1, dmin = dcur;
23 }
24 }
25

26 printf("Closest pair = (%d, %d), distance = %0.3f.\n", p, q, dmin);
27 return 0;
28 }

5.7 Exercise problems

Note the following regarding the problems stated in this section.

i. All arrays here are one-dimensional. The number of elements that an array can store, is referred to as
the size of array. However, the full array may not be used. For example, the size of an array Ar s may
be 10, but we store and work with only 7 elements from Ar0s to Ar6s, whereby Ar7s to Ar9s are of no
use.

ii. Unless mentioned, for an array, assume that its size is at most 1000.
iii. Unless mentioned, assume that the input elements need not be distinct.

1. (Check if sorted) Given a positive integer n as the first input, take in as the next input n integer
elements from the user, store them in an array, and check if they are sorted in non-decreasing order.
The total number of comparisons should be at most n ´ 1.

2. (Largest-sum pair) Given a positive integer n as the first input, take in as the next input n integer
elements from the user, store them in an array, and find a pair of elements that add up to the largest
value over all pairs. For example, for r´2, 5,´1, 3,´1, 2, 3s, the largest sum is 5` 3 “ 8. (Hint: It’s the
pair of max and 2nd max.)

3. (Pair sum) Given a positive integer n and an integer k, followed by n integer elements, store them
in an array and determine whether there are two elements with distinct indices in the array such that
their sum is k.

4. (Binomial coefficients) From the following recurrence of binomial coefficients

ˆ

n

k

˙

“
n!

k!pn ´ kq!
“

ˆ

n ´ 1

k ´ 1

˙

`

ˆ

n ´ 1

k

˙

, (5.2)

© Partha Bhowmick

5. One-dimensional arrays 53

compute the values of
`

n
k

˘

for k “ 0, 1, . . . , n, using the value of n as input. You should do it with a
single array.

5. (Selection Sort: positive and distinct elements, extra array) Given a positive integer n as the
first input, take in as the next input n positive integers from the user and store them in an array A.
Take another array B of the same size and put the elements of A into B so that they are in increasing
order and all the elements of B are distinct. For example, if A “ r4, 2, 3, 2, 6, 4s, then B “ r2, 3, 4, 6s.
Since the size of B is same as that of A, you have to keep track of the number of elements in B.

6. (Selection Sort) Given a positive integer n as the first input, take in as the next input n integers
from the user and store them in an array A. Without using any extra array, rearrange the elements
in non-decreasing order. For example, if input is A “ r4,´2, 3, 0,´2, 6, 4s, then the output will be
A “ r´2,´2, 0, 3, 4, 4, 6s.

7. (Array intersection) Given two arrays A and B containing m and n integer elements respectively,
find the elements in AXB, store them in another array C, and print C. Assume that all elements of A
are distinct, and so also for B.

8. (Maximum collinearity) Given an integer n ě 2, followed by a sequence of n distinct points with
integer coordinates, determine the maximum number of collinear points. You can store the x-coordinates
and the y-coordinates in two arrays.

© Partha Bhowmick

6 | Functions

6.1 What is function?

A function (also known as ‘routine’ or ‘procedure’) is a block of code written to perform a specific compu-
tation, such as calculating a mathematical function like n!,

`

n
r

˘

, GCD(a,b), xy, or sinx. See, for example,
Code 6.1 to compute n!. In addition to mathematical functions, functions are crucial for solving various
computational problems and writing efficient code. For instance, they can be used to enumerate all primes
less than a given natural number (see the solution in §6.14).

Here are some key points about functions:

1. Any function other than main() runs only when it is called by a function such as main() or some other
function, including itself. If it calls itself, it is said to be recursive (see §6.9).

2. Functions are of two categories: i) library functions and ii) user-defined functions.
3. A library is a collection of predefined functions called library functions. C provides a wide range of

libraries, including stdio.h, stdlib.h, math.h, and string.h, among others. The functions scanf,
printf, getc, and putc are defined in stdio.h. The functions abs, atoi, calloc, and malloc are some
commonly used functions defined in stdlib.h. In the math library math.h, we have many predefined
mathematical functions such as sqrt, pow, sin, cos, asin, abs, etc. While processing strings, we need
to include the library string.h to use functions like strlen, strcpy, strcmp, etc.

A detailed list of C library functions can be seen at
https://en.wikipedia.org/wiki/C_standard_library or
https://www.ibm.com/docs/en/i/7.3?topic=extensions-standard-c-library-functions-table-by-name

Code 6.1: Computing n! using a function named fact. factorial_iter.c

1 #include <stdio.h>
2

3 int fact(int n) {
4 int result = 1;
5 for (int i = 2; i <= n; i++)
6 result *= i;
7 return result;
8 }
9

10 int main(){
11 int n;
12 printf("Enter n: ");
13 scanf("%d", &n);
14 printf("fact(%d) = %d\n", n, fact(n));
15 }

54

https://en.wikipedia.org/wiki/C_standard_library
https://www.ibm.com/docs/en/i/7.3?topic=extensions-standard-c-library-functions-table-by-name

6. Functions 55

function name

data type

argument types
argument names

return

float x = m*m + n*n;

return sqrt((float)x);

}

float dis(int m, int n){

return statement

header = protoype or delclaration

body = definition

int main(){

int a, b;

printf("Enter a, b: ");

scanf("%d%d", &a, &b);

printf("dis = %0.3f", dis(a,b));

}

return 1;

data type
return

return statement

no argument

header = protoype or delclaration

body = definition

function name

function call (1st)

function call (2nd)printf("dis = %0.3f", dis(a+1,b));

Figure 6.1: Top: Components of a user-defined function named dis. Notice that dis calls another function,
sqrt, which is defined in the math library.
Bottom: Calling the function dis from main(). Here, dis is the called function, and main()
the caller.

4. A function written by the programmer is called user-defined function. It needs to be written when it is
not predefined in any standard library. One such example is to compute the number of permutations of
r elements chosen from n distinct elements, given by the formula P pn, rq “ n!

pn´rq! . We will discuss in
§6.4 about its two possible implementations, given in Code 6.2 and Code 6.3.

5. A function may take some input arguments or parameters and may return some value. It may be called
multiple times, with same or different arguments. For example, in Figure 6.1, the function dis(...)
is called twice from the function main(). Thus, functions are particularly useful when they need to be
called repeatedly. It makes a smart programming—write once, call again and again. They come handy
while developing a software in a modular fashion. Large codes become easy to read and easy to debug
or revise.

6.2 Defining a function

A function definition has two parts: header and body (Figure 6.1). The header carries the function prototype
or declaration, which consists of:

1. return data type, i.e., data type of the variable whose value is returned by the function;
2. name of the function;
3. names and data types of the variables taken as input arguments or parameters.

When no value needs to be returned, the return data type is void. When no input argument is required, there
is nothing between the opening and the closing brackets; one such example is the function int main(), shown
in Figure 6.1. Observe that the main() in this case calls the user-defined function float dis(int m, int n)
with two integer variables as arguments.

© Partha Bhowmick

56 6. Functions

The header of a function in a code is analogous to the domain of definition of a mathematical function;
e.g., for n!, the domain is the set of positive integers. The body, on the other hand, contains the definition
of the function and its returned value, if any; e.g., for n!, the definition of the function fact in Code 6.1 is
1 ¨ 2 ¨ 3 ¨ ¨ ¨n and its returned value is an integer. We shall study this again in §6.4.

6.3 Execution of a Function

Let’s now see what happens when a function is called. Consider the previous example (Figure 6.1). In the
first call of the function dis from main(), the arguments are a and b, while in the second, they are a+1
and b.

Let’s see what happens inside the computer when a.out is executed. After compiling the C program to
get the binary executable a.out and running it, the operating system initiates the execution of a.out. This
running instance of a.out, involving both the CPU and the RAM, is referred to as a process.

In many cases, a process involves both RAM and the hard disk. While
running, its code and data may not always be in RAM but might be stored
on the hard disk. Additional elements, such as library files and data files,
may also reside on the hard disk. These are loaded into RAM from the
hard disk as needed to run the process.

The following steps occur in the aforesaid process:

1. Loading the executable:
(i) The operating system loads the executable file a.out into main mem-

ory (RAM).
(ii) The part of RAM allocated to a.out is divided into segments, such

as the code segment, data segment, stack, and heap.
(iii) The code segment contains the machine instructions for the main()

and dis() functions.
(iv) The data segment holds global and static variables (none in this ex-

ample).

Local variables
Dynamic mem.

Global & static vars.

Machine instructions

Heap

Stack

RAM

Memory space for a.out

2. Allocating memory:

(i) Memory is allocated for the stack and heap.
(ii) The stack manages function calls, local variables, and return addresses. Here, it includes the

return address where the result of sqrt((float)x) will be stored.
(iii) The stack manages function calls, local variables, and return addresses. In this example, it holds

the return address to resume execution in main() after the dis() function completes. The result
of sqrt((float)x) is initially stored in a CPU register. When the function returns, this value
is transferred to a location in the stack frame of main().

Registers are located within the CPU chip. A modern CPU typically has 16
to 32 general-purpose registers, along with specialized ones. Unlike RAM,
which is slower and larger, registers provide much faster access for the
CPU. Hence, they are used to store frequently used values and intermediate
results during the execution of a process.

(iv) The heap is reserved for dynamic memory allocation (not utilized in this example).

3. Initializing execution:

(i) The entry point of the program, i.e., the first instruction of main(), is determined.
(ii) The CPU begins executing the code from main().

4. Executing main():

© Partha Bhowmick

6. Functions 57

(i) main() outputs the prompt "Enter a, b: " to the terminal.
(ii) It then waits for user input, which is read by scanf() and stored in a and b.
(iii) The values of a and b are passed to the dis() function, transferring them to the memory

locations of m and n.

5. Calling dis():

(i) The function dis() receives the values of its arguments m and n.
(ii) It calculates the distance using the formula

?
m2 ` n2.

(iii) The result is sent back to main().

6. Printing the result:

(i) main() prints the result of dis(a, b) formatted to three decimal places.
(ii) main() then calls dis() again with a+1 and b.
(iii) The result is printed in the same format.

7. Program termination:

(i) After main() has completed all instructions, the program returns 1 (indicating the termination
status), and the process concludes.

(ii) The operating system reclaims the memory allocated to the process and may allocate it to other
processes.

6.4 Prototype versus Definition

We should carefully distinguish between the terms ‘prototype’ and ‘definition’, as together they constitute
a complete function. This distinction is illustrated in Figure 6.1 and elaborated upon in the corresponding
discussion. Here, we focus on writing a prototype, which can follow two distinct approaches depending on
the interdependencies of the user-defined functions within the code.

Typically, each function is declared and defined before any of its calling functions. In other words, both
its header (i.e., prototype) and body (i.e., definition) are written together before any function that calls
it. This approach is illustrated earlier in Figure 6.1. See also Code 6.3 for an example of this approach.
Consequently, the main() function usually appears at the end of the program. This method allows the
compiler to identify all function definitions in a single pass through the program file.

However, in cases where functions call each other in an arbitrary manner, it may not be feasible to write
all function definitions before main(). For instance, consider two functions, f() and g(), where main()
calls f(), f() calls g(), and g() in turn calls f(). This scenario creates a paradox: g() must be defined
before f(), and f() must be defined before g(). In such scenarios, functions cannot be written in full
before main(). So, it is effective to write just the prototypes of all functions before main(), regardless of
the order of calls, and then define the functions after main(). This strategy ensures that the compiler is
aware of all functions in advance and can efficiently organize the executable file a.out. This is referred to
as mutual recursion or cyclic recursion, which is related to indirect recursion and discussed in more detail
in §6.9.4.

As a specific example, consider the problem of computing the number of permutations of r elements
chosen from n distinct elements. It is given by the formula P pn, rq “ n!{pn ´ rq!. Our task is to compute the
values of P pn, rq for r P r1, ns, where the value of n is provided by the user. We discuss two versions of the
code to perform this task. In the first version (Code 6.2), the function prototypes are declared separately
before main(), with their definitions appearing later. In the second version (Code 6.3), the prototypes are
not written separately, requiring the functions to be written in full before main(). Further, the fact function
is written before the npr function because npr calls fact. If fact were written after npr, a compilation error
would occur, as a function must be defined before it is called if prototypes aren’t separately provided.

© Partha Bhowmick

58 6. Functions

Code 6.2: Computing P pn, rq, with separate declaration of prototypes. n_permute_r_ver1.c

1 #include <stdio.h>
2

3 int npr (int n, int r); // prototype of the function npr
4 int fact (int n); // prototype of the function fact
5

6 int main(){
7 int i, n;
8 printf("Enter n: ");
9 scanf ("%d", &n);

10

11 for (i=1; i<=n; i+=1){
12 printf ("%d choose %d = %d \n", i, n, npr(n, i));
13 }
14 }
15

16 int npr(int n, int r){ // definition of the function npr
17 return fact(n)/fact(n-r);
18 }
19

20 int fact(int n){ // definition of the function fact
21 int i, f=1;
22 for (i=1; i<=n; i++){
23 f *= i;
24 }
25 return f;
26 }

Code 6.3: Computing P pn, rq, without separate declaration of prototypes. n_permute_r_ver2.c

1 #include <stdio.h>
2

3 int fact(int n){ // definition of the function fact
4 int i, f=1;
5 for (i=1; i<=n; i++){
6 f *= i;
7 }
8 return f;
9 }

10

11 int npr(int n, int r){ // definition of the function npr
12 return fact(n)/fact(n-r);
13 }
14

15 int main(){
16 int i, n;
17 printf("Enter n: ");
18 scanf ("%d", &n);
19 for (i=1; i<=n; i+=1){
20 printf ("%d choose %d = %d \n", i, n, npr(n, i));
21 }
22 }

© Partha Bhowmick

6. Functions 59

6.5 The return statement

The return statement plays a critical role in function execution by managing control flow within a program.
To understand this, let f be a function that calls a function g. Then, f is said to be the caller function, and
the function g, being invoked by f , is the called function.

In case f is recursive, g may be f also— even then, the discussion here
applies. In that case, the first instance of f refers to “the caller”, while the
second refers to “the called”.

When the function g is called from f , the execution transfers from f to g. Suppose g has one or
more return statements. Upon reaching a return statement in g, the process terminates g and passes the
control back to f , the caller. The program then resumes execution from the point in f where the function
g was originally invoked. Additionally, the return statement in g can return a value to f , which is used in
subsequent operations in f .

The return statement also frees up memory allocated for the local variables and the stack frame of g
(discussed in §6.9.1). Thus, the return statement not only marks the end of g’s execution but also facilitates
control transfer, value return, and memory cleanup, ensuring orderly and efficient program flow.

To summarize, here are the key points:

1. A function with a return type other than void always returns a single value that matches the return
type.

2. If the return type is void, the return statement is optional. In Code 6.4, the function printLine
includes a return statement.

3. It is also logically correct to omit the return statement in a void function, as written in Code 6.5.
4. The body of a function may contain multiple return statements, which can terminate the function’s

execution before it reaches the end of its body. For example, Code 6.6 uses return three times to
determine the largest of three integers.

5. In a value-returning function, return performs two distinct actions:

(i) Specifies the value to be returned once it is computed.
(ii) Terminates the function execution and transfers control back to the caller.

Code 6.4: Example of a function with return type void. Note that the function includes a return
statement at the end, although it is not required for functions with a void return type.
returnStatement_void.c

1 #include <stdio.h>
2

3 void printLine(char c, int n){
4 for(int i=0; i<n; i++)
5 printf("%c", c);
6 return;
7 }
8

9 int main() {
10 char c;
11 int n;
12 printf("Enter the symbol and the length of the line: ");
13 scanf("%c%d", &c, &n);
14 printLine(c, n);
15 return 1;
16 }

© Partha Bhowmick

60 6. Functions

Code 6.5: Example of the same printLine function used in Code 6.4. The only change here
is exclusion of the return statement, which is also logically and syntactically correct.
returnStatement_void2.c

1 void printLine(char c, int n){
2 for(int i=0; i<n; i++)
3 printf("%c", c);
4 }

Code 6.6: Example of a function with multiple return statements. returnStatement_many.c

1 int max(int a, int b, int c){
2 if (a >= b && a >== c)
3 return a;
4 if (b >= a && b >== c)
5 return b;
6 return c;
7 }

6.6 Local and global variables

The variables declared inside a function are said to be its local variables. Called so because there is a
concept of global variables on the contrary, which are declared outside all functions, i.e., just after including
all libraries (#include ...). The local variables can be accessed only within the function in which they are
declared. Local variables cease to exist when the function terminates. Each execution of the function uses
a new set of local variables, and input arguments or parameters are also local in the same sense.

For example, in Figure 6.1, x is a local variable of dis, whereas a and b are its two input parameters.
Know that the input parameters a and b of dis are physically different from the local variables a and b
in main(). Yes, although their names in dis are same with those in main(), they are physically different.
This is because they have different addresses in the memory. The same holds for the variables c and n in
Code 6.4. It is analogous to our very common experience that two persons from two different families may
have the same name!

6.7 Scope of a variable

The scope of a variable means the part of the program that can use the value of the variable. It is basically
the block in which it is defined. Recall that a block means the sequence of statements enclosed within two
matching curly brackets.

For a local variable, the scope the entire function in which it is defined, provided it is declared in the
very beginning of the body of the function. Two local variables of two functions can have the same name, but
they are actually different variables because the variable name works as its first name whereas its surname
is the function name.

Any global variable, since being declared outside all functions including main(), has its scope all over
the program by default. However, it scope will be hidden in a block if a local variable of the same name is
defined in that block. Use of global variables, unless there is a compelling reason, should be avoided.

Here is an example showing how a global variable A is declared and used by two different functions,
namely main() and myProc(). The value of A is printed twice: first from myProc() and then from main().
Since myProc() changes the value of A to 2 and main() reads that value later, in both cases, the printed
value will be 2.

© Partha Bhowmick

6. Functions 61

1 #include <stdio.h>
2 int A; // This A is a global variable
3 void main(){
4 A = 1;
5 myProc();
6 printf("A = %d\n", A);
7 }
8

9 void myProc(){
10 A = 2;
11 printf("A = %d\n", A);
12 }

In the following code, note that the declaration int A = 2; in myProc() creates an integer variable
with the same name, A. This A is local to myProc(), and when it is printed, the output is 2. This does not
affect the value of the global variable A. Consequently, when A is printed from main(), the output is 1, which
is the value of the global variable A.

1 #include <stdio.h>
2 int A; // This A is a global variable
3 void main(){
4 A = 1;
5 myProc();
6 printf("A = %d\n", A);
7 }
8

9 void myProc(){
10 A = 2;
11 printf("A = %d\n", A);
12 }

This practice of declaring local and global variables with the same name should be avoided when writing
code.

6.8 Parameter passing

Parameter or argument passing is required while invoking functions, i.e., when a function calls another
function or calls itself, the former being referred to as the calling or caller function, whereas the latter as
called function. The parameter passing is done to the called function from the caller function. For example,
in Figure 6.1, the values of the parameters a and b are passed to dis from main().

6.8.1 Passing by value

It is also referred to as call by value. The called function gets a ‘copy’ of the value of each parameter, as it
is passed to it by the caller function. In simpler words, the copy is treated as the value of a new variable
associated with the called function only. Thus, execution of the called function has no effect on the values of
the parameters of the caller. The copy does not exist when the called function ends and the program control
returns to the caller function. A parameter passed from the caller may also be an expression, e.g., n-r is the
argument passed from main() when it invokes fact(n-r).

© Partha Bhowmick

62 6. Functions

6.8.2 Passing by reference

It is also termed as call by reference. It is not directly supported in C, but supported in some other languages
like C++. In C, we can instead pass copies of addresses to get the desired effect, as follows. The caller passes
a copy of the address of a variable to the called function. Since the address is passed, execution of the called
function may affect the value of the parameter in the caller function. A very common example is the function
swap that exchanges the values of two variables declared and defined in main(). We shall see this later when
working with pointers.

© Partha Bhowmick

6. Functions 63

6.9 Recursive function

A recursion or recursive function is one that calls itself with smaller values of its arguments. For example,
fpnq “ n ¨ fpn ´ 1q is a recursion, while fpnq “ n ¨ fpn ` 1q is not. A mathematical recurrence, in general,
can be quickly coded if we write it as a recursive function, provided the base cases are properly handled.
Take, for example, computing the value of factorial n! of a positive integer n. Its recurrence is:

n! “

"

1 if n “ 1
n ¨ pn ´ 1q! otherwise. (6.1)

Its recursive implementation is straightforward and shown in Code 6.7. Note that the base case is specified
before the recursive call, making the recursive call appear at the end or ‘tail’ of the function. This is known
as tail recursion. An equivalent implementation using non-tail recursion, where the recursive call precedes
the base condition, is provided in Code 6.8.

Although Code 6.8 is correct, it is not preferred due to its use of non-tail recursion. Non-tail recursion
generally consumes more memory than tail recursion because each recursive call generates a new stack frame.
The concept of stack frames is further discussed in §6.9.1. Therefore, whenever possible, recursive functions
should be written using tail recursion. However, some computational problems, such as the Tower of Hanoi,
cannot be solved with tail recursion, which we will examine in §6.9.2.

Tail recursion means that all base conditions and other non-recursive operations appear before all
recursive calls, and the function returns immediately after the last recursive call. If not, we call it a
non-tail recursion. Tail recursion can often be optimized to use a constant amount of memory space. See,
for example, the iterative function to compute n!, shown in Code 6.9. It is obtained by removing the tail
recursion in Code 6.7.

Code 6.7: Computing n! using tail recursion. factorialFun1.c

1 int fact(int n){
2 if (n==1) // base condition
3 return 1;
4 else
5 return n * fact(n-1); // recursion
6 }

Code 6.8: Computing n! using non-tail recursion. factorialFun2.c

1 int fact(int n){
2 if (n>1)
3 return n * fact(n-1); // recursion
4 else // base condition
5 return 1;
6 }

Code 6.9: Computing n! by an iterative method, designed by removing the tail recursion in Code 6.7.
factorialIterative.c

1 int fact(int n) {
2 int result = 1;
3 for (int i = 2; i <= n; i++)
4 result *= i;
5 return result;
6 }

© Partha Bhowmick

64 6. Functions

fact(4)

if(4==1) return 1;

else return 4*fact(3);

if(3==1) return 1;

else return 3*fact(2);

if(2==1) return 1;

else return 2*fact(1);

if(1==1) return 1;

else return 1*fact(0);

1

2*1 = 2

3*2 = 6

4*6 = 24

1s
t
re
cu

rs
io
n

2n
d
re
cu

rs
io
n

3r
d
re
cu

rs
io
n

B
as
e
ca
se

fact(4) fact(4) fact(4) fact(4) fact(4) fact(4) fact(4)

fact(3) fact(3) fact(3) fact(3) fact(3)

fact(2) fact(2) fact(2)

fact(1)

Time

1st recursion

2nd recursion

3rd recursion

Unfolding of recursion Backtracking

1

fact(4)

2

6

24
function call

base condition reached

main() main() main() main() main() main() main()main() main()

Figure 6.2: Effect of calling the function fact(4) from main(). Top: Unfolding and backtracking of recur-
sive calls. Bottom: Expansion and contraction of the recursion stack during the unfolding and
folding phases of recursion.

An important property of recursion is that when the recursive function is called next time, it acts on
a smaller input, and so eventually the recursion reaches a/the base case. For example, consider the code
of Fibonacci sequence written after Eq. 6.1. As demonstrated in Figure 6.2, the base case is for 1, and
from that point the recursion wraps up, to get the values of fact(2), fact(3), and fact(4), in that order.
This ‘wrapping up’ is referred to as backtracking. Observe how the recursion stack grows when the function
unfolds by recursive calls and diminishes when they terminate during backtracking. The structure and
working principle of the stack are discussed in detail in §6.9.1.

6.9.1 Activation record and recursion stack

Activation record is a data structure that stores information about a single execution of a function. It
includes all local variables and auxiliary data‹ related to the called function.

‹ “Auxiliary data” means all these:
– the return address (where to resume after the call, in order to execute

the pending instructions of the caller function)
– local variables (variables declared within the function)
– parameters (values passed to the function from the caller)
– saved registers (CPU state preservation)
– reference to the caller’s activation record

Recursion stack (or “stack frame”) refers to the entire stack of activation records for a recursive function. It

© Partha Bhowmick

6. Functions 65

is dynamic because of growth and diminish of active functions over time. Each time a recursive function
calls itself, a new activation record is pushed onto the stack. The recursion stack grows as more recursive
calls are made and shrinks when the calls return.

The stack is a data structure that holds all the necessary information and
can be implemented by array. It resides in RAM. Data are stored in LIFO
order (Last In, First Out), hence the name "stack". If A1 is pushed onto
the stack first, followed by A2, then A2 will be popped before A1. (‘Push’
and ‘pop’ are two stack operations; ‘push’ refers to insertion, while ‘pop’
denotes deletion.)

Example: factorial of n

To understand the stack, let’s go back the computation of n! using tail recursion (Code 6.7). As evident from
Figure 6.2, upon reaching the base case, a recursive call ends, and the program control backtracks to the
previous call. While a recursion unfolds, the stack grows up, and when backtracking starts, it shrinks down,
as shown in Figure 6.2.

The stack maintains the activation records of all the unfinished recursive calls in an orderly manner. The
last record is of the last recursive call, and while backtracking, it is the last record which is first processed.
For example, the record of fact(2) is first processed while backtracking after reaching the base condition
(corresponding to fact(1)).

Example: Fibonacci sequence

Let’s now consider a very well-known sequence called Fibonacci sequence, namely tfpnq : n “ 0, 1, 2, . . .u,
defined by the following recurrence:

fp0q “ 0, fp1q “ 1, and fpnq “ fpn ´ 1q ` fpn ´ 2q if n ě 2. (6.2)

Code 6.10: Computation of Fibonacci sequence by a recursive function. fibonacciRec.c

1 int fib(int n) {
2 if (n <= 1) // Base condition: holds for n = 0 and 1
3 return n;
4 return fib(n-1) + fib(n-2); // Two recursive calls
5 }

A recursive function to compute fpnq for n ě 0 is presented in Code 6.10. Consider the two recursive
calls in the 4th line of Code 6.10: return fib(n-1) + fib(n-2);. For the first call (i.e., fib(n-1)), a new
activation record is pushed onto the recursion stack, which holds the value of n-1 and all auxiliary data. The
same occurs for the second call (i.e., fib(n-2)). These calls, in turn, may invoke further recursive calls, with
similar actions performed each time. In essence, every time a recursive function is called, a new activation
record is created on the recursion stack, storing the argument value and auxiliary data. Once the function
completes, its activation record is popped from the stack. This stack-based mechanism enables the program
to manage multiple levels of recursion effectively.

A demonstration of Code 6.10 for n “ 4 is shown through its recursion tree in Figure 6.3. Each node
in the tree represents a function call, and the directed edges illustrate the recursive calls between functions.
The tree starts with the initial call for n “ 4 at the root and branches out to show all subsequent calls made
by that function. For a function that calls itself recursively, the recursion tree reveals multiple levels of the
function, demonstrating how each call generates further calls. This tree helps visualize how the problem is
divided into sub-problems and how many times each sub-problem is solved.

© Partha Bhowmick

66 6. Functions

5th return = 2

4th return = 1

1st return = 1

fib(4)

2nd return = 0

3rd return = 1

fib(3)

fib(1)

fib(2)
7th return = 06th return = 1

8th return = 1

fib(0)fib(1)fib(2)

fib(1) fib(0)

returned value = 3 to its caller

Figure 6.3: The recursion tree corresponding to the function fib(4).

The execution time and memory space required for running the recursive code are critical for under-
standing the efficiency of Code 6.10. Observe that the size of the recursion tree is exponential in n, implying
that the time complexity is also exponential. This is because the function fibpnq obtains its value only after
exploring all nodes of the tree. However, the actual space used in the RAM at any point is at most linear
in n, as each call to fibpnq occupies an activation record in the recursion stack, and the maximum depth of
the tree is n.

The function recomputes the values of fibpn ´ kq multiple times for k ě 1 due to overlapping sub-
problems. For example, fibpn ´ 2q is computed twice, fibpn ´ 3q is computed four times, and so on. This
redundant computation contributes to the exponential runtime. This redundancy can be completely elimi-
nated by using an iterative approach, which results in a linear runtime in n.

6.9.2 Tower of Hanoi

The Tower of Hanoi problem was invented by the French mathematician Édouard Lucas in 1883. He was
inspired by a legend about a temple in India where monks were tasked with moving 64 golden disks from
one peg to another. According to the legend, once all the disks were moved, the world would come to an
end. The problem became famous for illustrating recursion and algorithmic problem solving.

The computational problem goes as follows: Given three pegs A, B, C, and n disks of different sizes
stacked on peg A in decreasing order of their sizes from bottom to top, the task is to move all the disks from
peg A (source peg) to peg C (destination peg), using peg B (auxiliary peg). The constraints are:

1. Only one disk can be moved at a time.
2. A larger disk cannot be placed on top of a smaller disk.

The Tower of Hanoi problem does not admit tail recursion, as mentioned earlier in §6.9. This is because,
after moving the top n´1 disks from peg A to peg B, you must move the largest disk (currently the sole disk
in A) to peg C. After that, the entire set of n´ 1 disks on peg B needs to be moved to peg C. This process

1
2

1st recursion

n-1
n

A B C

1
2

n-1n

A B C

1
2

n-1 n

A B C

1
2

Final solution

n-1
n

A B C

Base condition 2nd recursion

Figure 6.4: Tower of Hanoi: Three basic steps.

© Partha Bhowmick

6. Functions 67

A B C

1
2

3

A B C

1
2

3

Start

A B C

123

A B C

1
23

A B C

1
2 3

A B C

1 2 3

A B C

1
2

3

A B C

1
2

3

End

Figure 6.5: Tower of Hanoi: Sequence of moves while running Code 6.11 with n “ 3.

requires additional work after each recursive call, which prevents the function from being tail recursive. The
fundamental steps for solving the Tower of Hanoi problem, illustrated in Figure 6.4, are as follows:

1. 1st recursion: Move the top n ´ 1 disks from peg A to peg B, using peg C as the auxiliary peg.
2. Base condition: Move Disk n from peg A to peg C.
3. 2nd recursion: Move all n ´ 1 disks from peg B to peg C, using peg A as the auxiliary peg.

The corresponding code is given in Code 6.11, and here is the output for n “ 3:

Enter #disks: 1 Enter #disks: 2 Enter #disks: 3
Disk 1: A → C Disk 1: A → B Disk 1: A → C

Disk 2: A → C Disk 2: A → B
Disk 1: B → C Disk 1: C → B

Disk 3: A → C
Disk 1: B → A
Disk 2: B → C
Disk 1: A → C

Code 6.11: Tower of Hanoi: Solution using non-tail recursion. towerHanoi.c

1 #include <stdio.h>
2 #include <wchar.h>
3

4 void hanoi(int n, char A, char C, char B) {
5 if (n == 1) { // Base case
6 printf("Disk 1: %c \u2192 %c\n", A, C); // \u2192 = Unicode character of right arrow
7 return;
8 }
9 hanoi(n - 1, A, B, C); // 1st recursive call

10 printf("Disk %d: %c \u2192 %c\n", n, A, C);
11 hanoi(n - 1, B, C, A); // 2nd Recursive call
12 }
13

14 int main() {
15 int n;
16 printf("Enter #disks: ");
17 scanf("%d", &n);
18 hanoi(n, ’A’, ’C’, ’B’);
19 return 0;
20 }

© Partha Bhowmick

68 6. Functions

6.9.3 Direct and indirect recursion

As mentioned in §6.9, a recursive function repeatedly calls itself. This can occur either directly or indirectly
in a cyclic chain. A direct recursion means the function calls only itself, while an indirect recursion means
it calls another recursive function. Below are three examples defined for all positive integers n.

Direct recursion: fpnq “

"

1 if n “ 1
n ¨ fpn ´ 1q otherwise.

Indirect recursion: gpnq “

"

1 if n “ 1
n ¨ hpn ´ 1q otherwise.

Indirect recursion: hpnq “

"

1 if n “ 1
1`gpn´1q otherwise.

The function fpnq is an example of direct recursion because it only calls itself. On the contrary, the
function gpnq does not call itself but instead calls hpnq, which, in turn, calls back gpnq. Thus, for both g
and h, it is an example of indirect recursion. Furthermore, since g and h call each other, they form what is
known as mutual recursion or cyclic recursion.

f g h

Call graph: In a recursive program, it represents the calling rela-
tionships between functions. This is specially important when there
are many recursive functions. For example, if f calls f and g, g calls
f , g, and h, and h calls only itself, the call graph will look as shown
aside.

6.9.4 Mutual recursion

f

g

h

Mutual or cyclic recursion is one in which two or more functions call each other
in a cycle. For example, when f calls g, g calls h, and h calls f , as shown in the
inset figure.
As a specific example, consider this problem: compute the n-th number in a
Fibonacci-like sequence, defined by two mutually recursive functions, as follows.

fevenpnq “

$

&

%

0 if n “ 0
1 if n “ 2
fevenpn ´ 2q ` foddpn ´ 1q otherwise.

(6.3)

foddpnq “

$

&

%

1 if n “ 1
2 if n “ 3
foddpn ´ 2q ` fevenpn ´ 1q otherwise.

(6.4)

A solution using tail recursion is shown in Code 6.12. This code is revised to make it free from recursions.
The revised code uses only iterations (loops), which is shown in Code 6.13. For index n ranging from 1 to
3, the respective values obtained by running either of these codes are as follows:

n 1 2 3 4 5 6 7 8 9 10
f 1 1 2 3 5 8 13 21 34 55

© Partha Bhowmick

6. Functions 69

Code 6.12: Computing the n-th number in a Fibonacci-like sequence using tail recursion.
fibonacci-like-sequence-1-tailRec.c

1 #include <stdio.h>
2

3 int f_even(int n);
4 int f_odd(int n);
5

6 int main() {
7 int n;
8 printf("Enter the index (n): ");
9 scanf("%d", &n);

10 if (n % 2 == 0)
11 printf("f_even(%d) = %d\n", n, f_even(n));
12 else
13 printf("f_odd(%d) = %d\n", n, f_odd(n));
14 return 0;
15 }
16

17 int f_even(int n) {
18 if (n == 0)
19 return 0; // Base case
20 else if (n == 2)
21 return 1; // Base case
22 else
23 return f_even(n - 2) + f_odd(n - 1); // Recursive case
24 }
25

26 int f_odd(int n) {
27 if (n == 1)
28 return 1; // Base case
29 else if (n == 3)
30 return 2; // Base case
31 else
32 return f_odd(n - 2) + f_even(n - 1); // Recursive case
33 }

History: The Fibonacci sequence has its roots in the work of the Italian mathematician Leonardo of Pisa,
known as Fibonacci, who introduced the sequence to Western mathematics in his book Liber Abaci (1202).
Although the sequence had appeared earlier in Indian mathematics, Fibonacci used it to model the growth of
a rabbit population. The sequence starts with 0 and 1, and each subsequent number is the sum of the two
preceding ones, forming the series: 0, 1, 1, 2, 3, 5, 8, 13, Fibonacci’s work with this sequence has since found
applications in various fields of science and nature.

Applications: In computer science, Fibonacci numbers are used in algorithms like Fibonacci search and for
optimizing dynamic programming solutions. They also appear in data structures such as Fibonacci heaps. In
biology, the sequence describes phenomena such as the arrangement of leaves on a stem, the branching of trees,
or the reproduction patterns of bees. In finance, Fibonacci retracement levels are used in technical analysis
to predict stock market movements. Moreover, the sequence appears in architecture and art, where it is often
associated with the golden ratio, as the ratio of consecutive Fibonacci numbers approaches the golden ratio
φ « 1.618.

Similar sequences: Several other sequences exhibit similar recursive patterns. The Lucas sequence, for
example, starts with 2 and 1 but follows the same recursive relation. The Tribonacci sequence generalizes
the Fibonacci rule by summing the three preceding numbers instead of two. Similarly, the Padovan and Per-
rin sequences follow related patterns, highlighting the broad applicability and fascination with such recursive
relationships in mathematics and natural phenomena.

© Partha Bhowmick

70 6. Functions

Code 6.13: Computing the n-th number in a Fibonacci-like sequence using an iterative method, designed
by removing the tail recursions in Code 6.12. fibonacci-like-sequence-1-iter.c

1 #include <stdio.h>
2

3 int f_even(int n);
4 int f_odd(int n);
5

6 int main() {
7 int n;
8 printf("Enter the index (n): ");
9 scanf("%d", &n);

10 if (n % 2 == 0)
11 printf("f_even(%d) = %d\n", n, f_even(n));
12 else
13 printf("f_odd(%d) = %d\n", n, f_odd(n));
14 return 0;
15 }
16

17 int f_even(int n) {
18 int prev_even = 0, prev_odd = 1, current_even = 0, current_odd = 1;
19

20 for (int i = 2; i <= n; i++) {
21 if (i % 2 == 0) {
22 current_even = prev_even + prev_odd;
23 prev_even = current_even;
24 } else {
25 current_odd = prev_even + prev_odd;
26 prev_odd = current_odd;
27 }
28 }
29

30 return current_even;
31 }
32

33 int f_odd(int n) {
34 int prev_even = 0, prev_odd = 1, current_even = 0, current_odd = 1;
35

36 for (int i = 2; i <= n; i++) {
37 if (i % 2 == 0) {
38 current_even = prev_even + prev_odd;
39 prev_even = current_even;
40 } else {
41 current_odd = prev_even + prev_odd;
42 prev_odd = current_odd;
43 }
44 }
45

46 return current_odd;
47 }

1. Fibonacci sequence: F0 “ 0, F1 “ 1, Fn “ Fn´1 ` Fn´2 for n ě 2.

2. Lucas sequence: L0 “ 2, L1 “ 1, Ln “ Ln´1 ` Ln´2 for n ě 2.

3. Tribonacci sequence: T0 “ 0, T1 “ 1, T2 “ 1, Tn “ Tn´1 ` Tn´2 ` Tn´3 for n ě 3.

4. Padovan sequence: P0 “ P1 “ P2 “ 1, Pn “ Pn´2 ` Pn´3 for n ě 3.

5. Perrin sequence: P0 “ 3, P1 “ 0, P2 “ 2, Pn “ Pn´2 ` Pn´3 for n ě 3.

© Partha Bhowmick

6. Functions 71

6.10 Passing an array to a function

While passing an array to a function, the name of the array is used as an argument. Now, beware of the
catch here—since the name of the array is the argument, the values of the array elements are not passed to
the called function. Rather, the array name is interpreted as the address of the first element of the array,
and so what is passed is basically the first element’s address. In this regard, the way it is passed differs from
that for ordinary variables.

Repeating again, the argument carries the address of the first element of the array. When any element
of that array has to be accessed inside the called function, its address is calculated by the compiler using the
technique discussed in §5.2. Clearly, this address is address is same to both the caller and the called for any
element of the array, and it is also accessible to both of them. Hence, any change made to any element inside
the called function is eventually reflected in the calling function, once the called function ends. In Code 6.14,
for example, the elements of a 5-element array are squared in the called function, and when printed from
the caller, the squared elements will be printed as desired.

Code 6.14: Example of passing an array to a function. passArray2Fun.c

1 void doSqr(int a[], int n){
2 for(int i=0; i<n; i++)
3 a[i] *= a[i];
4 }
5

6 int main(){
7 int a[] = {3, -2, 1, 2, 1};
8 doSqr(A, 5);
9 for(int i=0; i<5; i++)

10 printf("%d ", a[i]); // will print 9 4 1 4 1
11 return 1;
12 }

6.11 Macros (#define)

Macros are a powerful feature in C language that allows you to define constants or expressions that can
be reused throughout the program. A macro serves as a placeholder for the specified value or expression.
It is created by the #define directive. During preprocessing, which occurs before the compilation stage,
the preprocessor scans through the code and substitutes every occurrence of the macro with the value or
expression it represents.

For example, consider the macro definition: #define PI 3.14159. Whenever the macro PI is used in
the code, the preprocessor will automatically replace it with 3.14159. This substitution happens at every
instance where PI appears, excepting the format string in printf. This is done by the programmer to ensure
consistency and to reduce the risk of errors associated with manual input of constant values.

Code 6.15 illustrates shows how you can define and use a macro for π. In this code, we compute the
perimeter and the area of a circle, given by 2πr and πr2, respectively, where r is the radius of the circle.

The #define directive in C not only allows you to define simple constants but also enables the creation
of macros with arguments, which are similar to functions. These macros can take one or more arguments,
and during preprocessing, the arguments are replaced with the values passed when the macro is invoked.
This capability allows you to create flexible and reusable code snippets.

© Partha Bhowmick

72 6. Functions

Code 6.15: Example of using a macro. macro_PI.c

1 #include <stdio.h>
2 #define PI 3.14159
3

4 int main() {
5 float radius, perimeter, area;
6

7 printf("Enter the radius of the circle: ");
8 scanf("%f", &radius);
9

10 perimeter = 2.0 * PI * radius;
11 area = PI * radius * radius;
12 printf("Perimeter = %0.3f, area = %0.3f\n", perimeter, area);
13

14 return 0;
15 }

6.12 #define with arguments

A macro with arguments is defined using the same #define directive but includes a list of parameters in
parentheses after the macro name. When the macro is used in the code, the preprocessor replaces the macro
call with the macro definition, substituting the arguments with the corresponding values passed in the call.
For example, this is a macro that calculates the square of a number:

#define SQR(x) ((x)*(x))

In this example, the macro sqr takes one argument, x. When you use sqr in your code, the preprocessor
replaces it with the expression ((x)*(x)). Here is how you can use it:

#define SQR(x) ((x)*(x))
int main() {

int n = 5;
printf("The square of %d is %d\n", n, SQR(n));

return 0;
}

When the preprocessor processes this code, the line:

printf("The square of %d is %d\n", n, SQR(n));

is replaced with:

printf("The square of %d is %d\n", n, ((x)*(x)));

This substitution ensures that the macro works correctly, even if the argument n is an expression rather than
a simple variable. For example, if you write SQR(a+b), the macro expands to ((a+b)*(a + b)), ensuring
that the entire expression is squared.

You have to be careful while defining a macro. For example, if you write #define SQR(x) x*x, then
SQR(a+b) will result in a+b*a+b, which is incorrect.

As you understand now, macros with arguments have definite advantages in coding. First, they simplify
complex expressions by encapsulating them in a single, easy-to-use macro. Second, they are efficient because

© Partha Bhowmick

6. Functions 73

Table 6.1: Some typical examples of macros.

#define SQR(x) ((x) * (x)) // Square of a number x
#define CUBE(x) ((x) * (x) * (x)) // Cube of a number x
#define AVG(a, b) ((a) + (b)) / 2.0 // Average of two numbers a and b
#define ABS(x) (((x) < 0) ? -(x) : (x)) // Absolute value of a number x
#define IS_EVEN(x) (((x) % 2) == 0) // Check if a number x is even
#define IS_ODD(x) (((x) % 2) != 0) // Check if a number x is odd
#define MIN(a, b) (((a) < (b)) ? (a) : (b)) // Minimum of two numbers a and b

// Check if a number x is within a range [low, high]
#define IN_RANGE(x, low, high) (((x) >= (low)) && ((x) <= (high)))

// Determine the maximum of three numbers a, b, and c
#define MAX3(a, b, c) (((a) > (b)) ? ((a) > (c) ? (a) : (c)) : ((b) > (c) ? (b) : (c)))

// Calculate the distance between two points (x1, y1) and (x2, y2)
#define DIS(x1, y1, x2, y2) sqrt(((x2)-(x1)) * ((x2)-(x1)) + ((y2)-(y1)) * ((y2)-(y1)))

#define PI (2.0 * asin(1)) // Define the best-possible value of pi using math.h
#define DEG_TO_RAD(x) ((x) * (PI) / 180.0) // Convert an angle x from degrees to radians
#define RAD_TO_DEG(x) ((x) * 180.0 / (PI)) // Convert an angle x from radians to degrees
#define CIRP(r) (2 * PI * (r)) // Calculate the perimeter of a circle with radius r
#define CIRA(r) (PI * (r) * (r)) // Calculate the area of a circle with radius r

// Swap two variables a and b
#define SWAP(a, b, type) { type temp = (a); (a) = (b); (b) = temp; }

they are expanded inline, avoiding the overhead of function calls. Third, they allow you to create reusable
code snippets that can be adapted to different inputs. Some typical use case for macros are given in Table 6.1.
Following is a program where the macro SWAP(a, b, type) is used.

1 #include <stdio.h>
2

3 // Macro to swap two variables of a given type
4 #define SWAP(a, b, type) { type temp = (a); (a) = (b); (b) = temp; }
5

6 int main() {
7 // Declare and initialize variables
8 int x = 10, y = 20;
9 double p = 3.14, q = 2.71;

10 char c1 = ’A’, c2 = ’B’;
11

12 // Swap integers
13 printf("Before swapping: x = %d, y = %d\n", x, y);
14 SWAP(x, y, int);
15 printf("After swapping: x = %d, y = %d\n\n", x, y);
16

17 // Swap doubles
18 printf("Before swapping: p = %.2f, q = %.2f\n", p, q);
19 SWAP(p, q, double);

© Partha Bhowmick

74 6. Functions

20 printf("After swapping: p = %.2f, q = %.2f\n\n", p, q);
21

22 // Swap characters
23 printf("Before swapping: c1 = %c, c2 = %c\n", c1, c2);
24 SWAP(c1, c2, char);
25 printf("After swapping: c1 = %c, c2 = %c\n", c1, c2);
26

27 return 0;
28 }

6.13 Extra topics

These topics may not be in your syllabus. Please get it confirmed from your teacher.

6.13.1 Generating random input using rand

Random input is crucial for testing and analyzing systems with large data sizes because it helps in simulating a
wide range of possible scenarios and corner cases. When dealing with substantial datasets, manually crafting
diverse test-cases becomes impractical. Randomly generated data ensures that the system is exposed to
various combinations and distributions of input, which can reveal potential issues such as performance
bottlenecks, boundary conditions, or unexpected behaviors. This approach is essential for validating the
robustness and reliability of algorithms and applications, ensuring they perform well under realistic and
unpredictable conditions.

The next C program demonstrates how to use the rand function with srand for seed generation to fill an
array of 100 integers with values in a user-defined interval [a,b]. The user inputs the interval bounds a and
b. The srand function is used to seed the pseudo-random number generator with the current time, ensuring
different random sequences on each execution. The rand function generates random numbers, which are
then scaled to fall within the interval [a,b]. The program finally prints the filled array.

The macro #define RANDOM_IN_RANGE(a, b) generates a random integer in [a,b], by using the rand()
function and adjusting the range accordingly. The library stdlib.h provides access to the rand() function
for generating random numbers and srand() for setting the seed, while the library time.h is used to obtain
the current time with time(NULL), which initializes the seed for rand() to ensure that the sequence of random
numbers varies with each execution. This combination is essential for producing diverse and unpredictable
random values.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <time.h>
4

5 #define SIZE 100
6

7 // Macro to generate a random integer between a and b
8 #define RANDOM_IN_RANGE(a, b) ((a) + rand() % ((b) - (a) + 1))
9

10 int main() {
11 int a, b;
12 int array[SIZE];
13

14 // Get the interval bounds from the user
15 printf("Enter the lower bound (a): ");
16 scanf("%d", &a);

© Partha Bhowmick

6. Functions 75

17 printf("Enter the upper bound (b): ");
18 scanf("%d", &b);
19

20 // Seed the random number generator with the current time
21 srand(time(NULL));
22

23 // Fill the array with random integers in the interval [a, b]
24 for (int i = 0; i < SIZE; i++) {
25 array[i] = RANDOM_IN_RANGE(a, b);
26 }
27

28 // Print the filled array
29 printf("Array filled with random integers between %d and %d:\n", a, b);
30 for (int i = 0; i < SIZE; i++) {
31 printf("%d ", array[i]);
32 }
33 printf("\n");
34

35 return 0;
36 }

Below is a modified version of the above code in which the seed is an integer r taken in from the user,
rather than using a time-dependent seed. Note that the number of elements is also taken from the user.

1 #include <stdio.h>
2 #include <stdlib.h>
3

4 #define RANDOM_IN_RANGE(a, b) ((a) + rand() % ((b) - (a) + 1))
5

6 int main() {
7 int a, b, r, n;
8

9 // Prompt user for the range [a, b], the seed value, and the number of elements
10 printf("Enter the lower bound (a): ");
11 scanf("%d", &a);
12 printf("Enter the upper bound (b): ");
13 scanf("%d", &b);
14 printf("Enter the seed value (r): ");
15 scanf("%d", &r);
16 printf("Enter the number of elements (n): ");
17 scanf("%d", &n);
18

19 // Initialize the random number generator with the user-provided seed
20 srand(r);
21

22 // Fixed-size array
23 int arr[100];
24

25 // Ensure n does not exceed the array size
26 if (n > 100) {
27 printf("The number of elements cannot exceed 100.\n");
28 return 1;
29 }
30

© Partha Bhowmick

76 6. Functions

31 // Fill the array with random integers in the range [a, b]
32 for (int i = 0; i < n; i++) {
33 arr[i] = RANDOM_IN_RANGE(a, b);
34 }
35

36 // Display the generated array
37 printf("Generated array:\n");
38 for (int i = 0; i < n; i++) {
39 printf("%d ", arr[i]);
40 }
41 printf("\n");
42

43 return 0;
44 }

Here are the outputs for two different seeds provided by the user, while the interval [a,b] remains
unchanged. Notice how the outputs differ due to the variation in seeds.

Enter the lower bound (a): 10
Enter the upper bound (b): 13
Enter the seed value (r): 1
Enter the number of elements (n): 5
Generated array:
13 12 11 13 11

Enter the lower bound (a): 10
Enter the upper bound (b): 13
Enter the seed value (r): 2
Enter the number of elements (n): 5
Generated array:
12 13 10 13 11

6.13.2 main() with arguments

The main() function serves as the entry point of a C program, where the execution begins. When main()
is defined without arguments, it takes the form int main(void) or simply int main(). In this case, the
function does not accept any input from the command line, and the program runs independently of any
external input.

Alternatively, main() can be defined with arguments, typically as int main(int argc, char *argv[].
Here, argc (argument count) represents the number of command-line arguments passed to the program, and
argv (argument vector) is an array of strings holding the actual arguments. This form of main() is crucial
when a program needs to process input provided by the user at runtime, such as file names, options, or other
data.

To run a program with arguments, you execute the compiled program in the command line followed by
the desired arguments. For instance, if your executable is named a.out, and you want to pass two arguments
input.txt and output.txt, you would run the command:

./a.out input.txt output.txt

This allows the program to dynamically adjust its behavior based on the provided inputs, making it more
versatile and interactive.

Here is a C program that takes numbers as command-line arguments and prints their square roots to
the terminal:

© Partha Bhowmick

6. Functions 77

1 #include <stdio.h>
2 #include <stdlib.h> // Include stdlib.h for atof()
3 #include <math.h> // Include math.h for sqrt()
4

5 int main(int argc, char *argv[]) {
6 // Check if at least one number is provided as argument
7 if (argc < 2) {
8 printf("Usage: %s <number1> <number2> ... <numberN>\n", argv[0]);
9 return 1;

10 }
11

12 // Loop through each argument provided
13 for (int i = 1; i < argc; i++) {
14 // Convert the argument from string to double
15 double num = atof(argv[i]);
16

17 // Calculate the square root
18 double squareRoot = sqrt(num);
19

20 // Print the result to the terminal
21 printf("Square root of %.2lf is %.4lf\n", num, squareRoot);
22 }
23

24 return 0;
25 }

Here is a snapshot of its compilation and execution:

gcc mainWithArgs_SqRootsTerminal.c -lm
./a.out 4 6 7 9
Square root of 4.00 is 2.0000
Square root of 6.00 is 2.4495
Square root of 7.00 is 2.6458
Square root of 9.00 is 3.0000

Here is another C program where the input file contains some numbers, and the output file will store
their square roots:

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <math.h>
4

5 int main(int argc, char *argv[]) {
6 FILE *inputFile, *outputFile;
7 double num;
8

9 // Open input file in read mode
10 inputFile = fopen("input.txt", "r");
11 if (inputFile == NULL) {
12 printf("Error opening input file.\n");
13 return 1;
14 }
15

© Partha Bhowmick

78 6. Functions

16 // Open output file in write mode
17 outputFile = fopen("output.txt", "w");
18 if (outputFile == NULL) {
19 printf("Error opening output file.\n");
20 fclose(inputFile);
21 return 1;
22 }
23

24 // Read each number, calculate its square root, and write to the output file
25 while (fscanf(inputFile, "%lf", &num) != EOF) {
26 fprintf(outputFile, "Square root of %.2lf is %.4lf\n", num, sqrt(num));
27 }
28

29 // Close the files
30 fclose(inputFile);
31 fclose(outputFile);
32

33 return 0;
34 }

6.14 Solved problems

1. rPrinting primes up to a given numbers Write a function of the prototype int checkPrime(int x).
It takes as input an integer x, checks whether it’s prime, and returns 1 if so, and 0 otherwise. Scan a
positive integer n from main() and print all primes in r1, ns by calling the above function in a loop.

1 #include <stdio.h>
2 #include <math.h>
3

4 int checkPrime(int x){
5 int isPrime = 1;
6 for(int i = 2; (i <= sqrt(x)) && isPrime; i++){
7 if(x%i==0)
8 isPrime = 0;
9 i++;

10 }
11 return isPrime;
12 }
13

14 int main(){
15 int n;
16 printf("Enter a positive integer: ");
17 scanf("%d", &n);
18 for(int j=3; j<=n; j++)
19 if(checkPrime(j))
20 printf("%d is prime\n", j);
21 return 0;
22 }

2.
“

n choose r:
`

n
r

˘‰

Write two functions of the following prototypes:

int ncr (int n, int r);
int fact (int n);

© Partha Bhowmick

6. Functions 79

The first function will compute the value of
`

n
r

˘

“ n!
r!pn´rq! , and to do so, it will call the second one to

get the values of n!, r!, and pn ´ rq!. Scan a positive integer n from main() and print the values of
`

n
r

˘

for r P r0, ns, by calling the function ncr in a loop. For example, for n “ 5, it will print 1, 5, 10, 10, 5, 1.

1 #include <stdio.h>
2

3 int ncr (int n, int r); // prototype of the function ncr
4 int fact (int n); // prototype of the function fact
5

6 int main(){
7 int i, n;
8 printf("Enter n: ");
9 scanf ("%d", &n);

10 for (i=0; i<=n; i+=1)
11 printf ("%d choose %d = %d \n", i, n, ncr(n, i));
12 }
13

14 int ncr(int n, int r){ // definition of the function ncr
15 return fact(n)/fact(r)/fact(n-r);
16 }
17

18 int fact(int n){ // definition of the function fact
19 int i, f=1;
20 for (i=1; i<=n; i++)
21 f *= i;
22 return f;
23 }

3. rValue of a quadratic functions Write a function to compute the value of ax2 ` bx` c with a, b, c, x
as real values and taken as arguments in that order. Scan their respective values from main(), call that
function from main(), and print its returned value from main().

1 // Value of a quadratic function
2

3 #include <stdio.h>
4

5 float f(float a, float b, float c, float x){
6 return a*x*x + b*x + c;
7 }
8

9 int main(){
10 float a, b, c, x;
11 printf("\nEnter a, b, c, x: ");
12 scanf("%f%f%f%f", &a, &b, &c, &x);
13 printf("f = %f\n", f(a,b,c,x));
14 return 0;
15 }

4. rArithmetic and geometric meanss Write a function to compute and print the arithmetic mean and
the geometric mean of n real numbers, with n and an n-element array as arguments. The value of n
and the array elements will be supplied as input from main(). The math library can be used, but only
for the pow() function.

© Partha Bhowmick

80 6. Functions

1 // Arithmetic and geometric means
2

3 #include <stdio.h>
4 #include <math.h>
5 #define SIZE 1000
6

7 void computeAMGM(int n, float a[]){
8 int i;
9 float sum=0, prod=1;

10

11 for(i=0; i<n; i++){
12 sum += a[i];
13 prod *= a[i];
14 }
15 printf("AM = %f, GM = %f.\n", sum/n, pow(prod, 1.0/(float)n));
16 }
17

18 int main(){
19 int n, i;
20 float a[SIZE];
21

22 printf("Enter n: ");
23 scanf("%d", &n);
24 printf("Enter the elements: ");
25

26 for(i=0; i<n; i++)
27 scanf("%f", &a[i]);
28

29 computeAMGM(n, a);
30

31 return 0;
32 }

5. rMedians Write a function to compute and return the median of n integers, with n and an n-element
array as arguments. Scanning the value of n along with the array elements, and printing the median,
should all be done from main(). Assume that n is odd and all elements are distinct. Then, exactly
n´1
2 elements of the array will be smaller that the median—a fact that can be used to write the function.

1 // Find the median element in an array with odd number of elements
2

3 #include <stdio.h>
4 #define SIZE 1000
5

6 int readInput(int a[]){
7 int n, i;
8 printf("Enter n: ");
9 scanf("%d", &n);

10 printf("Enter the elements: ");
11 for(i=0; i<n; i++)
12 scanf("%d", &a[i]);
13 return n;
14 }
15

16 int findMedian(int a[], int n){
17 int i, j, k, m;

© Partha Bhowmick

6. Functions 81

18 for(i=0; i<n; i++){
19 for(j=0, k=0; j<n; j++){
20 if(a[j]<a[i])
21 k++;
22 }
23 if (k==n/2){
24 m = a[i];
25 break;
26 }
27 }
28 return m;
29 }
30

31

32 int main(){
33 int a[SIZE], n, m;
34

35 n = readInput(a);
36 m = findMedian(a, n);
37 printf("Median = %d\n", m);
38

39 return 0;
40 }

6. rGCD function, recursives Write a recursive function of the prototype int gcd(int, int) to com-
pute the GCD of two numbers, using Eq. 4.1. Take in two positive integers m,n from main(), call
gcd(m,n) from main(), and print its returned value from main().

1 //GCD function: recursive
2

3 #include <stdio.h>
4

5 int gcd(int a, int b){
6 if(a==0) return b;
7 else return gcd(b%a, a);
8 }
9

10 int main(){
11 int m, n;
12 printf("\nEnter two positive integers: ");
13 scanf("%d%d", &m, &n);
14 printf("GCD = %d\n", gcd(m,n));
15 return 0;
16 }
17

7. rGCD function, iteratives Write an iterative version of the GCD function using Eq. 4.1, keeping the
main() same as the recursive version.

1 //GCD function
2

3 #include <stdio.h>
4

5 int gcd(int a, int b){
6 int c;

© Partha Bhowmick

82 6. Functions

7 while(a!=0){
8 c = a;
9 a = b%a;

10 b = c;
11 }
12 return b;
13 }
14

15 int main(){
16 int m, n;
17 printf("\nEnter two positive integers: ");
18 scanf("%d%d", &m, &n);
19 printf("GCD = %d\n", gcd(m,n));
20 return 0;
21 }
22

8. rGenerate all possible permutations of an arrays Write a recursive function to generate all pos-
sible permutations of a random array. The seed, the number of elements, and the range of elements are
taken in as input from the user. The function should generate permutations by swapping each element
with the first element and then recursively permuting the remaining sub-array. This problem inherently
relies on recursion to explore all possible orderings of the array elements.

1 #include <stdio.h>
2 #include <stdlib.h>
3

4 // Macro to generate a random integer in the range [a, b]
5 #define RANDOM_IN_RANGE(a, b) ((a) + rand() % ((b) - (a) + 1))
6

7 // Recursive function to generate all permutations
8 void generatePermutations(int arr[], int start, int end) {
9 if (start == end) {

10 // Print the current permutation
11 for (int i = 0; i <= end; i++) {
12 printf("%d ", arr[i]);
13 }
14 printf("\n");
15 }
16 else {
17 for (int i = start; i <= end; i++) {
18 // Swap
19 int temp = arr[start];
20 arr[start] = arr[i];
21 arr[i] = temp;
22

23 // Recursively generate permutations for the sub-array
24 generatePermutations(arr, start + 1, end);
25

26 // Backtrack by swapping back the elements
27 temp = arr[start];
28 arr[start] = arr[i];
29 arr[i] = temp;
30 }
31 }
32 }

© Partha Bhowmick

6. Functions 83

33

34 int main() {
35 int n, seed, a, b;
36

37 // Take user input for the seed, number of elements, and the range [a, b]
38 printf("Enter the seed: ");
39 scanf("%d", &seed);
40 printf("Enter the number of elements: ");
41 scanf("%d", &n);
42 printf("Enter the range [a, b]: ");
43 scanf("%d %d", &a, &b);
44

45 // Set the seed for random number generation
46 srand(seed);
47

48 // Generate a random array within the range [a, b]
49 int arr[n];
50 for (int i = 0; i < n; i++) {
51 arr[i] = RANDOM_IN_RANGE(a, b);
52 }
53

54 // Print the generated array
55 printf("Generated array: ");
56 for (int i = 0; i < n; i++) {
57 printf("%d ", arr[i]);
58 }
59 printf("\n\n");
60

61 // Generate and print all permutations of the array
62 printf("Permutations:\n");
63 generatePermutations(arr, 0, n - 1);
64

65 return 0;
66 }

Here is an output of the above code:

Enter the seed: 1
Enter the number of elements: 3
Enter the range [a, b]: 1 9
Generated array: 2 8 1

Permutations:
2 8 1
2 1 8
8 2 1
8 1 2
1 8 2
1 2 8

6.15 Exercise problems

1. rValues of a quadratic sequences Write a function to compute the value of x2 ` bx ` c with b and
c as positive integers and x as real, taken as arguments in that order. Scan their respective values from

© Partha Bhowmick

84 6. Functions

main(), call that function from main() for every integer value of x ranging from ´10 to 10, and print
every returned value from main(). That is, the function will be called 21 times from main().

2. rFibonacci function, recursives Write a recursive function of the prototype int f(int) to compute
the nth Fibonacci term, fpnq, using Eq. 5.1. Take in a positive integer n from main(), call f(n) from
main(), and print its returned value from main().

3. rFibonacci function, iteratives Write an iterative version of the Fibonacci function using Eq. 5.1,
keeping the main() same as the recursive version.

4. rTwo-element sum as an element in anothers Read in two integers m and n. Assume that both
m and n are in r2, 100s. Take in m integers to an array a[] and n integers to an array b[]. Write a
function that can be called from main to check whether there are two elements in a[] that add up to a
single element in b[]. The arguments of that function should be a[], b[], m, and n.

© Partha Bhowmick

7 | Strings

7.1 Characters and strings

A character in C programming is an unsigned 8-bit number representing its ASCII (American Standard
Code for Information Interchange) value, ranging from 0 to 255. Some of these characters are keyboard
characters, e.g., the English letters, digits, punctuation marks, brackets, space, mathematical symbols like
+, -, etc., and symbols such as ~, @, etc. Additionally, some characters serve special functions, such as the
newline character denoted by ’\n’. The null character or null terminator, represented by ’\0’, is another
significant special character. Other special characters, which are less commonly used, are listed in Table 7.1
for completeness.

A string is an array of characters ending with a null character, i.e., ’\0’. To be specific, this is called a
null-terminated string. Unless stated otherwise, a string refers to a null-terminated string. In this sense, an
array of characters without ’\0’ is a character array but not a string. In other words, the null character,
also known as the sentinel character, is the last character of a string. For example, India@1947 is a character
array but not a string, while India@1947\0 is both a character array and a string.

Another example is shown in Figure 7.1. The array contains 10 characters: India@47\0B, with the 9th
character being ’\0’. This implies that the string consists of the first 9 characters, i.e., India@47\0, and the
10th byte (’B’) does not belong to the string. Note that the length of the string excludes the null character;
therefore, in this example, the length is 8, not 9.

In short, if the array contains additional characters after the first null character, those characters are
not part of the string. For example, if the array has 10 bytes and its content is India\0@47\0, the string
starting from I is India\0, which consists of 6 characters, including \0. In fact, this array contains two
strings, the second being @47\0.

Table 7.1: Special characters starting with a backslash in C.

Sl.no. Character Meaning Description
1 \n Newline Moves the cursor to the beginning of the next line.
2 \t Horizontal Tab Inserts a horizontal tab.
3 \r Carriage Return Moves the cursor to the beginning of the current line without advancing

to the next line.
4 \v Vertical Tab Moves the cursor down to the next vertical tab stop.
5 \b Backspace Moves the cursor one position back.
6 \f Form Feed Advances the paper feed in a printer to the start of the next page.
7 \0 Null Character Represents a null character (ASCII value 0), often used to terminate

strings in C.
8 \\ Backslash Inserts a backslash (\) in the text.
9 \’ Single Quote Inserts a single quotation mark in the text.
10 \" Double Quote Inserts a double quotation mark in the text.

85

86 7. Strings

0 1 2 3 4indexes 5 6 7 8 9

not an element of string

8D
44

8D
45

8D
46

8D
47

8D
48

8D
49

8D
4A

8D
4B

8D
4C

8D
4Dbyte addresses

(in hexadecimal)

byte address lines null character (end of string)

main memory (RAM)

an array of 10 characters (= 10 bytes)

I n d i a @ 4 7 \0 B

Figure 7.1: An array of 10 characters, requiring 10 bytes in the memory. Its first and last bytes have the
addresses 8D44 and 8D4D, respectively, in hexadecimal number system. Since the 9th (i.e., of
index 8) character is ’\0’, the first 9 characters comprise the string, and the 10th byte, although
belongs to the array, is not a part of the string.

7.2 Declaring a string

A string is written as the sequence of characters between double quotes. For example, "" represents the
empty string of length 0, with 1 byte storage to store ’\0’. Here is the declaration:

char s[1] = "";

To continue with other examples, "IIT" represents a 4-byte string of length 3, and "hello" is a 6-byte string
of length 5. Each string implicitly ends with the null character ’\0’, which is included in the byte count
but not in the string length, as mentioned earlier. Their respective declarations with optimal storage are as
follows:

char t[4] = "IIT";
char u[6] = "hello";

To declare a string of characters without initializing it, you have several options in C. Here are the
possible ways:

1. Fixed-size array declaration for 1000 characters:

char s[1000];

2. Using malloc, you can allocate memory dynamically for n characters:

char *s = (char *)malloc(n * sizeof(char));

3. Using calloc:

char *s = (char *)calloc(n, sizeof(char));

The notation * used in the last two options denotes pointers. Understanding their implementation requires
knowledge of memory management, which will be discussed later.

7.3 Initializing a string

Don’t confuse single quotes with double quotes. Single quotes are used to denote characters, while double
quotes are used for strings. For example, ’a’ denotes a single character, stored as the ASCII value for the
letter a in 1 byte. In contrast, "a" is an array consisting of two characters: the first is ’a’, and the second
is the null character ’\0’. These two characters are stored as their ASCII values in two contiguous bytes in
the memory.

© Partha Bhowmick

7. Strings 87

Consider the string "India@47". It has nine characters in total including the implicit null character
after the character ’7’. An array that will contain just this string and no more characters, can be declared
and initialized as follows.

char s[9] = {’I’, ’n’, ’d’, ’i’, ’a’, ’@’, ’4’, ’7’, ’\0’};

By the above declaration, s[0] gets the character I, s[1] gets ’n’, and so on, and the last cell of the array,
i.e., s[8], stores the null character.

Two other correct declarations are:

char s[] = "India@47\0"; // you must put the string within double quotes

and

char s[] = "India@47"; // you must put the string within double quotes

Note that when you declare a string using the last syntax, the compiler automatically adds the null terminator
to the end of the string. So the array s takes 9 bytes to store the string India@47 along with the null
terminator.

However, if you write char s[9] = {’I’, ’n’, ’d’, ’i’, ’a’, ’@’, ’4’, ’7’};, then the array s
will contain exactly the characters you specified, without an explicit null terminator. In this case, the array
s will have a size of 9 bytes, where the first 8 bytes are used for the characters you specified, and the 9th byte
is uninitialized and contains some ‘garbage value’. Since you did not include the null terminator explicitly,
the array s will not be a valid string if the garbage value at the last byte is not the null character.

7.4 Reading strings with %s

Let str be a string. It is important to know how it will be read or scanned. For this, you should have a
basic idea about pointers. For the time being, you just know that a pointer is essentially a variable that
stores the memory address of another variable or datatype.

You will study pointers in more detail later. If you are curious at this early stage, here are some
additional details:

• &c denotes the address of a variable c.
• &c also represents a pointer to c because it holds the address of c.

The distinction is that address refers to a specific location in memory (RAM), while a pointer is a variable
that stores such an address. The type of a pointer depends on the type of the variable it points to. For
example, if the type of c is char, then &c is of type char *. Similarly, if the type of n is int, then &n
is of type int *. Yes, char * and int * are data types in C. They are pointer types, meaning they hold
addresses of variables of type char and int, respectively.

Now, as you already know, in the function scanf, for any variable such as char or int, we use the
symbol & as the address-of operator to pass the memory address of the variable. For example, to scan a
character variable c and an integer variable n, and to store them at their respective memory addresses,
denoted by &c and &n, we write:

scanf("%c%d", &c, &n);

That is, the address-of operator & is used by scanf to store a variable’s value directly in its memory location.
However, for a string str (which is basically a null-terminated array of characters), its name itself acts as
a pointer to the first element of the array. That is, str is inherently a pointer pointing to the beginning of
the string, or, equivalently, str contains the address of the first character of the array it represents.

© Partha Bhowmick

88 7. Strings

Since scanf needs a pointer to store the input string, using str directly gives the correct memory
address. For example, to read a string up to 24 characters, you can use the following code:

char str[25];
scanf("%s", str);

However, scanf("%s", &str) is incorrect. The reason is that &str has the type char (*)[25], which
is a pointer to an array of 25 characters. But scanf expects a char *, which is a pointer to a single character.
This mismatch in types leads to a compilation error.

As a specific example, consider the following program. It prompts the user to enter a string, reads it
into a character array str, and prints the string to the terminal. The array can hold up to 24 characters
plus the null terminator, meaning the input should be no more than 24 characters long to avoid overflow.

int main(){
char str[25];
printf("Enter the name (at most 24 characters): ");
scanf("%s", str);
printf("Name = %s\n", str);
return 0;

}

The code begins by declaring a character array named str with a size of 25. This array is intended to store
a string (a sequence of characters terminated by the null character). The function call scanf("%s", str) is
used to read a string from the user. The %s format specifier tells scanf to read a string until it encounters
white space (i.e., space, tab, or newline). The function call printf("Name = %s \n", str) is used to display
the string that was input by the user.

7.5 Reading strings with white spaces

White space means space, tab, or newline. In many applications, we need to read an entire line of text,
including spaces. For example, we may want to read someone’s name, middle name, and surname, separated
by spaces, as a single string. However, scanf with %s cannot read a string completely if there are spaces
within it. For example, the string IIT KGP cannot be read as a single string due to the space between IIT
and KGP (scanf just reads IIT as the string). One way to handle this is to use getchar(), as shown below.

Using getchar

int main(){
char line[101], c;
int k = 0;
do{

c = getchar();
line[k++] = c;

}
while (c != ’\n’);
k = k-1;
line[k] = ’\0;;
return 0;

}

To read an entire line of text including spaces, we use getchar() to read each character until a newline char-
acter is encountered. The characters are stored in the line array, and the loop terminates when getchar()

© Partha Bhowmick

7. Strings 89

reads the newline character. The last character of the array is then set to ’\0’ to properly terminate the
string.

Without using getchar

Here is an alternative code that reads a line of text including spaces using scanf only:

int main() {
char line[101];
scanf("%[^\n]", line);
return 0;

}

This code uses the format specifier "%[^\n]" in scanf to read a string until a newline character is encoun-
tered, allowing spaces within the string.

Here is another code that reads all characters including newlines and terminates when it encounters the
character #:

int main() {
char line[101];
scanf("%[^#]", line);
return 0;

}

In this code:

• The format specifier %[^#] is used with scanf to read characters until the character # is encountered.
• The # character itself is not included in the line array.
• The null terminator \0 is automatically appended at the end of the string.
• The symbol ^ in the specifier denotes logical not, so all characters except # are accepted.

For example, if the user enters IIT_KGP PDS@2024#Autumn, the scanf will store just this:
IIT_KGP PDS@2024\0.
So, if you write printf("%s", line) after the scanf, it will display IIT_KGP PDS@2024 on the terminal.
The character \0 is not displayed.

7.6 String library

The string library <string.h> is essential for managing and manipulating character arrays. It provides
functions for copying, concatenating, comparing, and searching strings, as well as calculating their lengths.
These functions help efficiently handle tasks like parsing user input and processing text data. The list of
important string functions available in <string.h> is given below. Among these, the most commonly used
are strlen, strcpy, strncpy, strcat, strncat, strcmp, and strncmp— you should know their use. The
rest you can learn later.

1. String Length Function

(i) strlen: Returns the length of a string.
size_t strlen(const char *str);

2. String Manipulation Functions

(i) strcpy: Copies a string to another.
char *strcpy(char *dest, const char *src);

© Partha Bhowmick

90 7. Strings

(ii) strncpy: Copies up to n characters of a string to another.
char *strncpy(char *dest, const char *src, size_t n);

(iii) strcat: Concatenates two strings.
char *strcat(char *dest, const char *src);

(iv) strncat: Concatenates up to n characters of one string to another.
char *strncat(char *dest, const char *src, size_t n);

3. String Comparison Functions

(i) strcmp: Compares two strings.
int strcmp(const char *str1, const char *str2);

(ii) strncmp: Compares up to n characters of two strings.
int strncmp(const char *str1, const char *str2, size_t n);

4. String Search Functions

(i) strchr: Finds the first occurrence of a character in a string.
char *strchr(const char *str, int c);

(ii) strrchr: Finds the last occurrence of a character in a string.
char *strrchr(const char *str, int c);

(iii) strstr: Finds the first occurrence of a substring in a string.
char *strstr(const char *haystack, const char *needle);

5. String Tokenization

(i) strtok: Splits a string into tokens based on a delimiter.
char *strtok(char *str, const char *delim);

6. Memory Manipulation Functions

(i) memcpy: Copies a block of memory.
void *memcpy(void *dest, const void *src, size_t n);

(ii) memmove: Moves a block of memory.
void *memmove(void *dest, const void *src, size_t n);

(iii) memcmp: Compares two blocks of memory.
int memcmp(const void *str1, const void *str2, size_t n);

(iv) memset: Fills a block of memory with a specific value.
void *memset(void *str, int c, size_t n);

7. String Duplication

(i) strdup: Duplicates a string (POSIX, not part of C standard).
char *strdup(const char *str);

8. String Error Messages

(i) strerror: Returns a pointer to the string that describes the error code passed in the argument.
char *strerror(int errnum);

Let’s explore some examples to see how the functions from string.h make it easier to write concise and
efficient code. Here, we’ll focus on three key functions: strlen, strcpy, and strcat.

7.6.1 strlen

Consider finding the length of a string. As mentioned earlier in §7.6, the function strlen measures the
length of a string and returns that value. Recall from §7.1 that the length of a string is defined as the
number of its constituent characters, excluding the null character. The first code snippet demonstrates how

© Partha Bhowmick

7. Strings 91

to achieve this without using string.h. The second code snippet shows how to use the strlen function
from string.h to perform the same task.

1 // without using string.h
2

3 #include <stdio.h>
4

5 int main() {
6 char s[10];
7 printf("Enter a string (up to 9 characters): ");
8 scanf("%s", s);
9

10 int len = 0;
11 while (s[len] != ’\0’)
12 len++;
13 printf("Length of the input string: %d\n", len);
14 return 0;
15 }

1 // using the function strlen of string.h
2

3 #include <stdio.h>
4 #include <string.h>
5

6 int main() {
7 char s[10];
8 printf("Enter a string (up to 9 characters): ");
9 scanf("%s", s);

10 int len = strlen(s);
11 printf("Length of the input string: %d\n", len);
12 return 0;
13 }

7.6.2 strcpy

Consider the problem of copying a string s to t. The first code snippet demonstrates how to do this without
using strcpy. The second code snippet shows how to use the strcpy function from string.h to accomplish
the same task.

1 // without using strcpy
2

3 #include <stdio.h>
4 #include <string.h>
5

6 int main() {
7 char s[10], t[10];
8 int len, i;
9 printf("Enter a string (max 9 characters): ");

10 scanf("%9s", s); // for safety against buffer overflow
11

12 len = strlen(s);

© Partha Bhowmick

92 7. Strings

13 for (i = 0; i < len; i++)
14 t[i] = s[i];
15 t[len] = ’\0’;
16 printf("Copied string: %s\n", t);
17 return 0;
18 }

1 // using strcpy
2

3 #include <stdio.h>
4 #include <string.h>
5

6 int main() {
7 char s[10], t[10];
8 printf("Enter a string (max 9 characters): ");
9 scanf("%9s", s); // for safety against buffer overflow

10 strcpy(t, s);
11 printf("Copied string: %s\n", t);
12 return 0;
13 }

7.6.3 strcat

Concatenation means appending one string to another. For example, concatenating @47 to India results in
India@47. Consider the problem of concatenating a string t to a string s. The first code snippet demonstrates
how to do this without using strcat. The second code snippet shows how to use the strcat function from
string.h to achieve the same result.

1 #include <stdio.h>
2 #include <string.h>
3

4 int main() {
5 char s[10], t[10];
6 strcpy(s, "India");
7 strcpy(t, "@47");
8

9 int i = strlen(s);
10 for (int j = 0; t[j] != ’\0’; j++) {
11 s[i] = t[j];
12 i++;
13 }
14 s[i] = ’\0’;
15

16 printf("%s\n", s);
17 return 0;
18 }

1 #include <stdio.h>
2 #include <string.h>
3

4 int main() {

© Partha Bhowmick

7. Strings 93

5 char s[10], char t[10];
6 strcpy(s, "India");
7 strcpy(t, "@47");
8 strcat(s, t);
9 printf("%s\n", s);

10 return 0;
11 }

7.7 Solved problems

Note the following regarding the problems stated in this section.

1. A string should be treated as an array of characters, each of one byte, ending with the null character,
i.e., ’\0’, which is mandatory. An array without any ’\0’ is not a string.

2. Unless mentioned, assume that a string will contain at most 1000 characters including the null character.
3. Unless mentioned, assume that a string contains at least one non-null character.
4. A newline means the character ’n’, which appears as the key Enter on the keyboard.
5. By “any character” or “an arbitrary character”, we mean a character that can be typed in from the

keyboard; for example, all lowercase and uppercase letters, digits, space, newline, punctuation marks,
and the following symbols:

~ ! @ # ^ % $ & * () _ + - / { } [] | \ < >

1. rScan any characters Scan as input any character other than newline; print it as character and also
print its ASCII value. The user will type in that character followed by a newline.

1 #include <stdio.h>
2

3 int main(){
4 char a;
5 printf("Type any character and press <Enter>: ");
6 scanf("%[^\n]c", &a); // accepts any character followed by newline
7 printf("Scanned = ’%c’ (ASCII value = %d).\n", a, a);
8 return 0;
9 }

2. rScan any two characterss Scan as input two arbitrary characters, one at a time, using two scanf
calls, and finally print them by a single printf at the end. The user will type in each character followed
by a newline.

1 #include <stdio.h>
2

3 int main(){
4 char a, b;
5 printf("Type in the 1st character and press <Enter>: ");
6 scanf("%[^\n]c", &a); // accepts any character followed by newline
7 printf("Scanned = ’%c’.\n", a);
8 printf("Type in the 2nd character and press <Enter>: ");
9 scanf("\n%[^\n]c", &b); // The first \n means the newline entered earlier is skipped

10 printf("Scanned = ’%c’.\n", b);
11 return 0;
12 }

© Partha Bhowmick

94 7. Strings

3. rScan integer and characters Scan first as input an integer and then a non-white-space character,
using two scanf calls, and finally print them by a single printf at the end.

1 #include <stdio.h>
2

3 int main(){
4 int n;
5 char a;
6 printf("Type in any integer and press <Enter>: ");
7 scanf("%d", &n);
8 printf("Type in any character and press <Enter>: ");
9 scanf("\n%c", &a); // The first \n means the previous <Enter> is skipped

10 printf("Scanned = %d and ’%c’.\n", n, a);
11 return 0;
12 }

Note: The \n in scanf("\n%c", &a) is used to consume any leftover newline character that may be
in the input buffer from the previous input against scanf("%d", &n). When you input an integer and
press <Enter>, the newline character generated by the <Enter> key remains in the buffer. If you don’t
include \n before %c, the scanf function would read this newline character instead of waiting for a new
character input. The \n effectively skips over any newline characters, ensuring that scanf("%c", &a)
correctly reads the next character entered by the user.

4. rBit flips Given as input any arbitrary character other than a newline, print the new character formed
by flipping each bit excepting the leftmost one. Do it by two methods—once using loop, and once
without loop.

1 #include <stdio.h>
2

3 int main(){
4 char a, b = 0;
5 int i;
6

7 printf("Type any character and press <Enter>: ");
8 scanf("%[^\n]c", &a); // accepts any character followed by newline
9 printf("Input = ’%c’ (ASCII value = %d)\n", a, a);

10

11 printf("Method 1: ");
12 for(b=0, i=1; i<=64; i=i<<1)
13 b += ((a & i) == 0)? i : 0; // flips the i-th bit
14 printf("Output = ’%c’ (ASCII value = %d)\n", b, b);
15

16 printf("Method 2: ");
17 b = 255 - a; // flips all 8 bits
18 b &= (a<128)? 127 : 255; // retains the leftmost bit of a
19 printf("Output = ’%c’ (ASCII value = %d)\n", b, b);
20

21 return 0;
22 }

5. rString reversals Write a function that takes an alphanumeric string as argument and reverses it. For
example, if it is IIT, then the reverse string created by the function will be TII. Scanning the input
string and printing the reverse one must be done from main(). String library can’t be used.

© Partha Bhowmick

7. Strings 95

1 #include <stdio.h>
2 #define MAXLEN 1000
3

4 void stringReversal(char *s, char *t){
5 int n = 0, i = 0; // n = length of s
6

7 do
8 n++;
9 while(s[++i]!=’\0’);

10 t[n] = ’\0’;
11

12 for(i=0; i<n; i++)
13 t[n-1-i] = s[i];
14 }
15

16 int main(){
17 char s[MAXLEN], t[MAXLEN];
18 printf("Enter an alphanumeric string: ");
19 scanf("%s", s);
20 stringReversal(s, t);
21 printf("Reverse = %s.\n", t);
22 return 0;
23 }

7.8 Exercise problems

1. rAlphanumeric characters Scan any character input (excluding newline) and check whether it is
alphanumeric without using ASCII values or the string library. The user will type the character followed
by a newline.

2. rScan an arbitrary strings Scan a string of arbitrary characters (including alphanumeric characters,
spaces, symbols, etc.) and print it. For example, it should scan the following as a single string:

iit kgp $1951, Autumn; ... ’&’ "www.ac.in" +-*/~pb*& (@CSE) #_^PDS

The user will input the characters and terminate with a newline, which should not be treated as part
of the string.

3. rOdd characterss Without using the string library, print the characters of an alphanumeric string
occurring in odd positions. Assume that the string has at least one alphanumeric character.

4. rPalindromes Write a function that takes an alphanumeric string as argument and returns 1 if it is a
palindrome, and 0 otherwise. For example, IIT is not a palindrome but ITI is. After a string is taken
in from main(), the function should be called from main() with that string as input, and the value
returned by the function should be printed from main().

♣ 5. rByte reversals Given a byte as input in the form of a character, print the new character formed by
reversing the 7-bit string created from all but the leftmost bit. For example, a becomes C, C becomes a,
b becomes #, # becomes b, etc.
Hint: Let’s walk through the process step by step for the input character ’a’. The ASCII value of
’a’ is 97, which is 01100001 in binary. You can mask this value using 0x7F (= 01111111 in binary),
resulting in 01100001. (Masking here means bit-wise and using the operator &.) Next, reversing the
7 bits of this binary sequence (excluding the leftmost one), producing 1000011. This corresponds to the
ASCII value 67, which is the character ’C’.

© Partha Bhowmick

8 | Pointers

When Vishwanathan Anand moves a piece across the chessboard , it feels
as though he is orchestrating a symphony of pointers in a program of strat-
egy. Each square, like a memory location , holds the potential of a piece
— a knight, rook, or queen — waiting to be redefined. The piece itself,
much like a pointer , remains unchanged in its essence but shifts its position,
leaping from one address to another, dereferencing power with precision .
Just as pointers in C unlock new data or modify the state of a variable ,
Anand’s skillful moves reveal the latent power of each and every chess piece .
With every calculated step, he navigates an unseen realm (isn’t it amazing?!),
referencing possibilities and dereferencing threats, weaving an intricate game
of logic and foresight .

Yet, unlike a chessboard limited to 64 squares only, the challenges of com-
puter programming extend far beyond this compact domain. As the size
of the board expands higher and higher, the complexity of a solution and
managing such an abstract space becomes unmanageable even by the most-
talented human being. Here is where programming steps in, transform-
ing vast memory spaces into ordered systems . With the help of pointers ,
arrays , and functions , programmers can solve problems that would over-
whelm even the sharpest minds. In this larger game, practically speaking,
memory is infinite , moves are countless , and mastering “position” isn’t just
a victory but the key to unraveling a universe of possibilities .

8.1 What is a pointer?

A pointer is a variable that stores the memory address of another variable. It is denoted using an asterisk (*)
before its name.

Essentially, it stores the address of a particular byte in RAM; and this byte
is the first one out of all the bytes required to store the variable.

Quick examples

• Declaration: int *p;
This declares p as a pointer to an integer.

• Initialization: int n = 5; p = &n;
The pointer p is initialized to point to n, i.e., p will contain the address of n during execution.

• Modification: *p = 10;
The value at the memory address stored by p is modified to 10.

• Usage: printf("%d", *p);
The value stored at the address pointed to by p is printed.

96

8. Pointers 97

Consider the following piece of code:

char a = ’w’; // declaration and initialization
char *p; // declaration
p = &a; // initialization

We can express the above three statements using two statements as follows:

char a = ’w’; // declaration and initialization
char *p = &a; // declaration and initialization

The variable p here is a pointer to the character a, termed as character pointer. Since the address of a is
denoted by &a, we write char *p = &a; which means:

p points to a

With a bit more explanation, it means:

p stores the address of a

With full explanation, it means:

p stores the address of the byte in RAM that holds the value of a

The figure below illustrates the details.

p has 4 bytes (usual size for a pointer
variable) and it stores the address
(8D48) of a. The address of p is sim-
ply the address of its first byte.
The addresses are shown here as hex-
adecimal numbers for convenience, but
actually they are binary numbers, just
like any data in computer.

RAM RAM

8D
3F

8D
40

8D
41

8D
42

RAM

8D
48address of p

(in hexadecimal)

a
w

8D
47

p
8D48

address of a
(in hexadecimal)

8.2 Types of pointer

Pointers are categorized based on the data types they point to, as listed and discussed below.

1. int pointer (int *): stores the memory address of an integer variable.

Example: See Code 8.16, and consider its statement:
int *p;
This statement means p is a pointer to an integer variable, i.e., p will store the address of an integer
variable when the program runs. The next statement p = &n; assigns the address of n to p, which
means during the execution of the code, p will be assigned the address of the first byte of n (out of
the 4 consecutive bytes allocated in RAM for the integer n).

2. char pointer (char *): stores the memory address of a character variable.

Example:
char *cp;
This means cp is a pointer to a character, i.e., cp will store the address of a character variable at
runtime. For example: char c = ’A’; cp = &c; assigns the address of c to cp. Now, *cp can be
used to access or modify the value of c. For instance, *cp = ’B’; followed by *cp += 1; will change
the value of c to ’C’. This is because *cp = ’B’; sets the value of c to ’B’. The next statement
*cp += 1; increments the value of c by 1, making it ’C’, since ’C’ is the next character after ’B’ in
the ASCII table.

© Partha Bhowmick

98 8. Pointers

Code 8.16: Example of working with a pointer to integer. pointer_int_ex1.c

1 #include <stdio.h>
2

3 int main() {
4 int n = 10;
5 int *p; // p is a pointer to an integer; it can store the address of any integer
6 p = &n; // p stores the the address of n
7

8 printf("Original value of n: %d\n", n); // It will print 10
9 *p = 15; // n becomes 15

10 printf("Modified value of n using *p: %d\n", n); // It will print 15
11 printf("Result of *p + 5: %d\n", *p + 5); // It will print 20
12 printf("Result of *p * 5: %d\n", *p * 5); // It will print 75
13 printf("Value of n after arithmetic operation: %d\n", n); // It will print 15
14 return 0;
15 }

3. float pointer (float *): stores the memory address of a floating-point variable.

Example:
float *fp; float f = 5.75; fp = &f;
This means fp is a pointer to a floating-point variable. fp = &f; assigns the address of f to fp, i.e.,
fp will contain the address of a f during execution. *fp can be used to access or modify the value of
f.

4. void pointer (void *): it is a generic pointer that can hold the address of any data type.

Example:
void *vp;
This means vp is a pointer that can point to any data type.
For example: int n = 20; vp = &n; assigns the address of n to vp. To dereference it, you need to
cast it to the correct type: printf(%d, *(int *)vp); prints the value of n.

5. Array pointer: stores the memory address of the first element of an array, i.e., the address of the first
byte of the first element of the array.

Example:
int a[4] = {2, 3, 5, 7};
In this case, a is a pointer to the first element of the array, i.e., a holds the address of a[0].
The array elements can be accessed using pointer arithmetic. For example: *(a + 1) accesses the
second element of the array a, which is 3. a[1] also accesses the second element of the array a.
Arrays and pointers in C are closely related, as array names decay into pointers when passed to
functions. We’ll see more in §8.5.

8.3 Use of pointer

Pointers allow for direct access and manipulation of data stored in memory. They are used for various
purposes in C programming, some being mentioned below.

1. Passing references (i.e., pointers) as arguments to functions
Pointers allow you to pass the addresses of variables to functions, enabling the called function to access
and modify the actual values in the caller’s context. If only the value is passed without the address, the
original variable remains unchanged.

© Partha Bhowmick

8. Pointers 99

Example:
void update(int *p) { *p = 10; } can modify the value of a variable passed by reference, such as
int x = 5; update(&x);, which updates x to 10. On the other hand, if you define the function as
void update(int x) { x = 10; }, and pass x directly, as in update(x);, the value of x will not be
changed in the caller function. This is because the x in the caller and the x in the update function
are different variables, as explained in §6.7.

2. Accessing arrays and strings directly via memory addresses
Array elements and string characters can be accessed through pointers, allowing efficient navigation
through memory.

Example:
char *p = "Hello"; printf("%c-%c-%c", *p, *(p + 1), *(p + 2)); prints H-e-l.
The first statement assigns the base address of the string "Hello" to p; i.e. p stores the address of ’H’.
Thus, the value of *p is ’H’. The expression p + 1 calculates the address of the second character, so
*(p + 1) equals (’e’), which is printed. Similarly, *(p + 2) accesses the third character, ’l’, which
is also printed.

3. Dynamic memory allocation
Pointers are essential for allocating memory dynamically at runtime using functions like malloc, calloc,
and realloc from stdlib.h. Each of them returns a pointer of type void *, which is a generic
pointer not associated with any specific data type. Therefore, typecasting is required when assigning
the returned address to a pointer of a specific type.

Example:
int *p = (int *)malloc(10 * sizeof(int)); allocates memory for an array of 10 integers but they
are uninitialized, i.e., contain garbage values. p is a pointer that stores the base address of the allo-
cated memory.
int *q = (int *)calloc(10, sizeof(int)); also allocates an array for 10 integers, with all 10 val-
ues initialized to zero, as illustrated below.

3D
68

3D
67

3D
69

3D
6A

3D
47

3D
46

3D
48

3D
49

3D
43

3D
42

3D
44

3D
45

RAM

q

base address of a[]
(in hexadecimal)

0 0
a[1]

0
a[9]

3D
6B

address of a[0] “

4 bytes 4 bytes 4 bytes

4. Passing large structures to functions efficiently
Instead of passing large structures by value, passing a pointer to the structure avoids copying the entire
data. (We’ll study it later.)

Example:
void fun(struct MyStruct *s);
Here, fun takes a pointer to a structure named MyStruct. This allows fun to modify the structure’s
data directly by accessing its memory location fixed for the caller function, eliminating the overhead
of copying the structure.

5. Supporting data structures like linked lists, trees, etc.
Pointers are used to build dynamic data structures such as linked lists and trees, where each node
contains a pointer to the next node or child. (We’ll study linked lists later; trees are not in this course.)

Example:
struct Node *next;
In a linked list, each node points to the next node using a pointer, allowing traversal through the list
dynamically.

© Partha Bhowmick

100 8. Pointers

8.4 Operations with pointers and dereferenced pointers

The reference operator & operates on a single variable and returns the address of that variable. The
dereference operator * operates on an address and returns the value stored at that address. Let’s see what
happens by the execution of the statements in Code 8.16. For convenience, the declarations and assignments
from that code are given below.

int n = 10;
int *p;
p = &n;
*p = 15;

1. Declaration and initialization:

• int n = 10; declares and initializes an integer variable n with the value 10.
• int *p; declares a pointer p that can point to (only and any) integer variable.

2. Pointer assignment:

• p = &n; assigns the address of n to the pointer p. Here, the reference operator &n operates on n and
returns the address of n to p.

3. Modification via pointer:

• *p = 15; modifies the value at the address p points to. Thus, n becomes 15. The statement *p = 15
involves dereferencing, which is discussed in §8.4.1.

int *p; means p is a pointer to an integer, which means *p is an integer. Hence, assigning the
number 15 to *p is a valid operation. In fact, *p = n; is also valid for the same reason.

8.4.1 Dereferencing

Dereferencing a pointer p is written as *p. It means using the address stored in p to access the value at that
address. For example, the statement *p = 15; involves dereferencing p, as explained below.

1. p = &n; makes p store the memory address of the variable n.
2. Dereferencing p enables using the address of n (stored in p) to access and change the value of n.
3. *p = 15; changes the value of n to 15 through dereferencing.

To understand more about dereferencing, consider the following piece of code. In this code, the last two
lines are added to the previous code we just discussed about.

int n = 10, k;
int *p;
p = &n;
*p = 15;
*p = *p + 5;
k = *p * 5;

Below is an explanation about the last two lines in the above code.

1. *p = *p + 5;

• This line first dereferences the pointer p, which points to the variable n.
• The expression *p accesses the current value of n. Due to the previous line, n was set to 15.

© Partha Bhowmick

8. Pointers 101

• The statement *p = *p + 5; means we take the current value of n (which is 15), add 5 to it, and
store the result back into n. Thus, the new value of n becomes 15 ` 5 “ 20.

2. k = *p * 5;

• This line also dereferences the pointer p, which still points to n.
• After the previous operation, the value of n is now 20.
• The expression *p * 5 calculates 20 ˆ 5 “ 100, which is assigned to the variable k.

8.5 Pointer to 1D array

8.5.1 Usefulness

A pointer to a 1D array is useful for several reasons:

1. Instead of handling individual elements or copying entire arrays, a pointer allows referencing the array’s
memory address, enabling efficient access to elements in constant time.

2. It is particularly helpful when passing arrays to functions, as passing a pointer avoids creating a copy
of the entire array, reducing memory overhead and computational cost.

3. Pointers facilitate dynamic memory allocation, allowing flexibility in handling arrays of variable sizes
and simplifying complex operations like iterating over or modifying array contents.

8.5.2 Indexing with pointer

Array elements are indexed starting from 0, and indexing is crucial for accessing elements in a 1D array.
Below are some important points regarding array indexes and pointers.

1. Each element of an array is stored sequentially in memory, with the index serving as an offset from the
array’s starting memory address.

2. By specifying an index, we can directly access any array element based on its position. For instance, in
the array arr, the element at index i can be retrieved using arr[i].

3. The expression arr[i] is equivalent to *(arr + i). Both notations access the element at index i. In
arr[i], the index is used to directly retrieve the element. In *(arr + i), pointer arithmetic is used,
where arr is treated as a pointer, and i is added to the base address of the array to access the element
stored at that location.

4. This indexing mechanism provides constant-time access to elements and is essential for iterating over
arrays, performing operations like searching, sorting, or modifying specific elements.

Code 8.17 demonstrates the equivalence between a[1] and *(a + 1). The expression a[1] accesses the
second element of the array, which is 3. Similarly, *(a + 1) accesses the same element, as a + 1 gives the
address of the second element of the array, and the * operator dereferences that address to retrieve the value.

However, *(a + 1) and *a[1] are not the same. *(a + 1) accesses the second element of the array a
using pointer arithmetic to move the pointer to the second element and dereferencing it to get the value
stored at that location. On the other hand, *a[1] attempts to dereference the value stored at a[1]. Since
a[1] is an integer but not a pointer, this would lead to a compilation error or undefined behavior because
dereferencing a non-pointer value is not valid.

Code 8.18 shows how to print addresses using two different ways for the elements in array. The format
"%p" specifies the addresses to be printed as hexadecimal numbers, the first two characters (0x) implying
that they are so.

© Partha Bhowmick

102 8. Pointers

Code 8.17: Example of working with a pointer to array. pointer1dArrayEx1.c

1 #include <stdio.h>
2 int main() {
3 int a[] = {2, 3, 5, 7};
4 printf("a[1] = %d\n", a[1]); // this will print 3
5 printf("*(a + 1) = %d\n", *(a + 1)); // this will also print 3
6 return 0;
7 }

Code 8.18: Printing addresses and values of elements in array. pointer1dArrayEx2.c

1 #include <stdio.h>
2 int main() {
3 int a[] = {2, 3, 5, 7};
4 for (int i = 0; i < 4; i++)
5 printf("i = %d: a+i = %p, &a[i] = %p, a[i] = %d\n", i, a+i, &a[i], a[i]);
6 return 0;
7 }

The addresses are fixed during execution of the code, so they change from one execution to the other,
as you can see below. Since a is an array of integers and each integer takes 4 bytes, the addresses of two
consecutive elements differ by 4.

$./a.out
i = 0: a+i = 0x7fffc2527520, &a[i] = 0x7fffc2527520, a[i] = 2
i = 1: a+i = 0x7fffc2527524, &a[i] = 0x7fffc2527524, a[i] = 3
i = 2: a+i = 0x7fffc2527528, &a[i] = 0x7fffc2527528, a[i] = 5
i = 3: a+i = 0x7fffc252752c, &a[i] = 0x7fffc252752c, a[i] = 7
$./a.out
i = 0: a+i = 0x7fff2f412470, &a[i] = 0x7fff2f412470, a[i] = 2
i = 1: a+i = 0x7fff2f412474, &a[i] = 0x7fff2f412474, a[i] = 3
i = 2: a+i = 0x7fff2f412478, &a[i] = 0x7fff2f412478, a[i] = 5
i = 3: a+i = 0x7fff2f41247c, &a[i] = 0x7fff2f41247c, a[i] = 7

When the addresses are written as hexadecimal numbers, you have to be
careful while adding a number with an address. For example, the hex-
adecimal number 528 means 5ˆ162`2ˆ161`8ˆ160 “ 1320 in the decimal
number system. So, adding 4 with 528 gives the decimal number 1324,
which maps to the hexadecimal number 52c.

8.6 Pointer arithmetic

1. Like other variables, contents of pointer variables can be used in expressions.

int *p1, *p2, sum, prod; float x;
sum = *p1 + *p2;
prod = *p1 * *p2; prod = (*p1) * (*p2);
*p1 = *p1 + 2; x = *p1 / *p2 + 5;

2. The following are allowed in C.

© Partha Bhowmick

8. Pointers 103

(i) Add an integer to a pointer.

int i, a[5];
for (i=0; i<5; i++)

printf("%u ", (unsigned)(a+i));

Output: 3214950148 3214950152 3214950156 3214950160 3214950164.

Here addresses are printed as unsigned integers using "%u" format. In
Code 8.18, they have been printed as hexadecimal numbers. Either one is
fine, as far as they are properly understood and used.

(ii) Subtract an integer from a pointer.
(iii) Subtract one pointer from another of the same type.

Note: If p1 and p2 are both pointers to the same array, then p2 - p1`1 gives the number of
elements starting from p1 and ending at p2.

3. The following are not allowed in C.

(i) Add two pointers (although subtraction is allowed, as mentioned before).
p1 = p1 + p2; — not allowed

(ii) Multiply or divide a pointer in an expression.
p1 = p2 / 5; — not allowed
p1 = p1 - p2 * 10; — not allowed

8.7 Scale factor: sizeof()

When an integer i is added to or subtracted from an integer-pointer p, the actual value added to or
subtracted from p is not simply i, but rather i multiplied by the scale factor sizeof(int). This is because
pointer arithmetic accounts for the size of the data type being pointed to, ensuring that the pointer moves
correctly across memory locations based on the size of the type.

The sizeof() is actually an operator in C, not a function. It is a compile-
time operator that determines the size, in bytes, of a variable or data type.
It does not perform any runtime computation and is evaluated at compile-
time only.

See Code 8.19 for an example of how the sizeof() function impacts pointer arithmetic, and also
see its output therein. The statement pi = pi+10; implies that the address stored in pi increases by

Code 8.19: Example of scale factor: sizeof().
Here is the output:
pi = 3214711672, pc = 3214711679
pi = 3214711712, pc = 3214711689 scaleFactor_sizeof.c

1 #include <stdio.h>
2 int main(){
3 int i=1, *pi;
4 char c=’A’, *pc;
5 pi = &i, pc = &c;
6 printf("pi = %u, pc = %u \n", (unsigned)pi, (unsigned)pc);
7

8 pi = pi+10; pc = pc+10;
9 printf("pi = %u, pc = %u \n", (unsigned)pi, (unsigned)pc);

10 return 0;
11 }

© Partha Bhowmick

104 8. Pointers

sizeof(int)ˆ10. Given that an integer takes 4 bytes, this results in 4 ˆ 10 “ 40 bytes being added to pi,
effectively shifting the pointer forward by 10 integers in memory. Similarly, the statement pc = pc + 10;
advances the character pointer pc by 10 characters or 10 bytes, since each character occupies 1 byte of
memory.

8.8 Passing pointers to a function

Passing pointers to a function allows direct manipulation of the original variables of the caller function,
making it possible for the called function to access and modify those values stored at specific memory
addresses. The key points are:

1. When a pointer to a variable var (e.g., integer, character, array, or structure) defined in the caller
function is passed to the called function, the called function receives the memory address of var, rather
than a copy of its value.

2. This enables the called function to access the variable of the caller function at that address, which is
useful for tasks like updating multiple values (e.g., in array or structure) or working with dynamically
allocated memory.

3. Syntax example: void f(int *pi); is meant to pass an integer pointer while calling the function f.
Inside the function, dereferencing the pointer (e.g., *pi) allows access to and modification of the value
it points to.

Code 8.20: Incorrect passing of arguments. pointerArgFun_incorrect.c

1 #include <stdio.h>
2

3 void f(int i){ i = 10*i; }
4

5 int main(){
6 int i = 1;
7 f(i);
8 printf("i = %d\n", i); // prints 1
9 return 0;

10 }

Code 8.21: Correct passing of arguments. pointerArgFun_correct.c

1 #include <stdio.h>
2

3 void f(int *pi){ *pi = 10 * (*pi); }
4

5 int main(){
6 int i = 1;
7 f(&i);
8 printf("i = %d\n", i); // prints 10
9 return 0;

10 }

As shown in Code 8.20, passing the value of the variable i to the function f does not change the value
of i in main(). This is because the i in f is local to the function f, and the i in main() is a separate
variable, local to main(). However, passing a pointer to i to the function f, as shown in Code 8.21, does
modify the value of i in main(). This works because the pointer contains the address of i in main(),
allowing f to access and modify the original variable.

© Partha Bhowmick

8. Pointers 105

To swap the values of two variables, a and b, using the function swap, the correct approach is shown in
Code 8.22. This method uses pointers to the variables. If the values of the variables are passed directly
as arguments, the swap will fail, as demonstrated in Code 8.23.

Code 8.22: Correct code for swapping (arguments passed by pointers). swapFun_correct.c

1 #include <stdio.h>
2

3 void swap(int *x, int *y){
4 int t;
5 t = *x; *x = *y; *y = t;
6 }
7

8 int main(){
9 int a = 5, b = 10;

10 swap (&a, &b);
11 printf ("a = %d, b = %d\n", a, b); // prints a = 10, b = 5
12 return 0;
13 }

Code 8.23: Incorrect code for swapping (arguments passed by values). swapFun_incorrect.c

1 #include <stdio.h>
2

3 void swap (int x, int y){
4 int t;
5 t = x; x = y; y = t;
6 }
7

8 int main(){
9 int a = 5, b = 10;

10 swap(a, b);
11 printf ("a = %d, b = %d\n", a, b); // prints a = 5, b = 10
12 return 0;
13 }

scanf() versus printf()

int x, y;
scanf("%d %d", &x, &y);
printf("%d %d %d", x, y, x + y);

Why use & in scanf() but not in printf()?
The function printf() requires only the value to display it, whereas scanf() needs the address to store a
value. Thus, & is used to pass the variable’s address to scanf() via a pointer.

8.9 Dynamic memory allocation

Many times, we encounter situations where the amount of data is dynamic due to the following reasons:

1. The amount of data cannot be predicted beforehand.
2. The number of data items keeps changing during program execution.

© Partha Bhowmick

106 8. Pointers

Such scenarios are more effectively managed using dynamic memory management techniques.

Why not use static arrays? In C, the number of elements in an array must be specified during compi-
lation. This often leads to issues like:

1. Over-allocation, which wastes memory space.
2. Under-allocation, leading to program failure.

Through dynamic memory allocation, the required memory space can be allocated during execution time,
allowing flexibility as the data size changes. C supports this with a set of library functions for dynamic
memory management. Dynamic memory is allocated from the free memory pool, also known as the heap,
during run time.

8.9.1 Memory Allocation Functions

1. malloc: Allocates the requested number of bytes and returns a pointer to the first byte of the allocated
space.

int *p;
p = (int *)malloc(100 * sizeof(int));

This allocates memory for 100 integers.
2. calloc: Allocates space for an array of elements, initializes them to zero, and returns a pointer to the

memory.

int *q;
q = (int *)calloc(100, sizeof(int));

This allocates memory for 100 integers and initializes all elements to zero.
3. free: Frees previously allocated space, making it available for future use.

free(p);
free(q);

This releases the memory pointed to by p and q.
4. realloc: Modifies the size of previously allocated space to accommodate changing needs.

p = (int *)realloc(p, 200 * sizeof(int));

This resizes the memory block originally allocated to hold 100 integers to now hold 200 integers. The
previous data, if any, are preserved. For example, if there were initially 100 integers stored in the array
pointed by p, these 100 integers remain intact in the resized array.

These functions are defined in stdlib.h. Use the command man on your Linux/Ubuntu terminal to view
more details. For example, on writing the following command in my Ubuntu computer:

man malloc

what I can see is partially shown below.

NAME
malloc, free, calloc, realloc - allocate and free dynamic memory

SYNOPSIS
#include <stdlib.h>

void *malloc(size_t size);
void free(void *ptr);

© Partha Bhowmick

8. Pointers 107

void *calloc(size_t nmemb, size_t size);
void *realloc(void *ptr, size_t size);
void *reallocarray(void *ptr, size_t nmemb, size_t size);

DESCRIPTION
The malloc() function allocates size bytes and returns a pointer to
the allocated memory. The memory is not initialized. If size is 0,
then malloc() returns either NULL, or a unique pointer value that can
later be successfully passed to free().
.....

8.9.2 Dynamic memory allocation and error handling

The malloc() function always allocates a block of contiguous bytes. The allocation can fail if sufficient
contiguous memory space is not available. If it fails, malloc returns NULL. So whenever a program calls
malloc, it should check whether the allocation has been done. If not, the program should be exited to
prevent error. This is how the lines of code should be written:

int *p;
p = (int *)malloc(100 * sizeof(int));
if (p == NULL) {

printf("Memory cannot be allocated");
exit(1);

}

Alternatively, it can be written as follows:

int *p;
if ((p = (int *)malloc(100 * sizeof(int))) == NULL) {

printf("Memory cannot be allocated");
exit(1);

}

The same NULL check must be done for calloc and realloc, since they also return NULL if memory
allocation fails.

exit() is a function that immediately terminates the program execution.
Unlike return, which is a statement that simply returns control to the call-
ing function, exit completely exits the program and ends all its activities.
You must #include <stdlib.h> to use exit().

While return is used to return a value from a function or terminate a
function’s execution, exit() is used when the program needs to be stopped
immediately, often due to an error or a critical condition.

8.10 Solved problems

1. rFirst upper-case letter in a strings In this problem, we will see a function that returns a pointer.
Here is the problem statement: Given a string as input, find its first upper-case letter, if any. To do
this, we use a user-defined function firstUpper that returns a pointer to that letter if it exists, and
returns NULL otherwise.

© Partha Bhowmick

108 8. Pointers

A function should not return a pointer to its local variable, because after the
function returns, the local variable no longer exists, and thus the address
stored in that pointer is invalid.

1 #include <stdio.h>
2

3 char *firstUpper(char s[]){ // We can also write char *s as argument
4 while(*s){
5 if ((*s >= ‘A’) && (*s <= ‘Z’))
6 return s; // pointer to the 1st uppercase letter
7 else ++s;
8 }
9 return NULL; // no uppercase letter exists

10 }
11

12 int main (){
13 char *p, s[100]; // assuming that the s consists of at most 100 characters
14 scanf("%s", s);
15

16 p = firstUpper(s);
17

18 if (p) // p is not NULL
19 printf("%c found\n", *p);
20 else // p is NULL
21 printf(“No upper-case letter found\n”);
22

23 return 0;
24 }

2. rDynamic array managements Write a program that dynamically manages an array of integers. The
user will input a number of elements, and the program will allocate memory accordingly. The program
should also allow resizing the array if the user decides to add more elements than initially specified.

1 #include <stdio.h>
2 #include <stdlib.h>
3

4 int main() {
5 int *arr, size, newSize, i;
6

7 printf("Enter initial size of the array: ");
8 scanf("%d", &size);
9

10 // Allocate memory for the array
11 arr = (int *)malloc(size * sizeof(int));
12 if (arr == NULL) {
13 printf("Memory allocation failed\n");
14 return 1;
15 }
16

17 // Input elements
18 for (i = 0; i < size; i++) {
19 printf("Enter element %d: ", i);
20 scanf("%d", &arr[i]);
21 }

© Partha Bhowmick

8. Pointers 109

22

23 // Print elements
24 printf("Array elements: ");
25 for (i = 0; i < size; i++) {
26 printf("%d ", arr[i]);
27 }
28 printf("\n");
29

30 // Ask if the user wants to resize the array
31 printf("Enter new size for the array: ");
32 scanf("%d", &newSize);
33

34 // Resize the array
35 arr = (int *)realloc(arr, newSize * sizeof(int));
36 if (arr == NULL) {
37 printf("Memory reallocation failed\n");
38 return 1;
39 }
40

41 // Input new elements
42 for (i = size; i < newSize; i++) {
43 printf("Enter element %d: ", i);
44 scanf("%d", &arr[i]);
45 }
46

47 // Print all elements
48 printf("Updated array elements: ");
49 for (i = 0; i < newSize; i++) {
50 printf("%d ", arr[i]);
51 }
52 printf("\n");
53

54 // Free allocated memory
55 free(arr);
56

57 return 0;
58 }
59

60 /* Input and output:
61

62 Enter initial size of the array: 3
63 Enter element 0: 2
64 Enter element 1: 3
65 Enter element 2: 5
66 Array elements: 2 3 5
67 Enter new size for the array: 4
68 */

3. rDynamic array management with user-defined functionss Rewrite the last program with user-
defined functions.

1 #include <stdio.h>
2 #include <stdlib.h>
3

4 // Function prototypes

© Partha Bhowmick

110 8. Pointers

5 int** allocateMatrix(int rows, int cols);
6 void readMatrix(int **matrix, int rows, int cols);
7 void reallocateMatrix(int ***matrix, int oldRows, int newRows, int newCols);
8 void printMatrix(int **matrix, int rows, int cols);
9

10 int main() {
11 int **matrix;
12 int rows, cols, newRows, newCols;
13

14 printf("Enter number of rows and columns: ");
15 scanf("%d %d", &rows, &cols);
16

17 // Allocate memory for the matrix
18 matrix = allocateMatrix(rows, cols);
19

20 // Input matrix elements
21 readMatrix(matrix, rows, cols);
22

23 // Print matrix
24 printMatrix(matrix, rows, cols);
25

26 // Ask if the user wants to resize the matrix
27 printf("Enter new number of rows and columns: ");
28 scanf("%d %d", &newRows, &newCols);
29

30 // Reallocate the matrix
31 reallocateMatrix(&matrix, rows, newRows, newCols);
32

33 // Input new matrix elements
34 readMatrix(matrix, newRows, newCols);
35

36 // Print updated matrix
37 printMatrix(matrix, newRows, newCols);
38

39 // Free allocated memory
40 for (int i = 0; i < newRows; i++) {
41 free(matrix[i]);
42 }
43 free(matrix);
44

45 return 0;
46 }
47

48 // Function definitions
49 int** allocateMatrix(int rows, int cols) {
50 int **matrix = (int **)malloc(rows * sizeof(int *));
51 if (matrix == NULL) {
52 printf("Memory allocation failed\n");
53 exit(1);
54 }
55 for (int i = 0; i < rows; i++) {
56 matrix[i] = (int *)malloc(cols * sizeof(int));
57 if (matrix[i] == NULL) {
58 printf("Memory allocation failed\n");

© Partha Bhowmick

8. Pointers 111

59 exit(1);
60 }
61 }
62 return matrix;
63 }
64

65 void readMatrix(int **matrix, int rows, int cols) {
66 for (int i = 0; i < rows; i++) {
67 for (int j = 0; j < cols; j++) {
68 printf("Enter element [%d][%d]: ", i, j);
69 scanf("%d", &matrix[i][j]);
70 }
71 }
72 }
73

74 void reallocateMatrix(int ***matrix, int oldRows, int newRows, int newCols) {
75 *matrix = (int **)realloc(*matrix, newRows * sizeof(int *));
76 if (*matrix == NULL) {
77 printf("Memory reallocation failed\n");
78 exit(1);
79 }
80 for (int i = oldRows; i < newRows; i++) {
81 (*matrix)[i] = (int *)malloc(newCols * sizeof(int));
82 if ((*matrix)[i] == NULL) {
83 printf("Memory allocation failed\n");
84 exit(1);
85 }
86 }
87 for (int i = 0; i < newRows; i++) {
88 (*matrix)[i] = (int *)realloc((*matrix)[i], newCols * sizeof(int));
89 if ((*matrix)[i] == NULL) {
90 printf("Memory reallocation failed\n");
91 exit(1);
92 }
93 }
94 }
95

96 void printMatrix(int **matrix, int rows, int cols) {
97 printf("Matrix:\n");
98 for (int i = 0; i < rows; i++) {
99 for (int j = 0; j < cols; j++) {

100 printf("%d ", matrix[i][j]);
101 }
102 printf("\n");
103 }
104 }

8.11 Exercise problems

1. rDynamic Array Initialization and Accesss Write a program that dynamically allocates memory
for an array of integers based on user input. The user specifies the number of elements, and the program
initializes the array with Fibonacci numbers up to that length. Implement a function to print the array.
Use malloc to allocate memory and free to deallocate it.

© Partha Bhowmick

112 8. Pointers

2. rSum and Maximum Value Calculations Create a program that allocates memory for an array of
integers based on user input. After filling the array with values, compute and display the sum and
maximum value of the elements. Implement functions for allocation, input, sum and maximum value
computation, and printing. Use calloc for memory allocation and free to deallocate.

3. rDynamic Array Sortings Implement a program that dynamically allocates memory for an array of
integers. The user inputs the number of elements and their values. After sorting the array in ascending
order, print the sorted array. Implement functions for allocation, input, sorting, and printing. Use
malloc to allocate memory and free to deallocate. After sorting is discussed in the class, you can
implement this.

4. rArray Element Replacements Write a program that allocates memory for an array of integers.
After the user inputs values, prompt the user to specify an index and a new value. Replace the value at
the specified index with the new value and print the updated array. Implement functions for allocation,
input, replacement, and printing. Use malloc to allocate memory and free to deallocate.

5. rFrequency Counter of Elementss Create a program that dynamically allocates memory for an array
of integers in the interval ra, bs, where a and b are input. After filling the array with values, compute
the frequency of each unique element in the array and display the results. Implement functions for
allocation, input, frequency counting, and printing. Use malloc for memory allocation and free to
deallocate. You can use an additional dynamic array.

♣ 6. rMaximum Subarray Sums Given an array of integers, the task is to find a/the contiguous subarray
with the maximum sum. Implement a program that uses malloc to allocate memory for the array
depending on the number of elements (given as input). Then, populate the array using user’s input and
find the maximum subarray sum. You shouldn’t use more than one loop. Ensure that the program frees
the allocated memory using free.
A contiguous subarray of an array consists of consecutive elements of the array. Clearly, if all elements
are positive, then the maximum subarray sum equals the sum of all elements. Otherwise, it will be
a proper subarray. For example, in the array [-18, -9, 16, -11, 7, 15, -23, 20, -21, 17], the
maximum subarray sum is 27, and it corresponds to the subarray [16, -11, 7, 15].

♣ 7. rLongest Increasing Subsequences Given an array of distinct integers, determine the length of the
longest increasing subsequence. If using nested loops, ensure that there are exactly two loops: one inside
the other. Your program should dynamically allocate memory for the array using malloc, based on the
number of elements provided by the user, and deallocate the memory using free.
A subsequence is a sequence derived from another sequence by deleting some or no elements without
changing the order of the remaining elements.
For example, the array [18, 9, 16, 11, 7, 15, 23, 20, 21, 17] has a unique longest increasing
subsequence: [9, 11, 15, 20, 21], which has a length of 5. Any other increasing subsequence has
length less than 5.

♣ 8. rEqual-Sum Partitions Given an array of single-digit integers, determine if it can be partitioned
into two subsets with equal sum. Your program should print Yes if it is possible, and No otherwise.
Dynamically allocate memory for the array using malloc, based on the number of elements provided by
the user, and deallocate the memory using free.
A partition of an array refers to dividing it into two subsets such that they are disjoint and their sums are
equal. For example, the array [-3, 5, -1, 0, -3] can be partitioned into [-3, 5, -3] and [-1, 0]
where both subsets have a sum of ´1. But [-3, 5, -1, 0] doesn’t admit any equal-sum partition.

© Partha Bhowmick

9 | Two-dimensional arrays

In Chapter 5, we discussed how a 1D array essentially stores a list of elements. Many applications, however,
require storing data in the form of a table. For this, we need a two-dimensional array. For example, to store
a table containing the marks of n students in k subjects, we use a 2D array where each row represents a
student and each column represents a subject. The table below illustrates an example with n “ 4 students
and k “ 5 subjects. In this array, the rows correspond to students, and the columns represent the subjects.

71 82 90 63 76
68 75 80 70 72
88 74 85 76 80
50 65 68 40 70

(9.1)

9.1 Examples

Here are some common examples of tables that can be stored in 2D arrays:

1. Multiplication Table: A table showing the products of pairs of numbers (e.g., a 10-by-10 table showing
products from 1 ˆ 1 to 10 ˆ 10).

2. Logarithm Table: A table used to find the logarithms of numbers to a certain base (e.g., base 10). It
typically contains logarithmic values for various numbers.

3. Periodic Table of Elements: The periodic table can be stored in a 2D array, with rows representing
periods and columns representing groups.

4. Gray-scale Image: A 2D array can represent a gray-scale image, where each element of the array holds
the pixel intensity value.

5. Seating Arrangement: Seating plans for events, classrooms, trains, or airplanes can be represented by a
2D array, where each element denotes a seat.

6. Chess Board: A chessboard layout can be represented as an 8 ˆ 8 matrix, where each element denotes
a piece or an empty space.

7. Sudoku Puzzle: A 9 ˆ 9 grid can represent a Sudoku board, where each cell contains numbers or
placeholders for solving the puzzle.

8. Matrix (Math): Any mathematical matrix, which is essentially a 2D array of numbers, such as for linear
algebra problems.

9. Game Board (e.g., Tic-Tac-Toe): A 3-by-3 array can represent a Tic-Tac-Toe game board, where each
cell holds a player’s mark or remains empty.

10. Distance Table: A 2D array can represent all inter-node distances (e.g., all inter-airport distances in
India) in a ‘graph’.

113

114 9. Two-dimensional arrays

9.2 Declaration (static)

A 2D array is defined using two indexes: the first for row and the second for column. The syntax for declaring
is as follows:

type arrayName[rows][columns];

If its name is arr, it has m rows and n columns, and it stores integers, then it should be declared as follows:

int arr[m][n];

Let’s consider the table given in (9.1). To store it in a 2D array named marks, we write the following
declaration:

int marks[4][5];

Each element is denoted by marks[i][j] in which the first index i denotes the row (student), and
the second index j denotes the column (subject). They are referred to as row index and column index,
respectively.

Similar to a 1D array, indexing for each dimension starts from 0. Since marks has 4 rows and 5 columns,
the row indexes range from 0 to 3, and the column indexes range from 0 to 4. Thus, the marks of the 1st
student in the 1st subject is marks[0][0] = 71. Similarly, the marks of the 2nd student in the 3rd subject
is marks[1][2] = 80.

Here are some more examples:

int marks[2000][5];
char Sudoku[9][9];
float sales[12][25];
double matrix[100][100];

(9.2)

There are several other ways to declare 2D arrays, which will be discussed in §9.8. Also note that,
instead of simple elements such as numbers or characters, a 2D array can also store more complex data
types, such as structures, which we will study later (in the chapter on structures).

Q1 Write the amount of memory space consumed for each array declared in (9.2).

Q2 You have 1000 two-dimensional points with integer coordinates. Write a declaration for a 2D array that will
contain their px, yq coordinates.

Q3 You have 1000 three-dimensional points with integer coordinates. Write a declaration for a 2D array that
will contain their px, y, zq coordinates.

Q4 Consider a special version of Question 2 in which for all 1000 points, all the coordinates are integers in
r0, 127s. Can you store them in a 2D array that will be smaller than the one used for Question 2? Justify.

Q5 You have n circles with integer centers and integer radii. Write a declaration for a 2D array that will contains
their centers and radii. How many bytes are needed for this array?

Q6 Write five practical applications (each within 25 words) where 2D arrays can be used. Write for each of
them how the arrays should be declared.

© Partha Bhowmick

9. Two-dimensional arrays 115

9.3 Initialization

After declaring a 2D array, we can initialize it later by filling it with elements taken as input during execution.
Alternatively, we can initialize a 2D array at the time of declaration. The syntax for this is shown below for
the array marks from (9.1).

int marks[4][5] = {
{71, 82, 90, 63, 76},
{68, 75, 80, 70, 72},
{88, 74, 85, 76, 80},
{50, 65, 68, 40, 70}

};

Alternatively, you can write it all in a single line:

int marks[4][5] = {{71, 82, 90, 63, 76}, {68, 75, 80, 70, 72}, {88, 74, 85, 76, 80},
{50, 65, 68, 40, 70}};

The convention here is easy to remember: A 2D array can be viewed as a
1D array of 1D arrays. Each 1D array is enclosed in curly braces, with its
elements separated by commas.

Code 9.24 provides an example where a 4-by-5 2D array is declared, initialized using user input, and
used to compute the total marks of 4 students.

Code 9.24: Example of working with a 2D array named marks. 2dArrayStudentMarks.c

1 #include <stdio.h>
2

3 #define ROWS 4
4 #define COLS 5
5

6 int main(){
7 int marks[ROWS][COLS], row, col, total;
8

9 for (row = 0; row < ROWS; row++){
10 for (col = 0; col < COLS; col++){
11 printf("Enter marks for student %d, course %d: ", row + 1, col + 1);
12 scanf("%d", &marks[row][col]);
13 }
14 }
15

16 for (row = 0; row < ROWS; row++){
17 for (total = 0, col = 0; col < COLS; col++)
18 total += marks[row][col];
19 printf("Total marks for student %d: %d\n", row + 1, total);
20 }
21

22 return 0;
23 }

Q7 Revise Code 9.24 so that it prints the average marks of each student and the average marks for each subject.

© Partha Bhowmick

116 9. Two-dimensional arrays

9.4 Operations

Each element of the 2D array can be treated as a usual variable and operated on using the usual operands
for its corresponding datatype. For example, these are all valid for the array marks:

marks[0][0] = 50; // Assign 50 to the first element
marks[3][4] *= 2; // Multiply the value of marks[3][4] by 2
marks[2][1] /= 3; // Divide the value of marks[2][1] by 3
marks[1][0] %= 10; // Calculate the remainder of marks[1][0] divided by 10
marks[0][2] += 15; // Add 15 to the value of marks[0][2]
marks[3][3]--; // Decrement the value of marks[3][3] by 1
marks[1][4]++; // Increment the value of marks[1][4] by 1
marks[1][2] = marks[0][1] + 10; // Assign the sum of marks[0][1] and 10 to marks[1][2]
int x = marks[2][3] - 5; // Subtract 5 from marks[2][3] and store the result in x

Code 9.25 provides an example where a 2D array named marks is first declared and initialized, and then
its elements are modified depending on the user’s choice.

Code 9.25: Revising the values in a 2D array named marks. 2dArrayStudentMarksRevise.c

1 #include <stdio.h>
2

3 int main() {
4 int marks[4][5] = {
5 {71, 82, 90, 65, 76}, {68, 75, 80, 70, 72},
6 {88, 74, 85, 76, 80}, {50, 65, 68, 40, 70}
7 };
8

9 int row, col, change;
10 char choice;
11

12 do {
13 printf("Enter row (0-3) and column (0-4) of the element to view: ");
14 scanf("%d %d", &row, &col);
15

16 if (row < 0 || row > 3 || col < 0 || col > 4) {
17 printf("Invalid position!\n"); continue; }
18 printf("Current value at marks[%d][%d] is %d\n", row, col, marks[row][col]);
19

20 printf("Would you like to revise it? (y/n): ");
21 scanf(" %c", &choice);
22

23 if (choice == ’y’ || choice == ’Y’) {
24 printf("Enter the amount to increase (+) or decrease (-): ");
25 scanf("%d", &change);
26 marks[row][col] += change;
27 printf("Updated value at marks[%d][%d] is %d\n", row, col, marks[row][col]);
28 }
29

30 printf("Do you want to revise another element? (y/n): ");
31 scanf(" %c", &choice);
32

33 } while (choice == ’y’ || choice == ’Y’);
34 return 0;
35 }

© Partha Bhowmick

9. Two-dimensional arrays 117

9.5 2D array storage

The base address or starting address of a 2D array refers to the memory address of its first element. Starting
from the base address, all elements of the array are stored sequentially in memory, row by row. For each
row, the elements are stored from left to right.

To illustrate this, let us consider the 4-by-5 array marks from (9.1). Let x represent its base address,
i.e., x= &marks[0][0]. Use the convention that each integer occupies 4 bytes. Then, the memory addresses
of the elements in marks will be as follows:

x x+4 x+8 x+12 x+16
x+20 x+24 x+28 x+32 x+36
x+40 x+44 x+48 x+52 x+56
x+60 x+64 x+68 x+72 x+76

(9.3)

Eventually, this enables the 2D array to be treated as a 1D array. (So cute! Isn’t it?) As an example,
let’s rewrite the array marks given in (9.1):

j=0 1 2 3 4
i=0 71 82 90 63 76

1 68 75 80 70 72
2 88 74 85 76 80
3 50 65 68 40 70

The above 2D array is simply equivalent to the following 1D array with 20 elements.

index: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
71 82 90 63 76 68 75 80 70 72 88 74 85 76 80 50 65 68 40 70

The reason is that the addresses of the elements in this 1D array adhere to the same rule. For the 2D array,
we have

address of marks[i][j] = &marks[i][j] = &marks[0][0] + (i * 5 + j) * 4

which is also the address of the element with index i*5+j in the 1D array. For example, the element in the
2D array with row index i= 3 and column index j= 1 is 65. For this element, we have i*5+j= 16, and
that’s the index of the same element in the 1D array.

Now, let us consider the general scenario in which k is the size (measured in terms of bytes) of each
element of any 2D array. It is given by the operator sizeof() discussed in Chapter 8. For example, for
an integer variable, it is given by sizeof(int), which is basically 4 bytes in standard computers. So, if an
integer array has r rows and c columns, then the total space allocated for it will be 4ˆ rˆ c bytes. For
example, the space allocated for the 4-by-5 array marks will be 4 ˆ 4 ˆ 5 “ 80 bytes. For a character array,
the space required will be rˆ c bytes, as each character takes just one byte.

Now, let us see how to find the address of an arbitrary element of a 2D array from its base address.
Suppose A is a 2D array with x as its base address, and c as the number of its columns. Then the address
of A[i][j] can be calculated as x + (i * c + j) * k, or,

&A[i][j] “ &A[0][0] + (i * c + j) * k. (9.4)

As an example, the actual addresses of the elements in marks are displayed below. These addresses are
obtained by running Code 9.26. These addresses usually vary with each execution, as reflected here.

Addresses are very likely to change with each execution because memory is
actually allocated only at runtime. The allocation is done by the operating
system as per the available free space in the memory during that particular
execution.

© Partha Bhowmick

118 9. Two-dimensional arrays

1st execution of Code 9.26

0x7ffe086ff620 0x7ffe086ff624 0x7ffe086ff628 0x7ffe086ff62c 0x7ffe086ff630
0x7ffe086ff634 0x7ffe086ff638 0x7ffe086ff63c 0x7ffe086ff640 0x7ffe086ff644
0x7ffe086ff648 0x7ffe086ff64c 0x7ffe086ff650 0x7ffe086ff654 0x7ffe086ff658
0x7ffe086ff65c 0x7ffe086ff660 0x7ffe086ff664 0x7ffe086ff668 0x7ffe086ff66c

2nd execution of Code 9.26

0x7ffe9aa633b0 0x7ffe9aa633b4 0x7ffe9aa633b8 0x7ffe9aa633bc 0x7ffe9aa633c0
0x7ffe9aa633c4 0x7ffe9aa633c8 0x7ffe9aa633cc 0x7ffe9aa633d0 0x7ffe9aa633d4
0x7ffe9aa633d8 0x7ffe9aa633dc 0x7ffe9aa633e0 0x7ffe9aa633e4 0x7ffe9aa633e8
0x7ffe9aa633ec 0x7ffe9aa633f0 0x7ffe9aa633f4 0x7ffe9aa633f8 0x7ffe9aa633fc

3rd execution of Code 9.26

0x7ffdd206d890 0x7ffdd206d894 0x7ffdd206d898 0x7ffdd206d89c 0x7ffdd206d8a0
0x7ffdd206d8a4 0x7ffdd206d8a8 0x7ffdd206d8ac 0x7ffdd206d8b0 0x7ffdd206d8b4
0x7ffdd206d8b8 0x7ffdd206d8bc 0x7ffdd206d8c0 0x7ffdd206d8c4 0x7ffdd206d8c8
0x7ffdd206d8cc 0x7ffdd206d8d0 0x7ffdd206d8d4 0x7ffdd206d8d8 0x7ffdd206d8dc

Code 9.26: Printing the addresses of the elements of marks. 2dArrayStudentMarksAddress.c

1 #include <stdio.h>
2

3 #define ROWS 4
4 #define COLS 5
5

6 int main(){
7 int marks[ROWS][COLS], row, col, total;
8

9 for (row = 0; row < ROWS; row++, printf("\n"))
10 for (total = 0, col = 0; col < COLS; col++)
11 printf("%p ", &marks[row][col]);
12

13 return 0;
14 }

Q8 You have 1000 two-dimensional points with integer coordinates. Can you store them in a 1D array? If
possible, write a declaration for that 1D array. Is this a better scheme compared to the 2D array (Question 2)?
Justify.

Q9 Consider int a[4][5];
What are meant by a, &a, a+1, &a+1, &(a + 1), (&a) + 1, a[0][0], and &a[0][0]?
Write their values if the first element of a is 1 and its hexadecimal address is 84E9.

9.6 Passing 2D arrays to functions

Passing 2D arrays as function arguments follows a similar approach to passing 1D arrays. Suppose f1 defines
a 2D array A as a local variable. If f1 calls another function, say f2, to perform operations on A, f1 must
pass the array to f2. Instead of passing all the elements of A, only the address of the first element (&A[0][0])
is passed from f1 to f2.

As an additional information, f1 must also pass the number of rows and columns of A to f2, allowing
it to determine the size of the array. Given that the address of A[0][0] is x, f2 can calculate the address
of any element A[i][j] using Equation 9.4. It can then use this address to access or modify the value of
A[i][j].

Below is a small code example to illustrate the concept. We assume that A has 3 rows and 4 columns.

© Partha Bhowmick

9. Two-dimensional arrays 119

Code 9.27: Working with a static 2D array named marks. 2dArrayFunCallsf1f2.c

1 void f2(int A[3][4]){
2 ...
3 }
4

5 void f1(int A[3][4]){
6 ...
7 f2(A); // the address of the 1st element of A is passed to f2
8 ...
9 }

10

11 int main(){
12 int A[3][4];
13 ...
14 f1(A); // the address of the 1st element of A is passed to f1
15 ...
16 return 0;
17 }

To understand the above concept for a specific problem, let us refer back to Code 9.24. In that code,
we have seen how a 4-by-5 2D array can be declared and subsequently used in main() for specific tasks
like initialization and computing the total marks. We now modify that code to make it modular by writing
user-defined functions and calling them from main() to perform the same tasks. The modified code is given
in Code 9.28. Observe in this code that the argument passed to either of fillArray and printTotalMarks
is the array name marks, which basically works as a pointer to the first element of marks. This is just similar
to the convention followed for 1D arrays, as discussed in Chapter 8.

9.7 Dynamic memory allocation for 2D array

The array marks used in Code 9.28 was a fixed-size array. We now see what happens if it’s a dynamic array,
i.e., its size, specified by the number of rows and the number of columns, are given as input. It’s given
in Code 9.29. In this code, malloc is used to allocate the optimum space for the 2D array. The function
malloc could be called in main() for the allocation. Instead of that, it uses a user-defined function named
allocateArray to handle the dynamic allocation.

In Code 9.29, you have to observe carefully the portion on dynamic memory allocation (allocateArray
function). It first allocates memory for the array of row pointers, and then it allocates memory for each row.
After every call of malloc, it checks for memory allocation failures.

The function prototypes and their calls in Code 9.29 are discussed below.

• int **allocateArray(int rows, int cols): This function dynamically allocates memory for a 2D
array of integers using pointers. It takes the number of rows and columns as arguments and returns a
pointer to a dynamically allocated array. The array is a pointer to pointers (i.e., int**), where each row
is allocated individually. Inside main(), it is called as marks = allocateArray(m, n).

• void fillArray(int **marks, int rows, int cols): This function fills the 2D array with user in-
put. It takes the pointer to the 2D array (i.e., marks), the number of rows, and the number of columns
as arguments. It uses nested loops to prompt the user to enter values for each element in the array. In
main(), it is called as fillArray(marks, m, n) after memory allocation.

• void printTotalMarks(int **marks, int rows, int cols): This function calculates and prints the
total marks for each student. It takes the pointer to the 2D array, the number of rows, and the number
of columns as arguments. For each student (i.e., row), it calculates the sum of marks across all subjects
(i.e., columns) and prints the total. In main(), it is called as printTotalMarks(marks, m, n).

© Partha Bhowmick

120 9. Two-dimensional arrays

Code 9.28: Working with a static 2D array named marks. 2dArray-4by5-StudentMarksFunctions.c

1 #include <stdio.h>
2

3 #define ROWS 4
4 #define COLS 5
5

6 void fillArray(int marks[ROWS][COLS]){
7 int row, col;
8 for (row = 0; row < ROWS; row++)
9 for (col = 0; col < COLS; col++){

10 printf("Enter marks for student %d, course %d: ", row + 1, col + 1);
11 scanf("%d", &marks[row][col]);
12 }
13 }
14

15 void printTotalMarks(int marks[ROWS][COLS]){
16 int row, col, total;
17 for (row = 0; row < ROWS; row++){
18 total = 0;
19 for (col = 0; col < COLS; col++)
20 total += marks[row][col];
21 printf("Total marks for student %d: %d\n", row + 1, total);
22 }
23 }
24

25 int main(){
26 int marks[ROWS][COLS];
27 fillArray(marks);
28 printTotalMarks(marks);
29 return 0;
30 }

• void freeArray(int **array, int rows): This function frees the dynamically allocated memory for
the 2D array. It takes the pointer to the 2D array and the number of rows as arguments. It first frees
each individual row, then frees the array itself. In main(), it is called as freeArray(marks, m) after the
array has been used.

• int main(): The main() function prompts the user for the number of rows (students) and columns
(subjects), allocates the 2D array using allocateArray, calls fillArray to populate the array, and then
calls printTotalMarks to display the total marks for each student. After that, it calls freeArray to
release the allocated memory.

Code 9.29: Working with a dynamic 2D array marks. 2dArray-dynamic-StudentMarksFunctions.c

1 #include <stdio.h>
2 #include <stdlib.h>
3

4 int **allocateArray(int rows, int cols){
5 int **array = (int **)malloc(rows * sizeof(int *));
6 if (array == NULL){
7 printf("Memory allocation failed for row pointers.\n");
8 exit(1);
9 }

10 for (int i = 0; i < rows; i++){

© Partha Bhowmick

9. Two-dimensional arrays 121

11 array[i] = (int *)malloc(cols * sizeof(int));
12 if (array[i] == NULL){
13 printf("Memory allocation failed for row %d.\n", i);
14 exit(1);
15 }
16 }
17 return array;
18 }
19

20 void fillArray(int **marks, int rows, int cols){
21 for (int row = 0; row < rows; row++)
22 for (int col = 0; col < cols; col++){
23 printf("Enter marks for student %d, course %d: ", row + 1, col + 1);
24 scanf("%d", &marks[row][col]);
25 }
26 }
27

28 void printTotalMarks(int **marks, int rows, int cols){
29 for (int row = 0; row < rows; row++){
30 int total = 0;
31 for (int col = 0; col < cols; col++)
32 total += marks[row][col];
33 printf("Total marks for student %d: %d\n", row + 1, total);
34 }
35 }
36

37 void freeArray(int **array, int rows){
38 for (int i = 0; i < rows; i++)
39 free(array[i]);
40 free(array);
41 }
42

43 int main(){
44 int m, n;
45 printf("Enter number of rows (students): ");
46 scanf("%d", &m);
47 printf("Enter number of columns (courses): ");
48 scanf("%d", &n);
49

50 int **marks = allocateArray(m, n);
51 fillArray(marks, m, n);
52 printTotalMarks(marks, m, n);
53 freeArray(marks, m);
54 return 0;
55 }

9.8 Declaration (dynamic): A summary

A 2D array can be declared in several ways, as shown in Code 9.30. The meanings are as follows:

1. int A[MAXROW][MAXCOL]; ñ A is a statically allocated 2D array with fixed dimensions. This refers to
memory allocated at compile time, contrasting with dynamically allocated arrays that are created at
runtime.

2. int (*B)[MAXCOL]; ñ B is a pointer to an array of MAXCOL integers. The parentheses are necessary to
bind the pointer to the array of integers, not just to an individual integer.

© Partha Bhowmick

122 9. Two-dimensional arrays

3. int *C[MAXROW]; ñ C is an array of MAXROW pointers to integers. Each element of C can point to the
start of a separate array of integers.

4. int **D; ñ D is a pointer to a pointer to an integer. This is typically used for dynamic memory
allocation for 2D arrays.

5. The last three arrays support dynamic memory allocation; the most commonly used style is int **D;.
When properly allocated memory, any of them can be used to represent a MAXROW-by-MAXCOL array.

Code 9.30: Different Ways of Declaring 2D Arrays. 2dArrayWaysDeclaration.c

1 #include <stdio.h>
2 #include <stdlib.h>
3

4 #define MAXROW 4
5 #define MAXCOL 5
6

7 int main(){
8 int A[MAXROW][MAXCOL];
9 int (*B)[MAXCOL];

10 int *C[MAXROW];
11 int **D;
12 ...
13 return 0;
14 }

Let’s now see how memory is allocated dynamically for MAXROW-by-MAXCOL arrays using B, C, and D.

1. int (*B)[MAXCOL]; ñ B is a pointer to an array of MAXCOL integers.
So, it can be allocated MAXROW rows in the following way:

B = (int (*)[MAXCOL])malloc(MAXROW * sizeof(int[MAXCOL]));

2. int *C[MAXROW]; ñ C is an array of MAXROW int pointers. Therefore, C itself cannot be allocated
memory. The individual rows of C should be allocated memory.

int i;
for (i=0; i<MAXROW; ++i)

C[i] = (int *)malloc(MAXCOL * sizeof(int));

3. int **D; ñ D is a pointer to an int pointer. So, D is dynamic in both directions.
First, it should be allocated memory to store MAXROW int pointers, each meant for a row of the 2D array.
Each row pointer, in turn, should be allocated memory for MAXCOL int data.

int i;
D = (int **)malloc(MAXROW * sizeof(int *));
for (i=0; i<MAXROW; ++i)

D[i] = (int *)malloc(MAXCOL * sizeof(int));

D D[0]

D[3]

D[1]
D[2]

D[0][0]

D[3][4]

9.9 Arrays with higher dimension

3D and higher-dimensional arrays allow data to be stored and accessed in more complex structures. A 3D
array can be visualized as an array of 2D arrays. For example, an array int volume[3][4][2] defines a
3D array with 3 blocks, each containing 4 rows and 2 columns. Accessing an element like volume[1][2][0]
retrieves the value in the 2nd block, 3rd row, and 1st column. These types of arrays are useful in applications
like modeling matrices for computer simulations in diverse applications of science and engineering.

© Partha Bhowmick

9. Two-dimensional arrays 123

9.10 Solved problems

Note the following points regarding the problems stated in this section and in §9.11.

1. By m-by-n or m ˆ n array (or matrix), we mean a 2D array with m rows and n columns.
2. Unless mentioned, assume that m,n ď 10.
3. Unless mentioned, assume that all elements are integers.

1. rMatrix addition: Version 1s Compute the addition of two matrices with compatible dimensions and
elements as input, store it in a new matrix, and print its elements on the terminal.
If A and B are two compatible matrices (i.e., have m rows and n columns each), then in their sum
matrix C, the element at row i and column j is denoted by Crisrjs and evaluated as Arisrjs ` Brisrjs.
Here is an example:

A ` B “

»

–

1 3 2 1
3 2 1 3
2 1 3 2

fi

fl `

»

–

3 2 1 3
1 3 2 1
2 1 3 2

fi

fl “

»

–

4 5 3 4
4 5 3 4
4 2 6 4

fi

fl

Code 9.31: Matrix addition: Version 1
(static memory allocation, without user-defined functions). matrixAdd.c

1 #include<stdio.h>
2

3 int main(){
4 int m, n, a[10][10], b[10][10], c[10][10], i, j;
5

6 printf("\nEnter #rows & #columns of the matrices: ");
7 scanf("%d%d", &m, &n);
8

9 printf("Enter Matrix 1:\n");
10 for(i=0; i<m; i++)
11 for(j=0; j<n; j++)
12 scanf("%d", &a[i][j]);
13

14 printf("Enter Matrix 2:\n");
15 for(i=0; i<m; i++)
16 for(j=0; j<n; j++)
17 scanf("%d", &b[i][j]);
18

19 for(i=0; i<m; i++)
20 for(j=0; j<n; j++)
21 c[i][j] = a[i][j] + b[i][j]; // scalar addition
22

23 printf("Resultant matrix (after addition):\n");
24 for(i=0; i<m; i++, printf("\n"))
25 for(j=0; j<n; j++)
26 printf("%3d ", c[i][j]);
27 printf("\n");
28

29 return 0;
30 }

Q10 How many scalar additions are used in Code 9.31? (A scalar addition means the addition between two
numbers.)

© Partha Bhowmick

124 9. Two-dimensional arrays

2. rMatrix addition: Version 2s Rewrite Version 1 of matrix addition with user-defined functions for
input of the elements of the matrices, for adding the matrices, and for printing the result.

Code 9.32: Matrix addition: Version 2
(static memory allocation, with user-defined functions). matrixAddFun.c

1 #include<stdio.h>
2

3 // Function to input matrix elements
4 void inputMatrix(int matrix[10][10], int rows, int cols, int num) {
5 printf("Enter Matrix %d:\n", num);
6 for (int i = 0; i < rows; i++)
7 for (int j = 0; j < cols; j++)
8 scanf("%d", &matrix[i][j]);
9 }

10

11 // Function to add two matrices
12 void addMatrices(int a[10][10], int b[10][10], int c[10][10], int rows, int cols) {
13 for (int i = 0; i < rows; i++)
14 for (int j = 0; j < cols; j++)
15 c[i][j] = a[i][j] + b[i][j];
16 }
17

18 // Function to print matrix
19 void printMatrix(int matrix[10][10], int rows, int cols) {
20 printf("Resultant matrix (after addition):\n");
21 for (int i = 0; i < rows; i++, printf("\n"))
22 for (int j = 0; j < cols; j++)
23 printf("%3d ", matrix[i][j]);
24 }
25

26 int main() {
27 int m, n, a[10][10], b[10][10], c[10][10];
28

29 printf("Enter #rows & #columns of the matrices: ");
30 scanf("%d%d", &m, &n);
31 inputMatrix(a, m, n, 1);
32 inputMatrix(b, m, n, 2);
33 addMatrices(a, b, c, m, n);
34 printMatrix(c, m, n);
35

36 return 0;
37 }

3. rMatrix addition: Version 3 (with dynamic memory allocation)s Rewrite Version 2 of matrix
addition with user-defined functions with the provision for taking input for number of rows and columns
in main() and for memory allocation of the matrices.

In Code 9.33, you should understand the use of freeMatrix function that frees allocated memory for
a 2D array:

(i) In freeMatrix function, memory is freed in two stages.
First, each row’s memory is freed using free(matrix[i]);.
Second, the memory allocated for the array of row pointers is freed using free(matrix);.

(ii) Using free(matrix); directly only frees the memory allocated for the array of pointers,
leaving the memory for the rows still allocated. This causes memory leaks, as the memory
is no longer needed but remains occupied. Such leaks can degrade performance, particularly
when the program needs to allocate other large arrays later.

© Partha Bhowmick

9. Two-dimensional arrays 125

Code 9.33: Matrix addition: Version 3 (with dynamic memory allocation). matrixDynAddFun.c

1 #include <stdio.h>
2 #include <stdlib.h>
3

4 int **allocateMatrix(int m, int n){ // allocate memory for m-by-n matrix
5 int **matrix = (int **)malloc(m * sizeof(int *));
6 if (matrix == NULL) {
7 printf("Memory allocation failed for row pointers.\n"); exit(1); }
8 for (int i = 0; i < m; i++){
9 matrix[i] = (int *)malloc(n * sizeof(int));

10 if (matrix[i] == NULL) {
11 printf("Memory allocation failed for row %d.\n", i); exit(1); }
12 }
13 return matrix;
14 }
15

16 void inputMatrix(int **matrix, int m, int n, int num){
17 printf("Enter Matrix %d:\n", num);
18 for (int i = 0; i < m; i++)
19 for (int j = 0; j < n; j++)
20 scanf("%d", &matrix[i][j]);
21 }
22

23 void addMatrices(int **a, int **b, int **c, int m, int n){
24 for (int i = 0; i < m; i++)
25 for (int j = 0; j < n; j++)
26 c[i][j] = a[i][j] + b[i][j];
27 }
28

29 void printMatrix(int **matrix, int m, int n){
30 printf("Resultant matrix (after addition):\n");
31 for (int i = 0; i < m; i++, printf("\n"))
32 for (int j = 0; j < n; j++)
33 printf("%3d ", matrix[i][j]);
34 }
35

36 void freeMatrix(int **matrix, int m){ // free allocated memory for matrix with m rows
37 for (int i = 0; i < m; i++)
38 free(matrix[i]); // free all cells of row i
39 free(matrix); // free m row-pointers
40 }
41

42 int main(){
43 int m, n;
44 printf("Enter #rows and #columns of the matrices: ");
45 scanf("%d%d", &m, &n);
46 int **a = allocateMatrix(m, n);
47 int **b = allocateMatrix(m, n);
48 int **c = allocateMatrix(m, n);
49

50 inputMatrix(a, m, n, 1); inputMatrix(b, m, n, 2); // take input
51 addMatrices(a, b, c, m, n);
52 printMatrix(c, m, n);
53 freeMatrix(a, m); freeMatrix(b, m); freeMatrix(c, m); // free all three matrices
54 return 0;
55 }

© Partha Bhowmick

126 9. Two-dimensional arrays

4. rMatrix multiplication: Version 1s Compute the multiplication of two matrices with compatible
dimensions and elements as input, store it in a new matrix, and print its elements on the terminal.
Consider static memory allocation and do not use user-defined functions.
If A and B are two compatible matrices (i.e., with sizes m ˆ n and n ˆ p, respectively), then in their
product matrix C, the element at row i and column j is denoted by Crisrjs and evaluated as

Crisrjs “

n
ÿ

k“1

Arisrks ¨ Brksrjs.

Here is an example with m “ 4, n “ 5, p “ 4:

A ˆ B “

»

—

—

–

1 2 3 1 2
2 1 3 2 1
3 2 1 3 2
1 3 2 1 3

fi

ffi

ffi

fl

ˆ

»

—

—

—

—

–

2 1 3 2
1 3 1 3
2 2 3 1
1 1 2 2
3 2 1 1

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

–

20 16 20 14
14 16 22 14
18 17 22 16
20 17 17 14

fi

ffi

ffi

fl

Code 9.34: Matrix multiplication: Version 1 (without dynamic memory allocation). matrixMult.c

1 #include<stdio.h>
2

3 int main(){
4 int m, n, p;
5 int a[10][10], b[10][10], c[10][10];
6 int i, j, k;
7

8 printf("\nEnter #rows & #columns of 1st matrix: ");
9 scanf("%d%d", &m, &n);

10 printf("Enter #columns of 2nd matrix: ");
11 scanf("%d", &p);
12

13 printf("Enter Matrix 1:\n");
14 for(i=0; i<m; i++)
15 for(j=0; j<n; j++)
16 scanf("%d", &a[i][j]);
17

18 printf("Enter Matrix 2:\n");
19 for(i=0; i<n; i++)
20 for(j=0; j<p; j++)
21 scanf("%d", &b[i][j]);
22

23 for(i=0; i<m; i++)
24 for(j=0; j<p; j++)
25 for(c[i][j]=k=0; k<n; k++)
26 c[i][j] += a[i][k] * b[k][j]; // scalar multiplication
27

28 printf("Output matrix:\n");
29 for(i=0; i<m; i++, printf("\n")) // see a correct nuance here: printf("\n") [laugh]
30 for(j=0; j<p; j++)
31 printf("%3d ", c[i][j]);
32 printf("\n");
33

34 return 0;
35 }

Q11 How many scalar multiplications are used in Code 9.34? (A scalar multiplication means the multipli-
cation between two numbers.)

© Partha Bhowmick

9. Two-dimensional arrays 127

5. rSaddle points An element x is said to be a saddle point in a 2D array if it is smallest in its row and
largest in its column. Given a 2D array with 4 rows and 5 columns, find whether it has any saddle
point. Write a C program with dynamic memory allocation. It need not have any user-defined function.
Assume that all elements are distinct.
In the example below, A has no saddle point, but B has exactly one saddle point: Br3sr0s “ 16.

A “

»

—

—

–

3 8 7 6 4
14 5 9 10 11
13 17 2 15 16
12 18 19 1 20

fi

ffi

ffi

fl

B “

»

—

—

–

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 28 19 20

fi

ffi

ffi

fl

Code 9.35: Finding saddle points in a matrix. saddlePoint.c

1 #include <stdio.h>
2

3 int main(){
4 int m = 4, n = 5; // Fixed for a 4-by-5 matrix
5 int a[m][n];
6 int saddleFound = 0; // Flag to check if a saddle point is found
7 int i, j, k, minRowIndex, isSaddlePoint;
8

9 printf("Enter the elements of the 4-by-5 matrix:\n");
10 for (i = 0; i < m; i++)
11 for (j = 0; j < n; j++)
12 scanf("%d", &a[i][j]);
13

14 // Find the saddle point, if any, for each row.
15 // Because there will be at most one saddle point in each row.
16 for (i = 0; i < m; i++){
17 // Find the smallest-element index (minRowIndex) in row i
18 for (j = 1, minRowIndex = 0; j < n; j++)
19 if (a[i][j] < a[i][minRowIndex]) // element-to-element comparison
20 minRowIndex = j;
21

22 // Check if a[i][minRowIndex] is the largest in its column
23 for (isSaddlePoint = 1, k = 0; k < m; k++)
24 if (a[k][minRowIndex] > a[i][minRowIndex]){ // element-to-element comparison
25 isSaddlePoint = 0;
26 break;
27 }
28

29 if (isSaddlePoint)
30 saddleFound = 1,
31 printf("\nSaddle point: a[%d][%d]: %d\n", i, minRowIndex, a[i][minRowIndex]);
32 }
33

34 if (!saddleFound)
35 printf("\nNo saddle point found.\n");
36

37 return 0;
38 }

Q12 At most how many comparisons are used in Code 9.35? (Comparison means element-to-element com-
parison.) At most how many comparisons will be used if Code 9.35 is generalized for an mˆn matrix?

Q13 Can you revise Code 9.35 to find saddle points in a different way? How?

© Partha Bhowmick

128 9. Two-dimensional arrays

6. r4-adjacent local maxs An element x in a 2D array is said to be a local max if x is larger than all its
four adjacent elements — left, right, above, and below. If x lies on the array boundary, then it it may
be disregarded due to insufficient adjacency. Given such an array with m ě 3 rows and n ě 3 columns,
find all its local maxima.

Code 9.36: 4-adjacent local max. adj4Max2D.c

1 // Local max in 2D array
2

3 #include<stdio.h>
4 #define MAX 10
5

6 void readArray(int a[MAX][MAX], int m, int n){
7 int i, j;
8 printf("Enter elements:\n");
9 for(i=0; i<m; i++)

10 for(j=0; j<n; j++)
11 scanf("%d", &a[i][j]);
12 }
13

14 void adj4Max2D(int a[MAX][MAX], int m, int n){
15 int i, j, found = 0;
16 printf("Local max: ");
17

18 for(i=1; i<m-1; i++)
19 for(j=1; j<n-1; j++)
20 if((a[i][j] > a[i][j-1]) && (a[i][j] > a[i][j+1])) // left and right
21 if((a[i][j] > a[i-1][j]) && (a[i][j] > a[i+1][j])) // above and below
22 printf("%d ", a[i][j]), found = 1;
23

24 if(!found)
25 printf("None");
26 printf("\n");
27 }
28

29 int main(){
30 int m, n, a[MAX][MAX];
31 printf("\nEnter #rows & #columns: ");
32 scanf("%d%d", &m, &n);
33

34 readArray(a, m, n);
35 adj4Max2D(a, m, n);
36

37 return 0;
38 }

Q14 How many comparisons are used in Code 9.36? (Comparison means element-to-element comparison.)

Q15 At most how many local maxima can be present in the 2D array? Justify.

Q16 Suppose we redefine local max as follows:
An element a[i][j] in a 2D array a is said to be a local max if it is larger than a[i+p][j+q], where p
and q are in t+1, -1u. If a[i][j] lies on the array boundary, then it it may be disregarded.
Given such an array with m ě 3 rows and n ě 3 columns, find all its local maxima, by modifying
Code 9.36.

Q17 How many comparisons will be needed in the modified code of Question 16?

© Partha Bhowmick

9. Two-dimensional arrays 129

7. rImage fadings An image of width c and height r is a 2-dimensional array with r rows and c columns
in which each element represents the color of a pixel. For a gray-scale image, the color is in gray shade,
expressed as an integer ranging from 0 (absolute black) to 255 (absolute white). It is stored as a PGM
(portable gray map) file, with the following content:

(i) Line 1: P2
(ii) Line 2: values of c and r (in this order)
(iii) Line 3: 255
(iv) Line 4 to Line p3 ` r ˆ cq: values of the pixel colors in row-major order

Optionally, it may contain one or more comment lines (e.g. # created by ...) just after Line 1. We
assume that in our PGM files, there is no comment line.
Given a PGM image as input, our task is to fade the image and to save it as PGM and PNG files
(Figure 9.1). Below are the commands to run your code on two input files: m1a.pgm and m1.pgm.

gcc a07-0.c
./a.out < m1a.pgm > m1a_0.pgm
convert m1a_0.pgm m1a_0.png

./a.out < m1.pgm > m1_0.pgm
convert m1_0.pgm m1_0.png

The sign < instructs to take input from the file m1a.pgm, and the sign > instructs to write the output to
the file m1a_0.pgm. To convert from PGM to PNG, the convert command in Linux is used.

Code 9.37: Image fading. imageFading.c

1 #include <stdio.h>
2 #include <stdlib.h>
3

4 int main(){
5 char imageType[3]; // imageType is in the 1st line
6 int r, c, maxColor; // r = #rows, c = #columns, maxColor = 255
7 unsigned char **a; // image array
8

9 a = (unsigned char **)malloc(r * sizeof(unsigned char *));
10 scanf("%s%d%d%d", imageType, &c, &r, &maxColor);
11 if (a == NULL){ printf("Memory allocation failed for row pointers.\n"); exit(1); }
12 for (int i = 0; i < r; i++){
13 a[i] = (unsigned char *)malloc(c * sizeof(unsigned char));
14 if (a[i] == NULL){ printf("Memory allocation failed for row %d.\n", i); exit(1); }
15 }
16 printf("%s\n%d %d\n%d\n", imageType, c, r, maxColor);
17 int i, j, x;
18

19 for(i=0; i<r; i++)
20 for(j=0; j<c; j++){
21 scanf("%d", &x);
22 a[i][j] = (x==0) ? 127 : 255;
23 }
24

25 for(i=0; i<r; i++)
26 for(j=0; j<c; j++)
27 printf("%d\n", a[i][j]);
28

29 return 1;
30 }

© Partha Bhowmick

130 9. Two-dimensional arrays

m1a.pgm m1a_0.png m1.pgm m1_0.png

Figure 9.1: Image fading. Left image has 77 rows and 59 columns. Right image has 549 rows and 549
columns. The color black (value 0) in the input image is changed to the value 127 in the output
image.

Q18 Modify exactly one statement of Code 9.37 so that the modified code inverts an image and saves it as
a PNG file.
For example, the image m1.pgm in Figure 9.1, after being inverted, will look as follows:

9.11 Exercise problems

1. rMatrix multiplication: Version 2s Rewrite Version 1 of matrix multiplication with user-defined
functions for input of the elements of the matrices, for adding the matrices, and for printing the result.

2. rMatrix multiplication: Version 3s Rewrite Version 2 of matrix multiplication with user-defined
functions with the provision for taking input for number of rows and columns in main() and for memory
allocation of the matrices.

3. rMax-sum 3 ˆ 3 submatrixs Given a matrix with m ě 3 rows and n ě 3 columns, find a 3 ˆ 3
submatrix such that the sum of its elements is maximum.

4. rReverse all primes in 2D arrays Given a 2D array of integers with 3 rows and 4 columns, where
each element is a prime number greater than 10, the task is to perform two operations on the array.
First, create a function f1 that reverses the digits of each number in the array and updates the array
with these reversed numbers.
Second, create a function f2 that takes the modified array from f1 and checks whether each number
is a prime. If a number is prime, it should remain unchanged; otherwise, it should be replaced with 0.
The functions should be called in sequence from the main() function, and the array should be printed
before and after each function call to show the transformations.

5. rDoubling image sizes Modify Code 9.37 so that it doubles the size of an image and saves the result
as a PNG file. For instance, the image m1.pgm in Figure 9.1, which has 549 rows and 549 columns,
should have 1098 rows and 1098 columns after resizing.

© Partha Bhowmick

9. Two-dimensional arrays 131

6. rCounting submatrices with a given sums Given a matrix of size m ˆ n filled with integers and
a target sum t, find all its submatrices that sum up to t. Assume that 2 ď m,n ď 50. A submatrix
is defined as a contiguous rectangular block within the matrix. In the example below, there are 4
submatrices that sum up to t “ 7. The last submatrix contains just one element (7).

Input matrix:
1 -2 1 -3 2

-2 2 4 5 -6
0 0 -3 -2 7

Output submatrices:
-2 1 -3 1 -3 2 4 5 -6 7
2 4 5 4 5 0 -3 -2 7

Q19 How many submatrices exist in a matrix of of size m ˆ n?

♣ 7. rMaximum-Sum Path in a Grids You are given a 2D grid of size m ˆ n where each cell contains a
positive integer. Assume that 2 ď m,n ď 50. You start from the bottom-left cell and need to reach the
top-right cell. You can only move rightward or upward at each step. Your task is to find a/the path
that maximizes the sum of the numbers along the path.
For example, for the following grid, the maximum sum is 26.

1 2 5 4 1
2 3 6 2 1
5 2 1 3 4

Application: This problem can be applied in resource optimization, such as finding the most
profitable path in a grid-based system, and in game development, where it helps to determine
the highest-scoring path through a grid of values.

♣ 8. rMinimum-Sum Path without Obstacless Given a 2D grid where some cells may contain obstacles,
represented by the value 0, and other cells contain positive integers less than 10. Assume that the width
and height of the grid are at most 10. Find the minimum cost to reach the bottom-right cell from the
top-left cell while avoiding obstacles. You are allowed to move right, down, or diagonally (right-down).
The goal is to compute the least-cost path from the start to the destination, considering only valid
moves.
For example, for the following grid, the least-cost path has a cost of 10.

1 1 2 1 3
0 3 1 0 1
2 1 5 9 4

Application: This problem is relevant in robotics for path planning, where a robot needs to
navigate through a grid-like environment while avoiding obstacles and minimizing travel cost.

© Partha Bhowmick

10 | Searching in 1D array

10.1 Linear search

Linear search, also known as sequential search, is commonly used to search for a key in a 1D array when
the array is unsorted, i.e., the elements of the array are not arranged in any particular order. This method
works by sequentially checking each element until a match is found or the end of the array is reached. Linear
search is typically applied to small datasets, unsorted collections, or situations where simplicity and ease of
implementation are prioritized over performance efficiency. In case the array is sorted (i.e., its elements are
arranged in increasing or decreasing order), then binary search is used, which we shall study in §10.2.

Code 10.38 and Code 10.39 show how linear search can be implemented and used. In Code 10.38, the
function linearSearch takes as argument the pointer to the array a, the number of elements the array has,
denoted by n, and the key to be searched in the array. The function returns the index of the array where
the match is found. If no match is found, it returns -1.

Code 10.38: Linear search of a number key in a 1D array a having n numbers. linearSearch.c

1 int linearSearch(int a[], int n, int key){
2 int i = 0;
3 while ((i < n) && (key != a[i]))
4 i++;
5 if (i < n)
6 return i // SUCCESSFUL search (match found at i)
7 return -1; // UNSUCCESSFUL search (no match found)
8 }

Time complexity of linear search

Time complexity of an algorithm (or function) refers to the number of major operations performed by the
algorithm. In general, to evaluate the efficiency of an algorithm across different test cases, we analyze three
types of time complexity: best case, worst case, and average case.

In the case of linear search, the major operation is the comparison (between the search key and the
elements of the array), i.e., key != a[i] in Code 10.38. Assuming all elements of a are distinct, the best-,
worst-, and average-case time complexities of linear search are given below.

1. Best case: This occurs when the search ends at the first element. This happens when key = a[0], so the
function returns 0. Only one comparison is needed in this case, resulting in a constant time complexity,
denoted as Op1q.

Any constant time is denoted by Op1q (pronounced “big O of one”), no
matter how large or small the constant is. We call it a ‘constant’ because
its value is independent of n.

132

10. Searching in 1D array 133

2. Worst case: This occurs when the search takes the maximum number of comparisons. There are two
worst-case scenarios:

(i) Unsuccessful search: The search key is not found in the entire array, i.e., key ‰ a[i] for all i
from 0 to n-1.

(ii) Successful search: The match occurs at the very last position of the array, i.e., key “ a[n-1].

In both cases, n comparisons are required, which results in a worst-case time complexity of Opnq (pro-
nounced “big O of n”).

For any linear function (e.g., n{2`100 or 8n`5) or linear-dominant function
(e.g., n{5 ` 2 logn ` 100), we disregard constants and non-dominant terms
and say the time complexity is Opnq. The notation Op¨q captures the overall
growth rate of the function.

3. Average case: In this scenario, we calculate the number of comparisons across all possible positions where
key could be found. For the case key “ a[i], the number of comparisons is i+1 since key is compared
with a[0], a[1], . . . , a[i] until the match is found. The total number of comparisons for all n cases is

n-1
ÿ

i“0

pi+1q “

n
ÿ

i“1

i “
npn+1q

2
.

Hence, the average number of comparisons is

1

n

ˆ

npn+1q

2

˙

“
n+1
2

,

which implies that the average-case time complexity is Opnq.

Code 10.39: The main() from where the linear search is called. linearSearchMain.c

1 #include <stdio.h>
2

3 int linearSearch(int a[], int n, int key); // Function prototype
4

5 int main() {
6 int a[1000]; // Declare the array
7 int n, key, result;
8

9 printf("Enter the size of the array (at most 1000): ");
10 scanf("%d", &n);
11 printf("Enter %d elements of the array:\n", n);
12 for (int i = 0; i < n; i++)
13 scanf("%d", &a[i]);
14

15 printf("Enter the key to search: ");
16 scanf("%d", &key);
17

18 result = linearSearch(a, n, key);
19

20 if (result != -1)
21 printf("Key found at index %d\n", result);
22 else
23 printf("Key not found in the array\n");
24

25 return 0;
26 }

© Partha Bhowmick

134 10. Searching in 1D array

10.2 Binary search

Binary search is applicable only if the array is sorted, i.e., its elements are arranged in increasing or decreasing
order. If the elements are not distinct but arranged in non-increasing or non-decreasing order (e.g., the array
{3, 5, 5, 6, 7, 7, 7, 9} is in non-decreasing order), then also binary search can be done.

The basis idea is as follows:

1. Look at the middle of the array.
2. If the key is not at the middle, ignore half of the array, and repeat the process with the other half.

Thus, in every step, the search space is halved (that’s why it is said to be ‘binary’), and hence the searching
converges very fast.

Binary search can be implemented in several ways, which are given in Codes 10.40, 10.41, and 10.42.
For Code 10.40, a demonstration is presented in Figure 10.1. If the search key is found, then its index is
returned; otherwise -1 is returned to the caller function. The convention of returning the index, and not the
element, is same as in linear search.

Code 10.40: Version 1 of binary search.
The key is searched for in a sorted array a having n elements. binarySearch.c

1 int binarySearch(int a[], int n, int key) {
2 int left, right, mid;
3 left = 0;
4 right = n - 1;
5

6 while (left != right) {
7 mid = (left + right) / 2;
8 if (key <= a[mid])
9 right = mid;

10 else
11 left = mid + 1;
12 }
13

14 if (key == a[left])
15 return left;
16 else
17 return -1;
18 }

Q20 Observe that exactly four elements (37, 14, 20, 36) are accessed by Code 10.40 while searching for the key 36,
as shown in Figure 10.1. Calculate the number of accesses for keys 10, 14, 25. Do it for both Code 10.40
and Code 10.41.

mid “
X

0`3
2

\

“ 1

left rightleft right

mid “
X

0`7
2

\

“ 3 mid “
X

0`3
2

\

“ 1

36 ď a[3]
looooomooooon

1st iteration

36 ‰ 14
looomooon

1st iteration

and 36 ą a[1]
looooomooooon

2nd iteration

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

right

0 1 2 3 4 5 6 7

left

36 “ a[2] ùñ return 2
loooooooooooooooomoooooooooooooooon

2nd iteration

14 20 36 37 45 51 65 82 14 20 36 37 45 51 65 82discarded 14 20 36 37 45 51 65 82discardeddisc-
arded

Figure 10.1: Execution of binary search (Code 10.40) with key = 36 returns the index 2. Only the accessed
elements are shown; the rest are dimmed or hidden, as they are irrelevant to the search function.

© Partha Bhowmick

10. Searching in 1D array 135

Q21 Consider the array shown in Figure 10.1. For each element in the array, treated as a search key, determine
which keys will require the maximum number of comparisons when using Code 10.40.

Code 10.41: Version 2 of binary search. binarySearchVer2.c

1 int bin_search_1(int a[], int n, int key) {
2 int left, right, mid;
3 left = 0;
4 right = n - 1;
5

6 while (left <= right) {
7 mid = (left + right) / 2;
8

9 if (key == a[mid])
10 return mid;
11

12 if (key < a[mid])
13 right = mid - 1;
14 else
15 left = mid + 1;
16 }
17

18 return -1;
19 }

Code 10.42: Recursive version of binary search. binarySearchRecursive.c

1 #include <stdio.h>
2

3 int binarySearchRec(int a[], int left, int right, int key) {
4 int mid;
5 if (left <= right) {
6 mid = (left + right) / 2;
7 if (key == a[mid]) // Element is present at the middle
8 return mid;
9 if (key < a[mid]) // Look into the left subarray

10 return binarySearchRec(a, left, mid - 1, key);
11 else // Look into the right subarray
12 return binarySearchRec(a, mid + 1, right, key);
13 }
14 return -1; // Element is not present in the array
15 }
16

17 int main() {
18 int a[] = {14, 20, 36, 37, 45, 51, 65, 82}; // Sorted array
19 int n = sizeof(a) / sizeof(a[0]); // Size of the array
20 int key = 36;
21 int result = binarySearchRec(a, 0, n - 1, key);
22

23 if (result != -1)
24 printf("Element %d found at index %d.\n", key, result);
25 else
26 printf("Element %d not found in the array.\n", key);
27 return 0;
28 }

© Partha Bhowmick

136 10. Searching in 1D array

Recursive version of binary search

The idea behind binary search leads to a recursive formulation. The full code including the main() is given
in Code 10.42. The function recursively calls itself by adjusting the left or right pointers, as applicable. It
stops when the element is found, or the left and right pointers cross each other.

Time complexity of binary search

In each iteration (or recursive call), binary search eliminates half of the remaining elements, and this process
continues until either the key is found or no more elements remain. The maximum number of iterations
required is the number of times n can be divided by 2 until it is less than 1. This value is given by tlog2 nu`1.
Each iteration involves a constant number of operations, including key-to-element comparisons, which are
all performed in constant time. Therefore, the worst-case time complexity of binary search is Oplog2 nq, or
logarithmic in n. (Note: For any positive real number x, txu denotes the largest integer less than or equal
to x.)

Q22 What is the base case for the recursive binary search function to terminate?

Q23 Describe the difference in memory usage between iterative and recursive binary search.

Q24 Given the following array and key, use the recursive binary search to find the key’s index:
a[] = {3, 7, 12, 18, 22, 27}, key = 21.

© Partha Bhowmick

10. Searching in 1D array 137

10.3 Solved problems

1. rDeletion from an unsorted arrays Given an unsorted array a with n distinct elements, delete an
element x if it exists in a. Assume that n is 100.
For example, if the initial array is {14, 10, 36, 17, 45, 51, 40, 82}, and the element 10 is deleted,
then the new array will be {14, 36, 17, 45, 51, 40, 82}.

Code 10.43: Deletion from an unsorted array. deleteUnsortedArray.c

1 #include <stdio.h>
2

3 #define MAX_SIZE 100
4

5 void deleteElement(int arr[], int *n, int x) {
6 int i, j;
7

8 // Find the element to be deleted
9 for (i = 0; i < *n; i++) {

10 if (arr[i] == x) {
11 // Shift elements to the left to remove the element
12 for (j = i; j < *n - 1; j++)
13 arr[j] = arr[j + 1];
14 (*n)--; // Decrease the size of the array
15 return;
16 }
17 }
18 printf("Element %d not found in the array.\n", x);
19 }
20

21 int main() {
22 int n, arr[MAX_SIZE], x, i;
23

24 // Input the number of elements
25 printf("Enter the number of elements (max 100): ");
26 scanf("%d", &n);
27

28 // Input the elements of the array
29 printf("Enter %d elements:\n", n);
30 for (i = 0; i < n; i++)
31 scanf("%d", &arr[i]);
32

33 // Input the element to be deleted
34 printf("Enter the element to delete: ");
35 scanf("%d", &x);
36

37 // Delete the element
38 deleteElement(arr, &n, x);
39

40 // Print the updated array
41 printf("Array after deletion:\n");
42 for (i = 0; i < n; i++)
43 printf("%d ", arr[i]);
44 printf("\n");
45

46 return 0;
47 }

© Partha Bhowmick

138 10. Searching in 1D array

2. rInsertion in a sorted arrays Given a sorted array a with n (potentially non-distinct) elements,
insert a new element x such that a remains sorted after the insertion. Assume n is less than 100, and a
can accommodate up to 100 elements. Also assume that x is not present in the array before insertion.
Use binary search to find the position where x has to be inserted.
For example, if the initial array is {14, 20, 36, 37, 45, 51, 65, 82}, and the element 27 is inserted,
then the new array will be {14, 20, 27, 36, 37, 45, 51, 65, 82}.

Code 10.44: Insertion in a sorted array. insertSortedArray.c

1 #include <stdio.h>
2

3 void insertSorted(int a[], int *n, int x) {
4 int low = 0, high = *n - 1, mid, pos;
5

6 // Perform binary search to find the correct position
7 while (low <= high) {
8 mid = (low + high) / 2;
9 if (a[mid] < x)

10 low = mid + 1;
11 else
12 high = mid - 1;
13 }
14

15 pos = low; // Position to insert the new element
16

17 for (int i = *n; i > pos; i--) // Shift elements to the right
18 a[i] = a[i - 1];
19

20 a[pos] = x; // Insert the new element
21

22 (*n)++; // Increase the size of the array
23 }
24

25 int main() {
26 int a[100], n, x;
27 printf("Enter number of elements (at most 99): ");
28 scanf("%d", &n);
29

30 printf("Enter sorted array elements: ");
31 for (int i = 0; i < n; i++)
32 scanf("%d", &a[i]);
33

34 printf("Enter the element to insert: ");
35 scanf("%d", &x);
36

37 insertSorted(a, &n, x);
38

39 printf("Updated array: ");
40 for (int i = 0; i < n; i++)
41 printf("%d ", a[i]);
42

43 return 0;
44 }

3. rDeletion from a sorted arrays Given a sorted array a with n (potentially non-distinct) elements,
delete an element x if it exists in a such that a remains sorted after the deletion. Use linear search to
find the position of x. Assume that n is 100.

© Partha Bhowmick

10. Searching in 1D array 139

For example, if the initial array is {14, 20, 36, 37, 45, 51, 65, 82}, and the element 20 is deleted,
then the new array will be {14, 36, 37, 45, 51, 65, 82}.

Code 10.45: Deletion from a sorted array. deleteSortedArray.c

1 #include <stdio.h>
2

3 // Function to delete an element from a sorted array
4 int deleteElement(int a[], int n, int x) {
5 int i, pos = -1;
6

7 for (i = 0; i < n; i++) {
8 if (a[i] == x) {
9 pos = i;

10 break;
11 }
12 }
13

14 if (pos == -1)
15 return n; // If element is not found, return the original size
16

17 // Shift the elements to the left to fill the gap
18 for (i = pos; i < n - 1; i++)
19 a[i] = a[i + 1];
20 return n - 1; // Return the new size of the array
21 }
22

23 int main() {
24 int a[100], n, x;
25 printf("Enter number of elements (at most 99): ");
26 scanf("%d", &n);
27

28 printf("Enter sorted array elements: ");
29 for (int i = 0; i < n; i++)
30 scanf("%d", &a[i]);
31

32 printf("Enter the element to be deleted: ");
33 scanf("%d", &x);
34 n = deleteElement(a, n, x);
35

36 printf("Array after deleting %d: ", x);
37 for (int i = 0; i < n; i++)
38 printf("%d ", a[i]);
39 printf("\n");
40

41 return 0;
42 }

Q25 What are the best, worst, and average-case time complexities for inserting an element into a sorted
array? Assume binary search is used to find the insertion position.

Q26 What are the best, worst, and average-case time complexities for deleting an element from a sorted
array? Assume binary search is used to find the element to delete.

Q27 Will the time complexities for insertion and deletion be worse if linear search is used instead of binary
search? Explain why or why not.

© Partha Bhowmick

140 10. Searching in 1D array

10.4 Exercise problems

Write C programs with appropriate user-defined functions for the following problems. Elements in the input
array need not be distinct, unless mentioned.

1. rFind a pair with a given sum in an unsorted arrays Given an unsorted array a of n elements
and a target sum target, find a pair of elements in the array that adds up to target. If no such pair
exists, return -1. The function should run in quadratic time (i.e., Opn2q time) in the worst case.
For example, if a = {9, 15, 5, 16, 2}, target = 20, the output will be (5, 15).

Q28 Provide arguments about the worst-case time complexity of your algorithm.

2. rFind a pair with a given sum in a sorted arrays Given a sorted array a of n elements and a
target sum target, find a pair of elements in the array that adds up to target. If no such pair exists,
return -1. The function should run in linear time (i.e., Opnq time) in the worst case.
For example, if a = {2, 5, 9, 15, 16}, target = 20, the output will be (5, 15).

Q29 Provide arguments about the worst-case time complexity of your algorithm.

3. rInterval search in a sorted arrays Given a sorted array a of n (possibly non-distinct) elements, and
given two integers p and q, where pď q, find all the elements of a that lie within the interval [a, b].
For example, if a = {2, 5, 6, 9, 15, 16} and a = 5, b = 10, then the output will be {5, 6, 9}.

Q30 Provide arguments about the worst-case time complexity of your algorithm.

4. rPeak in a bitonic arrays A bitonic array is defined as follows:

• The elements from the start of the array up to a peak index p are in increasing order.
• The elements from the peak index p to the end of the array are in decreasing order.

For example, in a = [1, 3, 8, 12, 4, 2], the peak element is 12.
Given a bitonic array a of n elements, write a function to find the peak element in a.
The function should run in logarithmic time (i.e., Oplog nq time) in the worst case.
Assume that all elements in a are distinct.
Q31 Provide arguments about the worst-case time complexity of your algorithm.

♣ 5. rTernary search in a sorted arrays Write a function ternarySearch that searches for a target
element (key) in an array sorted in ascending order. The function should have the prototype:
int ternarySearch(int arr[], int left, int right, int key);

The function should return the index of the key if it is found in the array. If the key is not present in
the array, the function should return -1.
It should perform the following steps:

(i) Divide the array: In each iteration, divide the search interval into three parts. This is done
by computing two mid-points: mid1 and mid2. The array is then split into three segments based
on these mid-points.

(ii) Determine the search region: Compare the target element with the values at mid1 and mid2.
Based on these comparisons, decide which segment of the array the target element might be in.
This helps in narrowing down the search region efficiently.

(iii) Recursively Search the Region: Recurse on the segment where the target element might be
located. This process continues until the element is found or the search interval is reduced to an
empty range.

Q32 What will be the worst-case time complexity of your algorithm? Is this time complexity better than
that of binary search? Justify.

© Partha Bhowmick

10. Searching in 1D array 141

♣ 6. rExponential search in a sorted arrays In this problem, you are required to implement a search
function to find a target element (key) in a sorted array. Assume that the array is sorted in ascending
order. The function should perform the following steps:

(i) Determine the range: Begin at the start of the array and repeatedly double the index to find
a range in which the target element might be located. For instance, if the target element is less
than the value at the current index, then the element must lie in the range from the previous
index to the current index.

(ii) Binary search within the range: Once the range is identified, use Binary Search to find the
exact position of the target element within this range.

Exponential search is particularly efficient for unbounded or infinite lists.
The time complexity is Oplognq, similar to binary search.

♠ 7. rNumber of palindromic subsequencess A subsequence of a sequence is derived by deleting some
or none of the elements from the original sequence without changing the order of the remaining elements.
A sequence or subsequence is palindromic if it remains the same when read from left to right and from
right to left. Thus, a palindromic subsequence of a given sequence is a subsequence that reads the same
forwards and backwards.
For example, the sequence abcba has 13 palindromic subsequences, which are:

a b c b a
aa bb
aba aca aba bcb
abba
abcba

Your task is to find the number of palindromic subsequences in a given sequence. You need not print
these subsequences.
Your code should treat two subsequences as different only if the original indices of their constituent
characters are different, even if they consist of the same sequence of characters. For example, in the 1st
row of the above table, a appears twice; its first occurrence is for the first a in abcba, while its second
occurrence is for the second a in abcba. Similarly, in the 3rd row of the above table, aba appears twice;
its first occurrence is for the first b in abcba, while its second occurrence is for the second b in abcba.

♠ 8. rMax length of monotonic subsequences A subsequence of a sequence is derived by deleting some
or none of the elements from the original sequence without changing the order of the remaining elements.
A sequence or subsequence is monotonic if its characters are in non-decreasing order when read from
left to right.
You are given a sequence s consisting of 0, 1, and 2 only. Your task is to find the maximum length
(maxlen) of a monotonic subsequence in s such that it contains at least one from each of 0, 1, and 2.
You need not print that subsequence. Here are some examples:

• s = 2011: maxlen = 0

• s = 2012: maxlen = 3

• s = 001120201: maxlen = 6

• s = 1021002110210011012210: maxlen = 11

• s = 10210021102100110122101021002110210011012210: maxlen = 20

© Partha Bhowmick

11 | Sorting

Sorting means ordering. Given an array a[] with n distinct elements arranged in an arbitrary order, the
task of sorting involves rearranging them in increasing or decreasing order. If the elements are not distinct,
the ordering will be non-decreasing or non-increasing. After sorting, the elements are usually stored in the
same array a[] or in a different array.

For example, if the given array is {5, 2, 8, 5, 3}, then after sorting in non-decreasing order, we get
{2, 3, 5, 5, 8}. If we sort the same array in non-increasing order, we get {8, 5, 5, 3, 2}.

Henceforth, we will assume that sorting refers to arranging elements in increasing or non-decreasing
order. Specifically, the array a[] is considered sorted if and only if a[0] ď a[1] ď a[2] ď ¨ ¨ ¨ ď a[n-1].
This assumption does not affect any subsequent reasoning or arguments. With minor adjustments, any
sorting algorithm can be adapted to handle decreasing or non-increasing order as well. So, we proceed with
the following definition of sorted array:

Definition 11.1 (Sorted array)

An array a[] is sorted if and only if every two consecutive elements are in the correct order, i.e.,

a[i] ě a[i-1] for every i from 1 to n-1.

Q33 Write a code that checks whether a given array a[] is sorted or not. How many comparisons will be needed
by your code if the array has n elements, which are not necessarily distinct?

Is there any other way to determine if the
array is sorted? Think about it! ,

Question 33 is conceptually very simple if we temporarily
set aside coding syntax. What will we do? We’ll simply apply
Definition 11.1: compare every pair of consecutive elements
to verify if they are in the correct order. If not, the array is
unsorted. However, Definition 11.1 cannot be directly used to sort an unsorted array. We have to dive a
little deeper...

We can think of splitting the array into two parts: the left part is called a prefix, and the right part is
called a suffix. If one of them is the entire array, the other is empty. Since a[] contains n elements, there
are exactly n nonempty prefixes and and exactly n nonempty suffixes. Specifically, any subarray from a[0]
to a[i], where i ranges from 0 to n-1, is considered a nonempty prefix of a[], and the remainder is a suffix.
We make the following definition:

Definition 11.2 (Tail-Max Prefix)

The subarray a[0], . . . , a[i] is called a tail-max prefix if and only if a[i] “ max
␣

a[j] : 0 ď j ď i
(

.

The above definition plays a crucial role in determining whether an array is sorted, as stated below.

Fact 11.1 (Sorted array)

An array a[] is sorted if and only if all its prefixes are tail-max.

142

11. Sorting 143

Try to prove why Fact 11.1 holds. Don’t miss
the if and only if. You can use the definitions
to prove it.

As an example, consider the array {2, 3, 5, 5, 8}.
It has five elements and hence five prefixes: {2}, {2, 3},
{2, 3, 5}, {2, 3, 5, 5}, {2, 3, 5, 5, 8}. Observe that,
for each of these prefixes, the largest element appears at the end
of that prefix, which implies the original array is sorted. On
the contrary, for the array {5, 2, 8, 5, 3}, which has the following five prefixes: {5}, {5, 2}, {5, 2, 8},
{5, 2, 8, 5}, and {5, 2, 8, 5, 3}, the prefixes {5, 2}, {5, 2, 8, 5}, and {5, 2, 8, 5, 3} do not
satisfy the Tail-Max property, and hence it is not sorted.

11.1 Bubble Sort: A basic sorting algorithm

The heart of Bubble Sort is Fact 11.1. It basically establishes the Tail-Max property for each prefix, starting
from the longest prefix (i.e., the entire array). For every prefix, it iteratively checks every two consecutive
elements and swaps them if they are not in the correct order. As a result, each prefix ultimately becomes a
tail-max prefix.

Code 11.46: Bubble Sort. bubbleSort.c

1 void bubbleSort(int a[], int n){ // Full code: bubbleSortMain.c
2 for (int i = n-1; i >= 1; i--){ // Longest to smallest prefix
3 int swapped = 0; // To track if a swap occurred
4 for (int j=0; j <= i-1; j++){ // Check each prefix {a[0],...,a[i]}
5 if (a[j] > a[j + 1]){ // Swap a[j] and a[j + 1]
6 int temp = a[j];
7 a[j] = a[j + 1];
8 a[j + 1] = temp;
9 swapped = 1; // A swap occurred

10 }
11 }
12

13 if (!swapped) // No swap => prefix is sorted => all its prefixes are sorted
14 break; // Returns to the caller, e.g. main()
15 }
16 }

i j Unsorted Part Sorted Part Swap

4 0 {5, 2, 8, 5, 3} {} Swap 5 and 2

4 1 {2, 5, 8, 5, 3} {} No swap for 5 and 8

4 2 {2, 5, 8, 5, 3} {} Swap 8 and 5

4 3 {2, 5, 5, 8, 3} {} Swap 8 and 3

3 0 {2, 5, 5, 3} {8} No swap for 2 and 5

3 1 {2, 5, 5, 3} {8} No swap for 5 and 5

3 2 {2, 5, 5, 3} {8} Swap 5 and 3

2 0 {2, 5, 3} {5, 8} No swap for 2 and 5

2 1 {2, 5, 3} {5, 8} Swap 5 and 3

1 0 {2, 3} {5, 5, 8} No swap for 2 and 3

– – {} {2, 3, 5, 5, 8} –

Figure 11.1: Bubble Sort on {5, 2, 8, 5, 3}.

© Partha Bhowmick

144 11. Sorting

An implementation of Bubble Sort is given in Code 11.46, and its demonstration is shown in Fig-
ure 11.1. Its outer for-loop considers all prefixes, starting from the longest one. For each prefix, the inner
for-loop examines every two consecutive elements and swaps them if needed. If, for a particular prefix
{a[0],...,a[i]}, no swap is needed, the flag swapped is found to be 0 (i.e., false) after the checking is com-
plete for {a[0],...,a[i]}, indicating that {a[0],...,a[i]} is sorted. This, in turn, implies that all the
prefixes of {a[0],...,a[i]} are also sorted. Since the suffix {a[i+1],...,a[n-1]} is already sorted from
previous iterations of the outer for-loop, the algorithm terminates successfully with no further iterations.
Thus, the swapped flag in the code enhances the efficiency of the algorithm.

During execution, Bubble Sort implicitly partitions the original array into two parts: the unsorted part,
which lies at the front end and gradually diminishes in size, and the sorted part that follows, as illustrated
in Figure 11.1. The sorted part contains the largest elements of the prefixes processed so far. The algorithm
begins with an empty sorted part and continues until the unsorted part becomes empty.

Time Complexity

Best case: The best-case scenario occurs when the array is already sorted, resulting in a time complexity
of Opnq since no swaps are required.

Worst case: In the worst-case scenario, the array is sorted in reverse order, leading to a time complexity
of Opn2q as all elements must be compared and swapped.

Average case: On average, Bubble Sort performs about n2{4 comparisons and swaps, resulting in an average
time complexity of Opn2q.

Comments

Bubble Sort is a straightforward sorting algorithm that repeatedly traverses the list, compares adjacent
elements, and swaps them if they are in the wrong order. The algorithm derives its name from the way
lighter elements “bubble” to the top of the array with each pass, while heavier elements settle at the bottom.

Although Bubble Sort is an in-place sorting algorithm, it is not efficient for large datasets due to its
quadratic time complexity. Despite its inefficiency compared to more advanced algorithms, this algorithm is
studied primarily for historical interest.

Q34 What will be the number of comparisons for Bubble Sort, as per Code 11.46, for an array of 100 distinct
elements if the array is already sorted in increasing order? What happens if it is already sorted in decreasing
order? What will be these two values if the flag swapped is not used?

Q35 Can you initialize with i = 0 in Code 11.46 and suitably adjust the initialization of j so that your code is
correct?

Q36 Can you write a provable fact similar to Fact 11.1 in which ‘prefix’ is replaced by ‘suffix’? Can you use it
to design a sorting algorithm?

Q37 Given an array of 10 elements, the task is to find its smallest 5 elements. Write a code for this by modifying
Code 11.46.

© Partha Bhowmick

11. Sorting 145

11.2 Selection Sort (Version 1)

Just like Bubble Sort, Selection Sort is also in-place, comparison-based, and works with the Tail-Max prin-
ciple. The only difference is that it repeatedly selects the largest element from the unsorted part (prefix) of
the array and swaps it with its last element. The last element a[maxIndex] of the prefix now serves as the
first element of the updated suffix, which, being already sorted (with elements no less than a[maxIndex]),
remains sorted. See its implementation in Code 11.47.

Recall that Bubble Sort has a special flag swapped that enhances its efficiency in the best and average
cases. However, Selection Sort does not utilize any such flag, resulting in a time complexity of Opn2q for all
cases (best, average, and worst) due to the nested loops.

Code 11.47: Selection Sort. selectionSort.c

1 void selectionSort(int a[], int n) { // Full code: selectionSortMain.c
2 for (int i = n - 1; i >= 1; i--) { // Longest to smallest prefix
3 int maxIndex = 0; // Index of the maximum element
4 for (int j = 1; j <= i; j++) { // Find the maximum element in each prefix
5 if (a[j] > a[maxIndex])
6 maxIndex = j;
7 }
8

9 // Make the prefix tail-max
10 if (maxIndex != i) { // Only swap if maxIndex is not i
11 int temp = a[maxIndex];
12 a[maxIndex] = a[i];
13 a[i] = temp; // Place the maximum element at the end
14 }
15 }
16 }

Q38 Justify whether true or false: “There is no practical way to optimize the performance of Selection Sort with
a flag for early termination.”

Q39 Justify whether true or false: “Selection Sort is a stable sorting algorithm.”

Q40 Under what circumstances might Selection Sort be preferred over more efficient algorithms?

© Partha Bhowmick

146 11. Sorting

11.3 Selection Sort (Version 2)

Selection Sort is a simple sorting algorithm. The algorithm divides the input array into two parts: the sorted
part and the unsorted part. The sorted part grows at the beginning of the array itself. Initially, the sorted
part is empty, and the unsorted part contains all the elements. On each iteration, the algorithm selects the
smallest element (or one of the smallest, if there is more than one) from the unsorted portion and swaps it
with the element at the current position, extending the sorted portion by one.

Code 11.48: Selection Sort. selectionSortVer2.c

1 void selectionSort(int a[], int n){
2 for (int i = 0; i < n - 1; i++){
3 int minIndex = i;
4 for (int j = i + 1; j < n; j++){
5 if (a[j] < a[minIndex])
6 minIndex = j;
7 }
8 int temp = a[i];
9 a[i] = a[minIndex];

10 a[minIndex] = temp;
11 }
12 }

Step Array State Sorted Part Unsorted Part Min Swap
0 {5, 2, 8, 6, 5, 3} {} {5, 2, 8, 6, 5, 3} 2 Swap 5 and 2

1 {2, 5, 8, 6, 5, 3} {2} {5, 8, 6, 5, 3} 3 Swap 5 and 3

2 {2, 3, 8, 6, 5, 5} {2, 3} {8, 6, 5, 5} 5 Swap 8 and 5

3 {2, 3, 5, 6, 5, 8} {2, 3, 5} {6, 5, 8} 5 Swap 6 and 5

4 {2, 3, 5, 5, 6, 8} {2, 3, 5, 5} {6, 8} 6 No swap needed
5 {2, 3, 5, 5, 6, 8} {2, 3, 5, 5, 6} {8} 8 No swap needed
6 {2, 3, 5, 5, 6, 8} {2, 3, 5, 5, 6, 8} {} — —

Figure 11.2: Selection Sort on the array {5, 2, 8, 6, 5, 3} (Min “ smallest element in the unsorted part).

An implementation of Selection Sort is given in Code 11.48. To illustrate the behavior of the Selec-
tion Sort algorithm, a demonstration of the algorithm is given in Figure 11.2. Although Selection Sort is an
in-place sorting algorithm, it is not stable. It can be made stable but that requires advanced data structures.

The core operation is selecting the smallest element (from the unsorted part), which gives Selection Sort
its name. Despite its simplicity, this algorithm provides a good starting point for understanding basic sorting
principles.

Proof of correctness

The correctness of Selection Sort can be proved through an inductive argument:

• Base Case: After the first pass, the smallest element is correctly placed in the first position.
• Inductive Step: Assume that the first k elements are sorted after k iterations. In the pk`1q-th iteration,

the algorithm selects the smallest element from the unsorted portion and swaps it with the first unsorted
element. Thus, the first k ` 1 elements are sorted.

Since the unsorted portion decreases by one element in each iteration and the sorted portion grows, eventually
the entire array is sorted.

© Partha Bhowmick

11. Sorting 147

Time Complexity

Best case: The best-case scenario occurs when the array is already sorted. However, Selection Sort does
not take advantage of this and still performs Opn2q comparisons. Thus, the best-case time complexity is
Opn2q.

Worst case: In the worst case, the array is sorted in reverse order, but the number of comparisons remains
the same. Therefore, the worst-case time complexity is also Opn2q.

Average case: In the average case, Selection Sort performs approximately n2{2 comparisons, leading to an
average time complexity of Opn2q.

Q41 Justify whether true or false: “Selection Sort’s primary inefficiency is the large number of comparisons, even
when the array is already sorted.”

Q42 Deduce the result that the average-case time complexity of Selection Sort is Opn2q.

Q43 Explain why Selection Sort is not a stable sorting algorithm. Provide an example to support your answer.

Q44 Compare Selection Sort with Bubble Sort. What are the advantages and disadvantages of each?

Q45 Under what conditions might Selection Sort be preferred over more efficient algorithms like Merge Sort or
Quick Sort?

© Partha Bhowmick

148 11. Sorting

11.4 Insertion Sort: Another basic sorting algorithm

Insertion Sort is based on the following fact:

Fact 11.2 (Sorted array)

An array a[] is sorted if and only if all its prefixes are sorted.

Fact 11.2 sounds obvious, but you should try
to prove it. You can use previous definitions
or facts for your proof.

As an example, consider the array {2, 3, 5, 5, 8}. It
has five prefixes: {2}, {2, 3}, {2, 3, 5}, {2, 3, 5, 5},
and {2, 3, 5, 5, 8}, all of which are sorted, implying that
the original array is sorted. On the contrary, for the array
{5, 2, 8, 5, 3}, the prefix {5, 2} is not sorted, thus violat-
ing the Sorted Prefix property stated in Fact 11.2, indicating
that the array is not sorted.

An implementation of Insertion Sort is given in Code 11.49. Unlike Bubble Sort, the unsorted part in
Insertion Sort is a suffix, whereas the sorted part is a prefix, as illustrated in Figure 11.3. After the i-th
iteration of the outer loop, the sorted part contains all elements of the i-th prefix in sorted order. The
algorithm begins with the sorted part containing just a[0] (1st prefix) and continues until the unsorted part
becomes empty. For the prefix {a[0],...,a[i]}, the inner loop inserts a[i] (denoted by lastElem in the
code) at a suitable position so that the prefix remains sorted.

Code 11.49: Insertion Sort. insertionSort.c

1 void insertionSort(int a[], int n){ // Full code: insertionSort.c
2 for (int i = 1; i < n; i++){
3 int lastElem = a[i];
4 int j = i - 1;
5

6 /* Move elements of a[0..i-1], that are greater than lastElem,
7 to one position ahead of their current position */
8 while (j >= 0 && a[j] > lastElem){
9 a[j + 1] = a[j];

10 j = j - 1;
11 }
12 a[j + 1] = lastElem;
13 }
14 }

i Prefix (Sorted) Suffix (Unsorted) lastElem Move

1 {5} {2, 8, 5, 3} 2 Move 2 before 5

2 {2, 5} {8, 5, 3} 8 No move

3 {2, 5, 8} {5, 3} 5 Move 5 before 8

4 {2, 5, 5, 8} {3} 3 Move 3 before 5

– {2, 3, 5, 5, 8} {} – End

Figure 11.3: Insertion Sort on {5, 2, 8, 5, 3}.

Q46 What is the worst-case time complexity of Code 11.49? When does it occur?
Can you modify Code 11.49 so that its worst-case time complexity is improved? How?

© Partha Bhowmick

11. Sorting 149

Differences between Bubble Sort and Insertion Sort:

1. Bubble Sort establishes the Tail-Max property for each prefix, whereas Insertion Sort establishes the
Sorted Prefix property.

2. Bubble Sort starts with the longest prefix, whereas Insertion Sort starts with the smallest prefix, and
maintains Sorted Prefix property for each subsequent prefix, until all prefixes are sorted.

3. In Bubble Sort, the sorted part appears at the end and it never changes when the unsorted part is
gradually sorted. In Insertion Sort, the sorted part receives the first element of the unsorted part in
each iteration of the outer loop, and that element gets inserted at a suitable position of the sorted part.

© Partha Bhowmick

150 11. Sorting

11.5 Quick Sort

Quick Sort stands out among sorting algorithms due to its remarkable efficiency and elegance, particularly in
handling large datasets. Unlike Bubble Sort, Selection Sort, and Insertion Sort—which operate with a time
complexity of Opn2q in their worst cases—Quick Sort achieves an average-case time complexity of Opn log nq.
This is pseudo-linear, i.e., almost linear even for very large values of n. As you can check, when n is around
one billion, those three algorithms take around a billion of billions comparisons on the average, whereas
Quick Sort takes just ten billions!

Before looking at the exact steps of Quick Sort, let us first comprehend an interesting fact presented next.
In this fact, by prefix-suffix pair of the array a[] with n elements, we mean any prefix and its resultant suffix,
assuming that none is empty. Thus, the pair can be expressed as ({a[0],...,a[i]}, {a[i+1],...,a[n-1]}),
where i ranges from 0 to n-2. For brevity, we denote this pair by (p[], s[]).

Fact 11.3 (Sorted array)

An array is sorted if and only if the following relation holds for every prefix-suffix pair (p[], s[]):
Relation PSR: Every element of p[] is at most as large as every element of s[].

Proof. (Forward) We prove by contradiction. Suppose that PSR holds for every prefix-suffix pair but the
array is not sorted. Then, there must exist at least two elements a[i] and a[j] such that i < j and
a[i] > a[j]. Since i < j, we can construct a prefix-suffix pair (p[], s[]) such that p[] contains a[i]
and s[] contains a[j]. This specific pair violates PSR, resulting to contradiction.

(Converse) If the array is sorted, then a[i]ď a[j] for every pair (i, j) with i < j. So, for every prefix-
suffix pair, PSR holds.

As an illustration, consider two arrays: {2, 3, 5, 5, 8} and {5, 2, 8, 5, 3}, the former being
sorted, but the latter not. For the sorted array, PSR holds for every prefix-suffix pair. For instance, take
the prefix {2, 3, 5} and suffix {5, 8}. Notice that every element of the prefix is at most as large as every
element of the suffix. On the contrary, for the unsorted array, if we take the prefix {5, 2, 8} and suffix
{5, 3}, the prefix element 8 is greater than the suffix element 5, which violates PSR.

PS-Sort
Based on Fact 11.3, we can design an algorithm for sorting, named PS-Sort (‘P’ for prefix, ‘S’ for suffix; we
are sorting based on prefix-suffix pairs, whence the name), as shown in Code 11.50. It has a nested loop.
The outer loop iterates over each possible prefix of the array, starting from the smallest one. The inner loop
the last element a[i] of the prefix p[] with every subsequent element a[j] in the suffix s[], where j > i.
The formal proof of correctness is given below.

Code 11.50: PS-Sort. prefixSuffixSort.c

1 void PS_Sort(int a[], int n){
2 for (int i = 0; i < n - 1; i++){
3 for (int j = i + 1; j < n; j++){
4 if (a[i] > a[j]){ // Swap a[i] and a[j] to ensure CPS
5 int temp = a[i];
6 a[i] = a[j];
7 a[j] = temp;
8 }
9 }

10 }
11 }

© Partha Bhowmick

11. Sorting 151

Proof of correctness of PS-Sort

Proving that PS-Sort follows Fact 11.3 suffices. Let’s prove by induction on the index i that works as a
variable of the outer loop.

Basis: For i = 0, the prefix p[] consists of the single element a[0], and the suffix s[] consists the rest.
The inner loop compares a[0] with all elements of s[], ensuring that if any element of s[] is smaller than
a[0], they are swapped, thus ensuring PSR.

Hypothesis: Assume that PSR is true for every prefix-suffix pair up to iteration i - 1.

Inductive Step: By hypothesis, PSR holds for every prefix-suffix pair up to iteration i - 1, which we refer
to as previous iteration. We need to prove that PSR holds for the prefix-suffix pair at iteration i (current
iteration). The current prefix includes a[i] as its last element, which happened to be the first element of
the previous suffix. The inner loop ensures a[i] in the current prefix is the smallest element of the previous
suffix, so that no element of the current suffix is smaller than a[i]. During this process, a[i] is compared
with each element a[j] of the set {a[i+1],...,a[n-1]}, and if a[j] is smaller, the two are swapped. This
guarantees that PSR is maintained for the current prefix-suffix pair.

Time complexity of PS-Sort

The outer loop runs from i = 0 to i = n - 2, which is Opnq. For each iteration of the outer loop, the inner
loop runs from j = i + 1 to j = n - 1, and so it has n ´ i ´ 1 iterations. Summing up, the total number
of iterations in the PS-Sort algorithm is

n´2
ÿ

i“0

pn ´ i ´ 1q “

n´2
ÿ

i“0

pn ´ 1q ´

n´2
ÿ

i“0

i “ pn ´ 1q
2

´
pn ´ 2q pn ´ 1q

2
“

n pn ´ 1q

2
“ O

`

n2
˘

.

Each of the above iterations takes exactly one comparison and at most one swap. Thus, the time complexity
in best, worst, and average cases comes O

`

n2
˘

.

How is PS-Sort?

If you examine carefully, the algorithm PS-Sort is essentially a variant of the Selection Sort algorithm, but
with a different mechanism for locating and placing the smallest element in the correct position. In the
Selection Sort algorithm, for each iteration, the smallest element in the unsorted portion of the array is
identified and swapped with the first unsorted element, ensuring that the new prefix is sorted after each
iteration. However, in PS-Sort, the last element of the current prefix is compared with all other elements in
the suffix, and swaps are performed whenever necessary to maintain the Prefix-Suffix Relation (PSR). This
approach results in multiple swaps, in contrast to Selection Sort, which only swaps the smallest element once
per iteration.

Despite the difference in implementation, both algorithms have the same time complexity of O
`

n2
˘

, but
Selection Sort typically performs fewer swaps since it minimizes them to one per iteration of the outer loop,
whereas PS-Sort may swap elements more frequently.

Nevertheless, the idea of using Prefix-Suffix Relation (PSR) can be used to improve the average-case
time complexity to O pn log nq. To achieve this, we need the following fact, which is even deeper than the
previous one.

Fact 11.4 (Sorted array)

An array is sorted if and only if PSR holds for some prefix-suffix pair (p[], s[]), and recursively holds
also for some prefix-suffix pair of p[] and some prefix-suffix pair of s[].

© Partha Bhowmick

152 11. Sorting

Proof. (Forward) We proceed by induction on n, with the base case n = 1, where the proof is trivial. Assume
as the inductive hypothesis that the fact holds when the array has 2 to n - 1 elements.

In the inductive step, let PSR hold for some prefix-suffix pair (p[], s[]) in an array of size n. By
the inductive hypothesis, p[] and s[] are sorted, as each contains at most n - 1 elements and admits PSR
recursively. Further, since PSR holds for (p[], s[]), no element of p[] is larger than any element of s[].
Thus, the entire array is sorted.

(Converse) Assume the array is sorted. By Fact 11.3, PSR holds for every prefix-suffix pair (p[], s[]),
including recursively defined prefix-suffix pairs within p[] and s[]. This confirms the converse.

Fact 11.4 underpins the principle of Quick Sort. Based on this principle, Quick Sort utilizes the divide-and-
conquer technique to sort an array or subarray. Here are the main steps:

1. Divide: Choose an element called pivot from the array. This can be the first, last, or a random element.
We choose the last element in Code 11.51. Partition the array into three parts: prefix, pivot, suffix, so
that no element of prefix is larger than the pivot and no element of suffix is smaller than the pivot.

2. Conquer: Recursively apply Quick Sort to the prefix and the suffix. (The pivot is already in its correct
position.)

3. Combine: Because the prefix and the suffix are already sorted, and the pivot is sandwiched between
them, no work is needed to combine them! The entire array is now sorted.

The divide-and-conquer paradigm involves three steps at each level of the recursion:
1. Divide the problem into smaller sub-problems.
2. Conquer the sub-problems by solving them recursively. Define the basis of recursion

so that when a sub-problem is small enough, the solution is trivial.
3. Combine the sub-problem solutions to get the solution for the original problem.

The Quick Sort code is presented in Code 11.51, and its demonstration on two arrays is illustrated in
Figure 11.4. Its recursion tree for one array is given in Figure 11.5.

Consider the array or subarray a[low],...,a[high]. If it is the original array a[] containing n ele-
ments, then the indices low and high are 0 and n - 1, respectively. A subarray typically represents either
a prefix or suffix of the original array or of a larger prefix or suffix. Quick Sort has several variations, which
are minor modifications of one another. In Code 11.51, the pivot is always the last element of the array or
subarray to be partitioned into a prefix and suffix. Moreover, the pivot is neither included in the prefix nor
the suffix. In some variants, the pivot is the first element and is placed in the prefix if the suffix is nonempty,
and in the suffix otherwise.

Time complexity of Quick Sort

Worst-case time complexity: The worst-case scenario for Quick Sort occurs when the pivot is always the
smallest or largest element in the array or subarray at every recursive step. This usually happens when the
original array is already sorted in ascending or descending order. As a result, the partitions become highly
unbalanced, where the prefix (or suffix) contains all elements except the pivot, leaving the suffix (or prefix)
empty. In these cases, Quick Sort requires Opnq time at each recursive step, and since there are n steps, the
overall time complexity becomes Opn2q.

Best-case time complexity: The best case occurs when the pivot always divides the array or subarray
into two roughly equal halves at every step of the recursion. When this happens, Quick Sort converges faster
with almost log2pnq depth in the recursion tree. At every level of the recursion tree, n or fewer elements are
processed in linear time. As a result, the overall time complexity becomes Opn log nq.

Average-case time complexity: Most of the time, the pivot will divide the array or subarray into reason-
ably balanced parts, though not necessarily perfectly equal. Thus, the expected height of the recursion tree
will be logarithmic in n, similar to the best case. Although the base of the logarithm is a constant factor
larger compared to the best case, the average time complexity remains Opn log nq.

© Partha Bhowmick

11. Sorting 153

Code 11.51: Quick Sort. quickSortCLRSMain.c

1 #include <stdio.h> // CLRS Book: Edition 3 (with some revisions mentioned below)
2

3 void printArray(int a[], int s, int t){
4 for (int i = s; i <= t; i++)
5 printf("%d ", a[i]);
6 }
7

8 int partition(int a[], int left, int right){ // CLRS Book: Edition 3
9 int pivot = a[right]; // Choose the last element as pivot

10 int i = left-1; // Index of the smaller element
11

12 for (int j = left; j <= right - 1; j++){
13 if (a[j] <= pivot){
14 i++;
15 if(i != j){ // Prevents self-swap (this "if" is not there in CLRS book)
16 int temp = a[i];
17 a[i] = a[j];
18 a[j] = temp;
19 }
20 }
21 }
22 // Place pivot at its correct position
23 if(i+1 != right){ // Prevents self-swap (this "if" is not there in CLRS book)
24 int temp = a[i+1];
25 a[i+1] = a[right];
26 a[right] = temp;
27 }
28 return i+1; // Return the partitioning index
29 }
30

31 void quickSort(int a[], int left, int right){ // CLRS Book: Edition 3
32 if (left < right){
33 int pivot = partition(a, left, right);
34 quickSort(a, left, pivot - 1); // Sort prefix
35 quickSort(a, pivot + 1, right); // Sort suffix
36 }
37 }
38

39 int main(){
40 int a[100], n;
41 printf("Enter the number of elements (at most 100): ");
42 scanf("%d", &n);
43

44 printf("Enter the elements: ");
45 for (int i = 0; i < n; i++)
46 scanf("%d", &a[i]);
47

48 quickSort(a, 0, n - 1); // Perform Quick Sort
49

50 printf("Sorted array: ");
51 printArray(a, 0, n-1);
52

53 return 0;
54 }

© Partha Bhowmick

154 11. Sorting

Step Before
partition

pivot
(element)

left
(index)

right
(index)

Swaps Prefix Suffix Array state

Input array: {2, 8, 7, 1, 3, 5, 6, 4}

1 {2, 8, 7, 1, 3,
5, 6, 4}

4 0 7
8-1, 7-3,

8-4
{2, 1, 3} {7, 5, 6, 8}

{2, 1, 3, 4, 7,
5, 6, 8}

2 {2, 1, 3} 3 0 2 - {2, 1} -
{2, 1, 3, 4, 7,

5, 6, 8}

3 {2, 1} 1 0 1 2-1 - {2}
{1, 2, 3, 4, 7,

5, 6, 8}

4 {7, 5, 6, 8} 8 4 7 - {7, 5, 6} -
{1, 2, 3, 4, 7,

5, 6, 8}

5 {7, 5, 6} 6 4 6 7-5, 7-6 {5} {7}
{1, 2, 3, 4, 5,

6, 7, 8}

Input array: {5, 2, 8, 5, 3}

1 {5, 2, 8, 5, 3} 3 0 4 5-2, 5-3 {2} {8, 5, 5} {2, 3, 8, 5, 5}

2 {8, 5, 5} 5 2 4 8-5, 8-5 {5} {8} {2, 3, 5, 5, 8}

Figure 11.4: Demonstration of Quick Sort on two arrays. Note that in Step 2 and Step 4 of the first array,
no swaps occur because the pivot is the largest element. As a result, their suffixes are empty,
and the pivot does not belong to either the prefix or suffix. Thus, the prefix, followed by the
pivot, and then the suffix, forms the array or subarray after each partition. The ‘array state’
column shows the arrangement of elements in the entire array after each step.

{2, 8, 7, 1, 3, 5, 6, 4}
quickSort

{2, 1, 3}
quickSort

{7, 5, 6, 8}
quickSort

{2, 1}
quickSort

{2}
quickSort

{7, 5, 6}
quickSort

{5}
quickSort

{7}
quickSort

4
pivot

3
pivot

8
pivot

6
pivot

1
pivot

Original Array

Prefix Suffix

Prefix Prefix

PrefixSuffix Suffix

Figure 11.5: The recursion tree of Quick Sort for the input array {2, 8, 7, 1, 3, 5, 6, 4}.
The symbol stands for empty prefix or suffix.
An interesting fact: If you collect the elements of leaf nodes (pivots are also leaves) from left to
right, you get the sorted sequence.

Comments

Quick Sort is an in-place algorithm but uses the recursion stack. It does not admit tail recursion, so it
cannot be implemented as an iterative function, as seen in previous algorithms such as Bubble Sort and
Insertion Sort. However, by utilizing a user-defined stack, the recursion can be avoided, although this adds
some complexity to the implementation.

© Partha Bhowmick

11. Sorting 155

11.6 Merge Sort

Merge Sort is a highly time-efficient, comparison-based sorting algorithm that uses the divide-and-conquer
strategy. It works by recursively splitting an array or list into smaller subarrays until each subarray contains
a single element, which is inherently sorted. Once the array is divided, the algorithm merges the subarrays
back together in a way that results in a sorted array. See its implementation in Code 11.52.

During the merging phase, two sorted subarrays are compared element by element, and the smaller
element is placed into the sorted array. This process is repeated until all elements are merged into a
fully sorted array. The worst-case time complexity of merge sort is Opn log nq, where n is the number of
elements to be sorted, making it highly efficient even for large datasets. Unlike other sorting algorithms
such as Quick Sort, Merge Sort guarantees a stable sort, meaning that the relative order of equal elements
is preserved. It also performs well with linked lists and is widely used in various applications that require
efficient, large-scale sorting. However, it requires additional Opnq space for the temporary subarrays.

Code 11.52: Merge Sort. mergeSort.c

1 #include <stdio.h>
2

3 void merge(int a[], int left, int mid, int right){
4 int i = left, j = mid + 1, k = 0;
5 int temp[100];
6

7 while (i <= mid && j <= right){ // Merging the prefix and suffix
8 if (a[i] <= a[j])
9 temp[k++] = a[i++];

10 else
11 temp[k++] = a[j++];
12 }
13

14 while (i <= mid) // Copy remaining elements of prefix
15 temp[k++] = a[i++];
16 while (j <= right) // Copy remaining elements of suffix
17 temp[k++] = a[j++];
18

19 // Copy the sorted subarray back to the original array
20 for (i = left, k = 0; i <= right; i++, k++)
21 a[i] = temp[k];
22 }
23

24 void mergeSort(int a[], int left, int right){
25 if (left < right){
26 int mid = (left + right) / 2;
27 mergeSort(a, left, mid); // Sort the prefix
28 mergeSort(a, mid + 1, right); // Sort the suffix
29 merge(a, left, mid, right); // Merge the prefix and suffix
30 }
31 }
32

33 int main(){
34 int n, a[100]; // Assume that there are at most 100 elements
35 ... // Take as input n and the elements
36 mergeSort(a, 0, n - 1);
37 ... // Print and do other things if needed
38 return 0;
39 }

© Partha Bhowmick

156 11. Sorting

Step
Before

partition or
merging

left
(index)

right
(index)

mid
(index) Prefix Suffix After merging

Input array: {2, 8, 7, 1, 3, 5, 6, 4}

1 {2, 8, 7, 1, 3,
5, 6, 4}

0 7 3 {2, 8, 7, 1} {3, 5, 6, 4} -

2 {2, 8, 7, 1} 0 3 1 {2, 8} {7, 1} -

3 {2, 8} 0 1 0 {2} {8} {2, 8}

4 {7, 1} 2 3 2 {7} {1} {1, 7}

5 {2, 8, 1, 7} 0 3 1 {2, 8} {1, 7} {1, 2, 7, 8}

6 {3, 5, 6, 4} 4 7 5 {3, 5} {6, 4} -

7 {3, 5} 4 5 4 {3} {5} {3, 5}

8 {6, 4} 6 7 6 {6} {4} {4, 6}

9 {3, 5, 4, 6} 4 7 5 {3, 5} {4, 6} {3, 4, 5, 6}

10 {1, 2, 7, 8, 3,
4, 5, 6}

0 7 3 {1, 2, 7, 8} {3, 4, 5, 6}
{1, 2, 3, 4, 5,

6, 7, 8}

Input array: {5, 2, 8, 5, 3}

1 {5, 2, 8, 5, 3} 0 4 2 {5, 2, 8} {5, 3} -

2 {5, 2, 8} 0 2 1 {5, 2} {8} -

3 {5, 2} 0 1 0 {5} {2} {2, 5}

4 {2, 5, 8} 0 2 1 {2, 5} {8} {2, 5, 8}

5 {5, 3} 3 4 3 {5} {3} {3, 5}

6 {2, 5, 8, 3, 5} 0 4 2 {2, 5, 8} {3, 5} {2, 3, 5, 5, 8}

Figure 11.6: Demonstration of Merge Sort on two arrays.

11.7 Classification of sorting algorithms

All the commonly used sorting algorithms are discussed in this chapter. The only one left is Heap Sort.
Heap Sort is a comparison-based sorting algorithm that uses a binary heap data structure to sort elements.
It works by first building a max heap from the input array, ensuring that the largest element is placed at the
root. The algorithm then repeatedly extracts the maximum element from the heap, reducing the heap size
by one. After each extraction, the heap property is restored to maintain order. Heap Sort has a worst-case
time complexity of Opn log nq and is an in-place algorithm, making it space-efficient.

Note: A binary tree is a hierarchical structure with a root node. Each of its nodes has up to two children,
known as the left and right child. A binary heap is a special type of binary tree where each parent has
at most two children, and the tree is completely filled from top to bottom, left to right. It has a clever-yet-
simple implementation using 1D array. In a max heap, the value of each parent is greater than or equal to
its children.

All the algorithms discussed in this chapter, including Heap Sort, fall under comparison-based sorting, as
they rely on comparing elements of the array to perform the sorting task. Non-comparison-based algorithms,
such as Radix Sort or Counting Sort, avoid direct comparisons and may run faster under certain conditions;
however, they are suitable for some specific types of data only.

Heap Sort, Radix Sort, and Counting Sort
are not in your syllabus.

© Partha Bhowmick

11. Sorting 157

Table 11.1: Properties and complexities of comparison-based sorting algorithms.

Time Complexities
Algorithm In-place Stable Best Case Worst Case Average Case Auxiliary Space
Selection Sort ✓ ✗ Opn2q Opn2q Opn2q Op1q

Bubble Sort ✓ ✓ Opnq Opn2q Opn2q Op1q

Insertion Sort ✓ ✓ Opnq Opn2q Opn2q Op1q

Merge Sort ✗ ✓ Opn log nq Opn log nq Opn log nq Opnq

Quick Sort ✓ ✗ Opn log nq Opn2q Opn log nq Oplog nq

Heap Sort ✓ ✗ Opn log nq Opn log nq Opn log nq Op1q

Each algorithm has its own strengths and weaknesses, and the choice of which to use depends on the
nature and size of the input data, and the specific application requirements. Among the algorithms listed
above, only Merge Sort requires an auxiliary array, while the others perform in-place sorting, meaning they
sort the data without needing extra space proportional to the input array size. However, it is important
to note that Quick Sort also utilizes a stack to manage recursive calls, which results in additional space
usage, typically Oplog nq on average. There are certain advanced techniques to make Merge Sort work in-
place, but those are not easily implementable. Quick Sort and Heap Sort stand out for their intriguing
analyses and tricky implementations. Both algorithms are widely studied for their elegance and practical
efficiency. Similarly, Merge Sort has received significant attention for its stability and effective performance,
particularly in external sorting scenarios. The key attributes of a sorting algorithm are evaluated based on
their properties, as well as their time and space complexities. The important ones are as follows:

• Comparison-based sorting: These algorithms rely on comparing elements to determine their order. It
can be proved that the worst-case time complexity for such algorithms cannot be reduced below Opn log nq.

• In-place sorting: An in-place algorithm sorts data without requiring additional space proportional to
the input size. It typically uses only a constant amount of extra space, making it memory-efficient.

• Stable sorting: A sorting algorithm is stable if it preserves the relative order of elements with equal
keys. For i < j, if a[i] and a[j] are equal in the input array, a stable sort ensures that a[i] appears
before a[j] in the output.
Example: Consider an array of pairs {(5,A), (1,B), (5,C)}. After sorting by the first value (key),
a stable algorithm would return {(1,B), (5,A), (5,C)}, preserving the order of (5,A) and (5,C).

Table 11.1 provides a concise comparison of the above sorting algorithms based on their type (comparison-
based, in-place, stable) and their time complexities across best, worst, and average cases. This allows for an
easy selection of the most appropriate algorithm depending on the nature of the data and the requirements
of the task at hand. By comparing attributes such as stability and efficiency, the table helps highlight the
trade-offs involved, especially for large datasets.

11.8 Recursive vs Iterative Algorithms

Sorting algorithms may be recursive (e.g., Quick Sort, Merge Sort) or iterative (e.g., Bubble Sort). Recursive
algorithms often use function calls to divide the problem into smaller sub-problems, while iterative ones rely
on loops to process elements.

Both Quick Sort and Merge Sort can be implemented iteratively but the coding is complex. To implement
Quick Sort iteratively, an explicit stack is needed to manage the subarrays, making it iterative. Merge Sort
can also be implemented iteratively by using a bottom-up approach, where the array is repeatedly merged
in pairs until fully sorted.

© Partha Bhowmick

158 11. Sorting

11.9 Exercise problems

1. Identify the sorting algorithms that require constant amount of additional space for sorting.
2. How many swaps and how many comparisons are used in Code 11.46 (Bubble Sort) for the input array

{3, 2, 6, 5, 8, 5}?
3. What is the best-case time complexity for Bubble Sort? Justify.
4. How many swaps and how many comparisons are used in Code 11.48 (Selection Sort) for the input array

{3, 2, 6, 5, 8, 5}?
5. How many assignments (to array elements) are used in Code 11.49 (Insertion Sort) for the input array

{3, 2, 6, 5, 8, 5}?
6. How many times is the function partition called in Code 11.51 (Quick Sort) for the input array

{3, 2, 6, 5, 8, 5}?
7. How many swaps are required by Code 11.51 (Quick Sort) to sort the array {1, 2, 3, 4, 5, 6, 7, 8}?
8. Which sorting algorithms have the same time complexity for best, worst, and average cases?
9. Which sorting algorithms perform in-place sorting but are not stable?

10. Explain why Merge Sort is often preferred over Selection Sort for larger datasets.
11. Name a sorting algorithm which is adaptive, i.e., it takes advantage of existing order in the input.
12. Modify Code 11.51 (Quick Sort) to sort an array in non-increasing order.
13. Modify Code 11.51 (Quick Sort) to sort an array with the pivot as the first element during every

partition.
14. What are the scenarios where Quick Sort performs poorly?
15. What happens when Quick Sort is applied to a nearly sorted array?
16. Write a Quick Sort algorithm that sorts an array of pairs based on the first element, and if the first

elements are equal, sorts based on the second element?
For example, it will sort {(3, a), (5, e), (3, c), (2, d), (5, b)} to:
{(2, d), (3, a), (3, c), (5, b), (5, e)}.

17. Explain why Merge Sort is a stable sort.
♣18. Explain the space complexity of Quick Sort.
♣19. Write a program that finds the median of an array using a modified version of Quick Sort.
♣20. How would you implement a Quick Sort variant where the pivot is chosen randomly?

Hint: rand() can be used to generate a random pivot. To do this, first, call srand(time(NULL)) to
initialize the random seed. Then, use rand() to get a random index r in the desired range. Swap the
element at the index r with the usual pivot. This ensures that a random element is used as the pivot
in each recursion. rand() generates a pseudo-random number, and srand() ensures different sequences
across program runs. You have to include stdlib.h and time.h for these functions.

♠21. Can Quick Sort be made stable? If so, how?
♠22. How would you implement Quick Sort in-place using a three-way partitioning scheme to handle duplicate

elements efficiently?

© Partha Bhowmick

12 | Number systems

Numbers are the foundation of mathematics and science, providing a way to quantify, measure, and describe
the universe. From ancient tally marks to the sophisticated binary codes of modern computing, number sys-
tems have evolved to meet the demands of different eras. For computers, number systems are essential—they
enable machines to process, store, and communicate data efficiently using only binary digits. Understanding
these systems, whether decimal, binary, or hexadecimal, is key to grasping how computers perform calcu-
lations and represent complex information. This chapter is to give an idea about the representation and
significance of number systems in the digital age.

12.1 Representation of Integers

Integers can be represented in various number systems, each serving specific purposes. The most common
systems include the decimal, binary, octal, and hexadecimal systems. Each representation has its applications
in computing, digital electronics, and mathematics, influencing how integers are stored, manipulated, and
processed in various systems.

The binary number system is the most important out of all these systems in the domain of digit arith-
metic. There are several fundamental techniques to represent the binary number system. These techniques
are mostly required to simplify subtraction operations, so that addition and subtraction can be handled using
the same circuitry by merely complementing and adding. Understanding all these techniques is fundamental
for grasping the evolution of binary arithmetic in computing.

12.1.1 Decimal number system

The decimal number system, also known as base 10, is the standard numerical system used in everyday life.
It consists of ten digits, ranging from 0 to 9. Each digit’s position represents a power of 10, facilitating the
representation of numbers through combinations of these digits. Here are some important points:

• Basic symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

• Radix-10 positional number system. The radix is also called the base of the number system.
• Example: 12304 “ 1 ˆ 104 ` 2 ˆ 103 ` 3 ˆ 102 ` 0 ˆ 101 ` 4 ˆ 100.

12.1.2 Octal number system

The octal number system, also known as base 8, is a numeral system that uses eight digits, ranging from 0
to 7. Each digit’s position represents a power of 8, which allows for the compact representation of binary
numbers. Here are some important points:

• Basic symbols: 0, 1, 2, 3, 4, 5, 6, 7

• Radix-8 positional number system. The radix is also known as the base of the number system.
• Example: 19478 “ 1 ˆ 83 ` 9 ˆ 82 ` 4 ˆ 81 ` 7 ˆ 80 “ 103510.

159

160 12. Number systems

12.1.3 Hexadecimal number system

The hexadecimal number system, also referred to as base 16, utilizes sixteen distinct symbols, ranging from
0 to 9 and A to F. Each digit’s position represents a power of 16, making it useful for representing binary
data more compactly. Here are some important points:

• Basic symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

• Radix-16 positional number system. The radix is commonly referred to as the base of the number system.
• Example: 1DA716 “ 1 ˆ 163 ` 13 ˆ 162 ` 10 ˆ 161 ` 7 ˆ 160 “ 761510.

12.1.4 Conversion from decimal number system

The methods for converting a number from any radix to another radix system are based on integer division
and are relatively straightforward. In this section, we illustrate these methods using two decimal numbers,
1947 and 1757, to derive their representations in hexadecimal, octal, and binary systems. Each method
involves repeated integer divisions until the quotient reaches zero. The sequence of digits, arranged from the
highest to the lowest position, is formed by collecting the remainders in reverse order (see 12.1.5).

Decimal to Hexadecimal Conversion

Step Division Quotient Remainder

1 1947 ˜ 16 121 11 (B)

2 121 ˜ 16 7 9

3 7 ˜ 16 0 7

Result: 194710 “ 79B16

Step Division Quotient Remainder

1 1757 ˜ 16 109 13 (D)

2 109 ˜ 16 6 13 (D)

3 6 ˜ 16 0 6

Result: 175710 “ 6DD16

Decimal to Octal Conversion

Step Division Quotient Remainder

1 1947 ˜ 8 243 3

2 243 ˜ 8 30 3

3 30 ˜ 8 3 6

4 3 ˜ 8 0 3

Result: 194710 “ 36338

Step Division Quotient Remainder

1 1757 ˜ 8 219 5

2 219 ˜ 8 27 3

3 27 ˜ 8 3 3

4 3 ˜ 8 0 3

Result: 175710 “ 33558

Decimal to Binary Conversion

Step Division Quotient Remainder

1 1947 ˜ 2 973 1

2 973 ˜ 2 486 1

3 486 ˜ 2 243 0

...
...

...
...

9 7 ˜ 2 3 1

10 3 ˜ 2 1 1

11 1 ˜ 2 0 1

Result: 194710 “ 111100110112

Step Division Quotient Remainder

1 1757 ˜ 2 878 1

2 878 ˜ 2 439 0

3 439 ˜ 2 219 1

...
...

...
...

9 6 ˜ 2 3 0

10 3 ˜ 2 1 1

11 1 ˜ 2 0 1

Result: 175710 “ 110110111012

© Partha Bhowmick

12. Number systems 161

12.1.5 Conversion from decimal to binary

To convert a decimal number to binary, follow these steps:

1. Divide the decimal number by 2.
2. Record the remainder.
3. Update the decimal number to the quotient.
4. Repeat steps 1–3 until the quotient is 0.
5. Read the recorded remainders in reverse order for the binary representation.

Here is an example that shows why 3710 “ 20 ` 22 ` 25 “ 1001012.

372

decimal number

quotients (iteratively obtained)

18 9 4 2 1 0

1 0 1 0 0 1
remainders (iteratively obtained)

equivalent binary number = remainders in reverse order
1 0 0 1 0 1MSB LSB

Least Significant Bit (LSB) Most Significant Bit (MSB)

Clearly, this method works for converting decimal numbers to other number systems, such as octal and
hexadecimal, with minor adjustments. Instead of dividing by 2, you divide by 8 for octal and by 16 for
hexadecimal. The process remains the same: record the remainders and read them in reverse order.

12.1.6 Unsigned binary number system

The unsigned binary number system is a method of representing non-negative integers using only two digits:
0 and 1. Each digit’s position represents a power of 2, with the rightmost digit being 20, the next 21, and
so on. For example, the binary number 1011 represents the decimal value 1ˆ 23 ` 0ˆ 22 ` 1ˆ 21 ` 1ˆ 20 “

8 ` 0 ` 2 ` 1 “ 11. This system is widely used in electronics and computer science, as it aligns with the
binary nature of electronic circuits. Here are some important points:

• Basic symbols: 0, 1

• Radix-2 positional number system.
• Example: 10110 “ 1 ˆ 24 ` 0 ˆ 23 ` 1 ˆ 22 ` 1 ˆ 21 ` 0 ˆ 20 “ 22 in decimal.

12.1.7 Word of CPU

A word refers to the binary string the CPU can process in a single instruction. In a 32-bit architecture, the
CPU handles 32 bits simultaneously, allowing for efficient data manipulation. This word size determines the
maximum value an integer can hold, which is 232 ´ 1 “ 4, 294, 967, 295 for unsigned integers, the minimum
being 0. Moreover, it affects memory addressing, allowing access to 232 unique memory locations, equating
to 4 GB of RAM.

Understanding the word size is crucial for optimizing software and hardware performance in computing
systems. Table 12.1 lists the 32-bit words for some decimal numbers.

© Partha Bhowmick

162 12. Number systems

If the words consist of just 3 or 4 bits each, their corresponding range of decimal values is as follows:

Unsigned 3-bit words

Binary Decimal

0 0 0 0

0 0 1 1

0 1 0 2

0 1 1 3

Binary Decimal

1 0 0 4

1 0 1 5

1 1 0 6

1 1 1 7

Unsigned 4-bit words

Binary Decimal

0 0 0 0 0

0 0 0 1 1

0 0 1 0 2

0 0 1 1 3

Binary Decimal

0 1 0 0 4

0 1 0 1 5

0 1 1 0 6

0 1 1 1 7

Binary Decimal

1 0 0 0 8

1 0 0 1 9

1 0 1 0 10

1 0 1 1 11

Binary Decimal

1 1 0 0 12

1 1 0 1 13

1 1 1 0 14

1 1 1 1 15

12.1.8 Signed number

We use the ` and ´ symbols to indicate the sign of a decimal number. But, in a binary system, only 0 and
1 are available to encode any information. So, leftmost bit is used to denote the sign of a number. This bit
is called the sign bit. There are three schemes for signed number representation in binary number system:
Sign-magnitude, 1’s complement, 2’s complement, which are discussed below.

12.1.9 Sign-magnitude

In the sign-magnitude representation, the leftmost bit (which is the MSB in unsigned numbers) is the sign bit.
This bit is 0 for positive numbers and 1 for negative numbers. The remaining bits represent the magnitude
of the number. For example, in a 4-bit word: b3 b2 b1 b0 , b3 is the sign bit, while the other three bits define
the magnitude. Key aspects of this representation include:

Table 12.1: 32-bit words for some decimal numbers.

Binary

Decimal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 0

1 0 1

2 0 1 0

3 0 1 1

4 0 1 0 0

1947 0 1 1 1 1 0 0 1 1 0 1 1

1948 0 1 1 1 1 0 0 1 1 1 0 0

4000000000 1 1 1 0 1 1 1 0 0 1 1 0 1 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

4000000010 1 1 1 0 1 1 1 0 0 1 1 0 1 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0

4294967295 1

© Partha Bhowmick

12. Number systems 163

• Two representations of 0: `0 and ´0.
• Range for an n-bit word: ´p2n´1 ´ 1q to p2n´1 ´ 1q.

For example, with 4-bit words, the range is ´7, . . . ,´1, 0,`1, . . . ,`7. In this case, both 0000 and 1000
represent 0. The full set is listed below.

Sign-magnitude of 4-bit words

Binary Decimal

0 0 0 0 `0

0 0 0 1 `1

0 0 1 0 `2

0 0 1 1 `3

Binary Decimal

0 1 0 0 `4

0 1 0 1 `5

0 1 1 0 `6

0 1 1 1 `7

Binary Decimal

1 0 0 0 ´0

1 0 0 1 ´1

1 0 1 0 ´2

1 0 1 1 ´3

Binary Decimal

1 1 0 0 ´4

1 1 0 1 ´5

1 1 1 0 ´6

1 1 1 1 ´7

12.1.10 1’s complement numeral

The 1’s complement of an integer k is obtained by toggling every bit of k. For example, for 4-bit words, the
1’s complement of 0101 is 1010. In 1’s complement representation, this yields ´k when k ‰ 0, and produces
a separate representation for `0 and ´0 when k “ 0.

In the context of binary strings, toggling or inverting refers to flipping a bit
from 0 to 1, or from 1 to 0. For example, in the binary string 1010, toggling
the second bit changes it to 1110. Toggling can be achieved using the XOR
(exclusive OR) operation. Recall that XOR of two bits is 1 if and only if
they are unequal. So, when XORing a bit with 1, the bit is flipped, whereas
XORing with 0 leaves the bit unchanged. This process is important in bitwise
manipulation and digital logic circuits.

Key aspects of the 1’s complement representation are outlined below. For simplicity, examples are taken
from 4-bit words; however, these explanations apply to any word of at least two bits.

1. Positive numbers have MSB = 0, and negative numbers have MSB = 1.
Example: 0101 is a positive number, whereas 1101 is a negative number.

2. As per the above convention, we have two representations of 0: 0000...0
loooomoooon

`0

and 1000...0
loooomoooon

´0

.

3. Since 1’s complement is simply toggling of bits, it follows that the 1’s complement of 1’s complement of
any number is the number itself, as illustrated below.

0101 “ `5 ´5 “ 1010

1’s complement

1’s complement

4. If k is a positive integer (i.e., its MSB= 0), then its value is same as its sign-magnitude representation.
Example: The value of 0101 is 1 ` 22 “ 5.

5. If k is a negative integer (i.e., its MSB = 1), then its magnitude is same as that of its 1’s complement.
Example: The magnitude of 1101 is given by the value of 0010, which is 2. Since the MSB of 1101 is
1, its signed value is ´2.

6. Range for an n-bit word: ´p2n´1 ´ 1q to p2n´1 ´ 1q, which is same as sign-magnitude representation.
Example: With 4-bit words, the range is ´7, . . . ,´1, 0,`1, . . . ,`7. In this case, both 0000 and 1000
represent 0. Notice its difference from sign-magnitude representation. The full set is listed below.

© Partha Bhowmick

164 12. Number systems

1’s complement numerals of 4-bit words

Binary Decimal

0 0 0 0 `0

0 0 0 1 `1

0 0 1 0 `2

0 0 1 1 `3

Binary Decimal

0 1 0 0 `4

0 1 0 1 `5

0 1 1 0 `6

0 1 1 1 `7

Binary Decimal

1 0 0 0 ´7

1 0 0 1 ´6

1 0 1 0 ´5

1 0 1 1 ´4

Binary Decimal

1 1 0 0 ´3

1 1 0 1 ´2

1 1 1 0 ´1

1 1 1 1 ´0

12.1.11 2’s complement numeral

The 2’s complement numeral system is the most widely used method for representing signed integers in
modern computing. It simplifies binary arithmetic, particularly subtraction, by eliminating the need for
separate hardware for subtraction operations. In this system, a negative number is represented by inverting
all the bits of its positive counterpart and adding 1. One of the key advantages of 2’s complement is
that it has a unique representation for zero, unlike 1’s complement, which has both `0 and ´0. This
consistency reduces the complexity in handling numerical data. Furthermore, addition and subtraction
operations between positive and negative numbers become seamless, as the same binary addition process is
used for both. The 2’s complement numeral system is critical to understanding how computers efficiently
perform arithmetic operations.

Key aspects of this representation include the following. For explanations, examples are taken from
4-bit words, as done in §12.1.10, but all these explanations apply for any words of at least two bits.

1. Only one representation of zero, e.g., 0000 in 4-bit word.
2. Positive numbers have MSB = 0, and negative numbers have MSB = 1.

Example: 0101 is a positive number, whereas 1101 is a negative number.
3. For any integer k, ´k is obtained by first toggling every bit of k, no matter whether k ă 0, k “ 0, or

k ą 0, and then adding 1 to it. The result is called the 2’s complement of k.
Example: The 2’s complement of 0101 is 1010 ` 1 “ 1011. Similarly, the 2’s complement of 1011 is
0101.

0101 10101’s complement

1’s complement 1011

+1

0100

+1

“ ´5

`5 “

2’s complement

4. The 2’s complement of a negative number is a positive number, and vice versa.
Only exception: 1000 “ ´23 “ ´8 whose 2’s complement is itself and not 8.

5. A positive number (MSB = 0) evaluates to its sign-magnitude or 1’s complement.
Example: 0101 has MSB = 0, so it is a positive number having the value `5.

6. For evaluating a negative number (MSB = 1), compute its 2’s complement to get its magnitude. Apply
a negative sign to get its signed value.
Example: 1011 is a negative number and its 2’s complement is 0101, whose decimal value is 5; so the
signed value of 1011 is ´5.

7. Range for 4 bits: ´8, . . . , 7 .
8. Range for n bits: ´2n´1, . . . , p2n´1 ´ 1q.
9. Range of int (32 bits): ´2147483648 to 2147483647.

© Partha Bhowmick

12. Number systems 165

2’s complement numerals of 4-bit words

Binary Decimal

0 0 0 0 `0

0 0 0 1 `1

0 0 1 0 `2

0 0 1 1 `3

Binary Decimal

0 1 0 0 `4

0 1 0 1 `5

0 1 1 0 `6

0 1 1 1 `7

Binary Decimal

1 0 0 0 ´8

1 0 0 1 ´7

1 0 1 0 ´6

1 0 1 1 ´5

Binary Decimal

1 1 0 0 ´4

1 1 0 1 ´3

1 1 1 0 ´2

1 1 1 1 ´1

12.1.12 Word extension in 2’s complement

To extend a word without altering the signed value of the stored number, append bits the same as its MSB
to its left side. That is, add 0’s to its left side if the number is positive, otherwise add 1’s.

For example, if the number 0101 (which represents `5) is stored in a 4-bit word, its extension to an
8-bit word would be 0000 0101. Conversely, the extension of the 4-bit number 1101 (representing ´3) to
an 8-bit word results in 1111 1101. This method ensures that the signed values remain unchanged after the
extension.

12.1.13 Carry-out and overflow in 2’s complement

In the context of binary arithmetic, particularly in 2’s complement representation, understanding carry-out
and overflow is crucial for correctly interpreting results. They are two distinct concepts that arise during
arithmetic operations.

Carry-out occurs when the result of an addition operation cannot be accommodated within the given
number of bits. For example, in a 4-bit system, adding 1111 with 1000 will produce the 5-bit binary string
10111, in which the leftmost bit is the carry-out.

Overflow occurs during addition if and only if the two numbers have the same sign but their sum has
the opposite sign. If two numbers have opposite signs, there is no overflow. For example, in a 4-bit system,
adding 0110 p“ `6q with 0100 p“ `4q will produce the 4-bit binary string 1010, which is a negative number
because its MSB is 1. You can check that 1010 evaluates to ´ 0110 “ ´6.

The overflow and carry-out can occur independently. In unsigned numbers, carry-out is equivalent to
overflow. But in general, carry-out tells you nothing about overflow. The possible cases with examples of
4-bit systems are discussed below.

No Carry-Out, No Overflow

Word Value

0 0 1 1 `3

` 0 0 1 0 `2

Sum: 0 1 0 1 `5 Correct

The result is within 4 bits, indicating
that there is no carry-out from the most
significant bit (MSB). There is no over-
flow since both summands and the sum
are positive.

Overflow without Carry-Out

Word Value

0 1 1 1 `7

` 0 0 1 1 `1

Sum: 1 0 0 0 ´8 Incorrect

No carry-out occurs because the sum fits
within 4 bits. However, despite both
operands being positive, MSB of the re-
sult indicates a negative number, lead-
ing to an overflow.

© Partha Bhowmick

166 12. Number systems

Overflow with Carry-Out

Word Value

1 0 0 1 ´7

` 1 0 1 0 ´6

Sum: 1 0 0 1 1 `3 Incorrect

The sum exceeds 4 bits, resulting in a
carry-out. Although both operands are
negative, the sum is positive, as indi-
cated by the MSB. Therefore, overflow
occurs.

Carry-Out without Overflow

Word Value

1 1 0 0 ´4

` 1 1 1 1 ´1

Sum: 1 0 0 1 1 ´5 Correct

The sum exceeds 4 bits, resulting in
a carry-out. However, since both
operands are negative and the result
is also negative, there is no overflow.
In fact, this indicates that the 4-bit re-
sult is correct, as the 5th bit (carry-out)
is ignored.

12.1.14 10’s complement

The 2’s complement numeral is nothing special. In fact, in general, we can use radix-complement numerals
for any radix to represent signed numbers without using any sign symbol. Let’s see how for radix 10 or
decimal system, we can construct 10’s complement numerals.

For simplicity, let’s consider 3-digit words in decimal system. There are one thousand patterns (000 to 999)
for this. In this system of 3-digit words, we interpret any integer k in the following way:

1. If the most significant digit is 0 to 4, then k is a usual positive number.
Example: 341 is same as the usual decimal number 341.

2. If the most significant digit is from 5 to 9, then k is treated as a negative number.
Example: 725 is a negative number with the actual value ´p1000 ´ 725q “ ´275.

3. ´k is obtained by 1000 ´ k.
Example: ´725 “ 1000 ´ 725 “ 275.

4. The range of numbers represented in 3 digits is ´103{2 to `103{2 ´ 1, i.e., ´500 to 499.
In general, for n-digit 10’s complement numbers, the range is ´10n{2 to `10n{2 ´ 1.

Word extension in 10’s complement: The idea of extending a word without altering the signed value
of the stored number is similar to that in 2’s complement. We need to add 0’s to its left side if the number is
positive, otherwise add 9’s. For example, the 3-digit word 273 (which represents `273) should be extended
to 000273 for its equivalent 6-digit word. On the contrary, the 3-digit word 673 (which represents ´327)
should be extended to 999673.

Carry-out and overflow in 10’s complement: There will overflow problem here too, as it happened
for 2’s complement. Let’s assume 3-digit words to see how it happens.

No Carry-Out, No Overflow

Word Value

1 2 7 `127

` 2 0 5 `205

Sum: 3 3 3 `332 Correct

The result is within 3 digits, indicat-
ing that there is no carry-out from the
most significant digit (MSD). There is
no overflow since both summands and
the sum are positive.

© Partha Bhowmick

12. Number systems 167

Overflow without Carry-Out

Word Value

4 2 7 `427

` 3 0 5 `305

Sum: 7 3 2 ´268 Incorrect

No carry-out occurs because the sum fits
within 3 digits. However, despite both
operands being positive, MSD (7) of the
result indicates a negative number, lead-
ing to an overflow.

Overflow with Carry-Out

Word Value

7 2 7 ´273

` 6 0 5 ´395

Sum: 1 3 3 2 `332 Incorrect

The sum exceeds 3 digits, resulting in a
carry-out. Although both operands are
negative, the sum is positive, as indi-
cated by the MSD (3). Therefore, over-
flow occurs.

Carry-Out without Overflow

Word Value

8 2 7 ´173

` 7 0 5 ´295

Sum: 1 5 3 2 ´468 Correct

The sum exceeds 3 digits, resulting
in a carry-out. However, since both
operands are negative and the result is
also negative, there is no overflow. In
fact, this indicates that the 3-digit result
is correct, as the 4th digit (carry-out) is
ignored.

12.2 Decimal numbers: Standard floating-point representation

The decimal number system, also known as the base-10 or radix-10 system, is the usual standard for repre-
senting real numbers. We are introduced to it in childhood and understand how to write any real number, no
matter how large or precise. However, representing, storing, and working with such numbers in a computer
requires a standardized scientific format. This raises the question of efficient representation. In a computer,
only the binary digits 0 and 1 are available to accomplish all tasks.

Let’s begin by exploring how to create a standard representation for decimal numbers using only the
digits 0 to 9, while intelligently accounting for the decimal point (i.e., the dot symbol) and the sign of the
number. In the standard floating-point representation of real numbers, the position of the decimal point can
"float", which is why it is called "floating point". The following example shows how the number 31415.9 can
be expressed in various forms:

31415.9 “ 3141.59 ˆ 101

“ 314.159 ˆ 102

“ 31.4159 ˆ 103

“ 3.14159 ˆ 104 Ð standard form
« 0.31416 ˆ 105

« 0.03142 ˆ 106

...

In this representation, a real number is expressed in the form:

s “ sign e “ signed exponent m “ mantissa

where,
value of the real number “ sign ˆ mantissa ˆ baseexponent

“ s ˆ m ˆ 10e.

© Partha Bhowmick

168 12. Number systems

• sign s is either `1 or ´1.
• mantissa m (also called ‘significand’) is an unsigned number in the interval r1, 10q.
• exponent e is a signed integer.

In the previous example, only 3.14159 ˆ 104 is the standard or normalized form, with sign s “ `1,
mantissa m “ 3.14159, and exponent e “ `4. For the number ´31415.9, s will be ´1, while m and e remain
the same.

Now, suppose a word of 10 digits can be used to store any real number, with the following convention:

• First digit is for the sign of the number (0 if positive and 1 if negative).
• Second digit is for the sign of the exponent (0 if positive and 1 if negative).
• Third and fourth digits are for the unsigned value of the exponent.
• Last six digits are for the mantissa.

Then, the word storing the number 3.14159 ˆ 104 will be:

0 0 0 4 3 1 4 1 5 9

Note that since the decimal point (i.e. the dot sign) is implicit, because in the standard representation,
3 is the one and only digit before the decimal point and the rest, i.e., 1 4 1 5 9 , follows after it. That is,

the decimal point is located as follows:

0 0 0 4 3 . 1 4 1 5 9

Similarly, for the number ´3.14159 ˆ 104, we get

1 0 0 4 3 1 4 1 5 9

For ´3.14159 ˆ 10´4, we get

1 1 0 4 3 1 4 1 5 9

Since the mantissa can accommodate 6 digits, the extra digits in a real number will be lost in this 10-digit
representation. For example, if we need to store 3.1415927 ˆ 104, it will be

0 0 0 4 3 1 4 1 5 9

where, as you see, the last two digits (2 and 7) could not be stored. This example shows we have to
compromise with the precision for a large mantissa.

12.2.1 Floating-point representation versus fixed-point representation

Fixed-point representation and floating-point representation are two ways to represent numbers, each with
distinct characteristics.

Example: In a fixed-point system of 10-digit word with three decimal places, the number 31415.9 would be
stored as 0031415900. Whenever needed, the system multiplies 0031415900 by 10´3 to get 31415.9. Thus,
when stored, the number appears as 0031415900, and when interpreted by the system, it is understood to
represent 31415.900.

Fixed-point representation has a limited range, as the position of the decimal point is fixed. In fixed-point
representation, the components are just the sign and the mantissa, and there is no exponent. Floating-point
representation has a much wider range because the decimal point can "float" based on the exponent.

© Partha Bhowmick

12. Number systems 169

Example: Suppose we have to represent only non-negative real numbers that we have to store in 6-digit
words. Suppose that three digits are after the decimal point in fixed-point representation. Then, the range
of numbers in fixed-point representation will be:

000.000, 000.001, 000.002, . . . , 000.999, 001.000, 001.001, . . . , 999.999.

For floating-point representation, we don’t require the sign bit because it’s given that all are non-negative
numbers. Let’s reserve four digits for the mantissa and two for the exponent, assuming that the exponent is
non-negative. Then, the range of numbers in floating-point representation will be:

The mantissa can take values from 0000 to 9999, while the exponent e can take values from 00 to 99.
Suppose that e ď 49 represents a positive exponent with the value same as e, while e ě 50 represents a
negative exponent with the value ´100 ` e. That is, e ranges from ´50 to `49.

This means that the smallest non-zero number represented is 0.001 ˆ 10´50, and the largest number
represented is 9.999 ˆ 1049.

12.3 Binary numbers: Normalized floating-point representation

The IEEE 754 Floating-Point Standard1 is widely used for representing real numbers in a normalized form
of binary number system. It defines how real numbers are stored using a combination of a sign bit, a signed
exponent, and a mantissa, enabling representation of a vast range of values.

The IEEE standard supports two primary formats: single precision (32 bits) and double precision (64
bits). These are denoted by float and long double respectively, in the C language. It also specifies rules for
rounding, special values like inf (infinity) and nan (not-a-number), and handling exceptions, contributing
to reliable numerical computations in different applications.

sign exponent (pre-normalized) mantissa (pre-normalized)
1 bit 8 bits 23 bits

S
in

g
le

pr
ec

is
io

n 0 1 2 3 9 10 118 31

sign exponent (pre-normalized) mantissa (pre-normalized)
1 bit 11 bits 52 bitsD

o
u
bl

e
pr

ec
is

io
n 0 1 2 3 11 6312 13 14

12.3.1 Data classes and normalization

The different classes or categories of floating-point numbers are determined by the values of the exponent and
the mantissa, as shown in Table 12.2. The numbers we typically work with fall under the class of normalized
numbers. In addition to this class, there are four other categories, as outlined below:

1. Normalized numbers
2. Zeros (+0 and -0)
3. Subnormal (denormal) numbers
4. Infinity (inf)
5. Not-a-Number (nan)

1IEEE stands for Institute of Electrical and Electronics Engineers.

© Partha Bhowmick

170 12. Number systems

Table 12.2: Classes of floating-point numbers.

Precision
Single Double
Exponent (pre-normalized) Mantissa Data Class

0 0 0 ˘ 0
0 0 ‰ 0 ˘ subnormal

1 – 254 1 – 2046 anything ˘ normalized
255 2047 0 ˘8

255 2047 ‰ 0 nan

Let us understand the composition of the above classes for single-precision floating-point numbers. The
composition for double precision will be similar and summarized at the end. Following are the rules of
composition for single precision:

• Special exponents: 00000000 p0q and 11111111 p255q are reserved for ˘0, nan, and inf.
• Sign: s “ 0 means positive, s “ 1 means negative.
• Pre-normalized exponent: For normalized numbers, e ranges from 00000001 p1q to 11111110 p254q.
• Normalized exponent: e ´ 127 , ranging from 1 ´ 127 “ ´126 to “ 254 ´ 127 “ 127. Here, 127 is

referred to as bias and used for normalization.
• Normalized range: 2´126 to 2127.
• Normalized mantissa: The mantissa m, normalized to 1.m , ranges from 1.0 to 2.0 ´ 2´23. For

example, if m “ 11000...0
looooomooooon

two 1s, rest 0

, then its normalized value will be exactly 1 ` 1
2 ` 1

4 “ 1.75.

• Normalized number: p´1qs ˆ 1.m ˆ 2e´127

Subnormal (or denormal numbers) represent a specific class of values in floating-point arithmetic
that can approximate values closer to zero than the smallest normal numbers. In binary, a subnormal
number has an exponent of all zeros (the smallest possible exponent), while its mantissa is non-zero. These
numbers fill the gap between zero and the smallest positive normal number, which is essential for ensuring
numerical stability in computations and effectively handling underflow conditions. Subnormal numbers
facilitate gradual underflow, allowing values to decrease smoothly as they approach zero instead of abruptly
becoming zero. This is vital for maintaining precision in numerical calculations, particularly in scientific and
geometric computing.

You can write code to define, print, and compare a subnormal number with zero, normal numbers, or
another subnormal. The following code defines and prints a subnormal number’s value.

1 #include <stdio.h>
2 int main() {
3 double x = 1.0e-40; // A subnormal number with higher precision
4 printf("%e\n", x); // This prints 1.000000e-40
5 return 0;
6 }

© Partha Bhowmick

12. Number systems 171

12.3.2 Examples

Example 1 (binary to decimal):

Suppose we are given a single-precision number:

11011011 00110000 00000000 00000000

It can be broken into three components (1-bit sign, 8-bit exponent, and 23-bit mantissa) as follows:

1 1 0 1 1 0 1 1 0 0 1 1 0

So, here is how the normalization is done:

• Sign “ p´1q 1 “ ´1.
• Pre-normalized exponent is 10110110 “ 27 ` 25 ` 24 ` 22 ` 2 “ 182.

So, the normalized exponent is 182 ´ bias “ 182 ´ 127 “ 55.
• Pre-normalized mantissa is 011000...0 .

After being normalized, it becomes 1 . 011000 ¨ ¨ ¨ 0 “ 1` 2´2 ` 2´3 “ 1.375.

Thus, the signed value of the given single-precision number in decimal number system is ´1.375 ˆ 255.

Example 2 (decimal to exact binary):

Consider the decimal number x “ 105.625.
Since 105 “ 26 ` 25 ` 23 ` 20 “ 1101001 and 0.625 “ 2´1 ` 2´3 “ 0.101, the single-precision floating-point
representation of x is

+ 1101001.101
“ + 1.101001101 ˆ 26

“ + 1.101001101 ˆ 2133´127

“ + 1.101001101 ˆ 210000101´01111111

“ 0 1000 0101 101 0011 0100 0000 0000 0000

Example 3 (decimal to approximate binary):

Consider `2.7. Its single-precision floating-point representation is

+ 10.10 1100 1100 1100 . . . (repeating 1100)
“ + 1.010 1100 1100 ¨ ¨ ¨ ˆ 21

“ + 1.010 1100 1100 ¨ ¨ ¨ ˆ 2128´127

“ + 1.010 1100 ¨ ¨ ¨ ˆ 210000000´01111111

“ 0 1000 0000 010 1100 1100 1100 1100 1100

Observe that the exact value of 2.7 or 0.7 or 0.2 does not exist in binary number system. Hence, we
get

2.7 “ 10.10 1100 1100 1100 . . .
loooooooooooomoooooooooooon

infinite sequence of 1100

“ 10.10
`

1100
˘8

.

In fact, it is not difficult to prove that a finite-precision decimal number has a finite-length binary
representation if and only if the denominator of its corresponding fraction (in reduced form) is a power
of 2.
For 2.7, the corresponding fraction is 27

10
, whose denominator is not a power of 2, which implies it has

not a finite-length binary representation.
On the contrary, 2.5 “ 25

10
“ 5

2
and 2.25 “ 225

100
“ 9

4
have their denominators 2 and 4 respectively,

which are powers of 2, and hence they have finite-length binary representations.

© Partha Bhowmick

172 12. Number systems

12.3.3 nan

There are two types of nans: quiet nan and signaling nan. A quiet nan is produced by operations that do
not trigger any exceptions. It generally represents an indeterminate form or the result of operations that
cannot yield a valid number without causing a disruption. For example, dividing zero by zero (0.0{0.0) or
performing an operation that involves infinity (e.g., ˘8{ ˘ 8) can yield a quiet nan.

A signaling nan is intended to signal an error or exception during computations. When a signaling nan
is encountered in an operation, it typically raises a trap or generates a signal to alert the system that an
invalid operation has occurred. For instance, attempting to perform a mathematical operation involving an
invalid input (like

?
´1.0) can produce a signaling nan.

In summary, quiet nans do not raise exceptions, while signaling nans are meant to indicate an error
condition that should be addressed. Here is a code:

1 #include <stdio.h>
2 #include <math.h>
3

4 int main(){ // Each printf prints -nan (gcc: Ubuntu 9.4.0-1ubuntu1~20.04.2 9.4.0)
5 printf("0.0/0.0: %f\n", 0.0/0.0);
6 printf("inf/inf: %f\n", (1.0/0.0)/(1.0/0.0));
7 printf("0.0*inf: %f\n", 0.0*(1.0/0.0));
8 printf("-inf + inf: %f\n", (-1.0/0.0) + (1.0/0.0));
9 printf("sqrt(-1.0): %f\n", sqrt(-1.0));

10 printf("log(-1.0): %f\n", log(-1.0));
11 return 0;
12 }

12.3.4 About inf, +0, -0

Here are some key points:

1. Infinity: Without the sign bit, inf means:

1111 1111 000 0000 0000 0000 0000 0000 .

Without the sign bit, the largest normalized number (as unsigned integer) means:

1111 1110 111 1111 1111 1111 1111 1111 .

Hence, if we treat the largest normalized number as an int and add 1 to it, then we get inf.
2. Using infinity: inf can be used in computation, e.g., to compute tan´1 8.
3. Zeros: There are two zeros, +0 and -0, in IEEE representation, but they are treated as equal.

© Partha Bhowmick

12. Number systems 173

12.4 Solved problems

1. rPositive integer to unsigned binary (recursive)s Given a positive integer n as input (as unsigned int),
write a recursive function to print its unsigned binary representation. Assume that we have 32-bit words.

1 #include <stdio.h>
2

3 void printBinary_Recursive(unsigned int n){
4 if (n > 1)
5 printBinary_Recursive(n >> 1); // Recursively shift right
6 printf("%d", n & 1); // Print the least significant bit
7 }
8

9 int main(){
10 unsigned int n;
11 printf("Enter a positive integer: ");
12 scanf("%u", &n);
13 printBinary_Recursive(n);
14 printf("\n");
15 return 0;
16 }

2. rInteger to sign-magnitude (recursive)s Given an integer n as input in the interval r´127, 127s,
write a recursive function to print its sign-magnitude binary representation. Assume that we have 8-bit
words.

1 #include <stdio.h>
2

3 // Recursive function to print the magnitude part (7 bits)
4 void signedMag_Rec(unsigned int n, int bits) {
5 if (bits > 1)
6 signedMag_Rec(n >> 1, bits - 1); // Recursively shift right
7 printf("%d", n & 1); // Print the least significant bit
8 }
9

10 int main() {
11 int n;
12 printf("Enter an integer (-127 to 127): ");
13 scanf("%d", &n);
14

15 if (n < 0) {
16 printf("Sign-magnitude binary representation: 1 ");
17 signedMag_Rec(-n, 7);
18 } else {
19 printf("Sign-magnitude binary representation: 0 ");
20 signedMag_Rec(n, 7);
21 }
22

23 printf("\n");
24

25 return 0;
26 }

© Partha Bhowmick

174 12. Number systems

3. rReal to binary (finite precision)s Given a positive real number x less than 1, scan it using the
format specifier "%Lf" (long double) and compute its floating-point representation in binary up to n
bits of precision after the decimal point. The value of n is also provided by the user.
As the number x may not have a finite binary representation, its floating-point binary value may not
be exact when printed, as it will be truncated after n decimal places.

1 #include <stdio.h>
2

3 void real2Binary(long double x, int n) {
4 printf("0.");
5

6 for (int i = 1; i <= n; i++) { // Compute i-th bit
7 x = x * 2; // Multiply by 2
8 if (x != 0){
9 if (x >= 1.0) {

10 printf("1");
11 x = x - 1.0; // Subtract 1 to get the new fractional part
12 }
13 else
14 printf("0");
15 // printf(" (%0.50Lf)\n", x); // print to see why it’s approx
16 }
17 else break;
18 }
19 printf("\n");
20 }
21

22 int main() {
23 long double x;
24 int n;
25 printf("Enter x and n: ");
26 scanf("%Lf%d", &x, &n);
27 real2Binary(x, n);
28 return 0;
29 }

Output for some values of x and n is given below. Observe that for n “ 100, not all 100 bits of 0.7 are
printed. This occurs because the value of x in the code becomes zero before reaching the 100-th bit.
In each iteration, x is doubled and decremented by 1 in some cases, ensuring it remains less than 1.
Since 0.7 does not have a finite-length binary representation but is stored in a finite-length space, it
eventually becomes zero as bits are left-shifted one position each time it is doubled. This results in an
approximate output.

Output:

Enter x and n: .7 50
0.10110011001100110011001100110011001100110011001100
Enter x and n: .7 100
0.1011001100110011001100110011001100110011001100110011001100110011
Enter x and n: .75 50
0.11

© Partha Bhowmick

12. Number systems 175

4. rFraction to binary (finite precision)s Given any positive proper fraction a/b (not necessarily in
the reduced form), scan it using the format specifier "%d/%d" and compute its floating-point represen-
tation in binary up to n bits of precision. The value n is provided as input by the user.
As the number a/b may not have a finite binary representation, its floating-point binary value may not
be exact when printed, as it will be truncated after n decimal places.

1 #include <stdio.h>
2

3 void fraction2Binary(int a, int b, int n) {
4 printf("0.");
5 for (int i = 1; i <= n; i++) { // Compute i-th bit
6 a = a * 2; // Multiply by 2
7

8 if (a != 0){
9 if (a >= b) {

10 printf("1");
11 a = a - b; // Get the new proper fraction
12 }
13 else
14 printf("0");
15 if(i%50 == 0) // It’s long sequence, so print in the new line
16 printf("\n ");
17 }
18 else
19 break;
20 }
21 printf("\n");
22 }
23

24 int main() {
25 int a, b, n;
26 printf("Enter a/b and n: ");
27 scanf("%d/%d %d", &a, &b, &n);
28 fraction2Binary(a, b, n);
29 return 0;
30 }

The output for various values of a/b and n is provided below. Note that for a/b “ 7
10 , all 100 bits are

displayed, yet never-ending bits appear beyond this point. Thus, no matter how large n becomes, it is
impossible to express this value as a finite-precision floating-point number.

Output:

Enter a/b and n: 7/10 10
0.1011001100
Enter a/b and n: 7/10 50
0.10110011001100110011001100110011001100110011001100
Enter a/b and n: 7/10 100
0.10110011001100110011001100110011001100110011001100

11001100110011001100110011001100110011001100110011
Enter a/b and n: 8/24 100
0.01

01
Enter a/b and n: 7/16 100
0.0111

© Partha Bhowmick

176 12. Number systems

♣ 5. rFraction to binary (infinite precision)s Extend your previous code to print the floating-point bi-
nary value of a/b as a sequence of non-periodic bits, if any, followed by the smallest periodic sequence
without repeating it. Enclose the periodic sequence within brackets. For example, represent 1/3 as
0.(01) and 7/10 as 0.1(0110).

1 #include <stdio.h>
2

3 int checkPeriodic(int p[], int q[], int j){
4 int i, r, s, u, v, periodic = 0;
5

6 for(r=0; r<j-1 && !periodic; r++)
7 for(s=r+1; s<j && !periodic; s++)
8 if(p[r] == p[s] && q[r] == q[s])
9 u = r, v = s, periodic = 1;

10

11 if(periodic){
12 for(i = 0; i < u; i++)
13 printf("%c", q[i]);
14 printf("(");
15 for(; i < v; i++){
16 printf("%c", q[i]);
17 if((i+1)%50 == 0) // It’s long sequence, so print in the new line
18 printf("\n ");
19 }
20 printf(")\n");
21 return 1;
22 }
23 return 0;
24 }
25

26 void fraction2binaryPeriodic(int a, int b) {
27 char bit;
28 int j = 0, n = 2*b;
29 int p[n], q[n]; // p[] stores the changing numerator, q[] stores the bits
30 printf("0.");
31

32 for (int i = 1; i <= n; i++) { // Compute i-th bit
33 a = a * 2;
34 if (a != 0){
35 if (a >= b) {
36 q[j] = bit = ’1’;
37 a = a - b; // Get the new proper fraction
38 }
39 else
40 q[j] = bit = ’0’;
41 p[j] = a;
42 j++;
43 if (checkPeriodic(p, q, j))
44 break;
45 }
46 else
47 break;
48 }
49 }

© Partha Bhowmick

12. Number systems 177

50

51 int main() {
52 int a, b;
53 printf("Enter a/b: ");
54 scanf("%d/%d", &a, &b);
55 fraction2binaryPeriodic(a, b);
56 return 0;
57 }

Output:

Enter a/b: 1/3
0.(01)
Enter a/b: 7/10
0.1(0110)
Enter a/b: 7/100
0.00(01000111101011100001)
Enter a/b: 7/10000
0.0000(0000001011011110000000001101000110110111000101

11010110001110001000011001011001010010101111010011
11000011011000010001001101000000010011101010010010
10100011000001010101001100100110000101111100000110
11110110100101000100011001110011100000011101011111
01101111110100100001111111110010111001001000111010
00101001110001110111100110100110101101010000101100
00111100100111101110110010111111101100010101101101
01011100111110101010110011011001111010000011111001
00001001011010111011100110001100011111100010100000
1001)

Enter a/b: 123/321
0.(01100010000101111110110011011100000111001011010111

01010011101111010000001001100100011111000110100101
000101)

To understand the mathematical reasoning of the above code, let’s prove the following statement: The binary
floating-point representation of any fraction a{b, where 0 ă a ă b, is either of finite length or eventually
periodic.
The representation is finite if and only if b is a power of 2. This is because a{b can be expressed as a sum
of unit fractions of the form 1{2k only when b is a power of 2.
Now, let’s prove that in the infinite case, the representation will be periodic. The division algorithm used to
compute the binary representation of a{b involves repeated subtraction and multiplication by 2. Since there
are at most b ´ 1 nonzero remainders when dividing by b, a particular remainder with a specific bit value
will eventually recur with the same bit value after at most 2pb´ 2q ` 1 iterations.˚ This recurrence leads to
the same sequence of bits being generated thereafter. Consequently, once the non-finite part begins, it will
repeat periodically.

˚In binary representation, each division step produces 0 or 1. Thus, any re-
mainder r will repeat after at most b´2 iterations, though its corresponding bit
may differ. However, among three consecutive occurrences of r, at least two will
correspond to the same bit. In the worst-case scenario, these two occurrences
will be the first and third instances of r, with at most 2pb ´ 2q ` 1 remainders
between them, which include other remainders as well as the second occurrence
of r.

© Partha Bhowmick

178 12. Number systems

12.5 Exercise problems

1. rNormalized representations Given a positive real number x as input, write an iterative function to
print its normalized representation. Both the input and the output are in the decimal number system.
Don’t use the math library.
Examples: 3.14159 Ñ 3.141590 e(0) | 314.159 Ñ 3.141590 e(2) | 0.00314259 Ñ 3.142590 e(-3)

2. rPositive integer to binary (iterative)s Given a positive integer n as input (as unsigned int),
write an iterative function to print its unsigned binary representation. Assume that we have 32-bit
words.

3. rInteger to sign-magnitude (iterative)s Given an integer n as input in the interval r´127, 127s,
write an iterative function to print its sign-magnitude binary representation. Assume that we have 8-bit
words.

4. rInteger to 1’s complement (iterative)s Given an integer n as input in the interval r´127, 127s,
write an iterative function to print its 1’s complement. Since 00000000 and 11111111 are both 0 in 1’s
complement, printing either of the two is fine when n is 0. Assume that we have 8-bit words.

5. rPositive integer to hex (iterative)s Given a positive integer n as input, write an iterative function
to print its unsigned hexadecimal representation.

6. rWhether exact representation existss Given a positive real number x less than 1, scan it using
the format specifier "%Lf" and check whether its exact floating-point representation exists. For example,
0.34375 has an exact binary representation (0.01011), but 0.3 has not.
Refer to the fact in §12.3.2: a finite-precision decimal number has a finite-length binary representation
if and only if the denominator of its corresponding fraction (in reduced form) is a power of 2.

♣ 7. rReal to hexadecimal (finite precision)s Given a positive real number x less than 1, scan it using
the format specifier "%Lf" (long double) and compute its floating-point representation in hexadecimal
with n digits of precision after the decimal point. The value of n is also provided by the user.
For example, if x “ 0.7 and n “ 10, your code should print 0.B333333333. If n “ 5, then it should
print 0.B3333. As shown earlier, the decimal number x “ 0.7 has no finite-precision binary value, so its
floating-point hexadecimal representation is truncated after n digits, with the digit 3 being recurring.
On the contrary, if x “ 0.34375, which has a finite-precision binary or hexadecimal value, it should print
0.58 for any n ě 2.

♣ 8. rFraction to hexadecimal (finite precision)s Given any positive proper fraction a/b (not neces-
sarily in the reduced form), scan it using the format specifier "%d/%d" and compute its floating-point
representation in hexadecimal system up to n bits of precision. The value n is provided as input by the
user.
As the number a/b may not have a finite binary representation, its floating-point hex value may not be
exact when printed, as it will be truncated after n decimal places.

© Partha Bhowmick

13 | Structures

A structure is a useful construct for grouping logically related data items, regardless of whether they are of
the same or different types. Since it mirrors the nature of the group it represents, it is called a "structure".

For example, a student record might include a name (string), roll number (string), and marks (integer),
all encapsulated within one entity. All the three datatypes here are not same, we can define the student as
a structure. This approach simplifies managing multiple student records, especially in large arrays.

Structures provide a natural way to organize related data, irrespective of type. They can be used to
define larger structures. Hence, the significance of structures extends beyond simple cases like students. For
example, we can define a 2D point as a structure with x and y coordinates. It can subsequently be used to
form geometric shapes like line segments, circles, and polygons, which require points for their definitions. For
more advanced designs, take the example of defining a vehicle structure for a video game. A vehicle might
be composed of several parts, such as an engine, wheels, and chassis. Each part could be its own structure
containing different fields, and in turn, these fields could themselves be structures. This modular design
naturally leads to hierarchical structures, ensuring all components work together in harmony and synchrony.

13.1 Structure declaration

Let’s now see how a student can be defined as a structure containing name (string), rollNum (string), and
marks (integer). Here is one of the possible ways of defining it:

struct student {
char name[30];
char rollNum[12];
int marks;

};

With the above declaration, student becomes a struct datatype. You can declare variables with the
type of a structure after declaring the structure. For example, after declaring the structure student as
shown above, you can declare two variables s1 and s2 of datatype struct student, as follows:

struct student s1, s2;

Then, you can fill up the individual fields of the variables s1 and s2 by scanning input data or by direct
assignment. For example, you can assign the fields of s1 as follows:

strcpy(s1.name, "Raman");
strcpy(s1.rollNum, "24AB001");
s1.marks = 95;

179

180 13. Structures

13.2 Structure variable declaration

A variable of structure type can be defined in either of the following ways, depending on requirements.

Separately Together (with reuse option) Together (without reuse)

struct student {
char name[30];
char rollNum[12];
int marks;

};

struct student s1, s2;

struct student {
char name[30];
char rollNum[12];
int marks;

} s1, s2;

struct {
char name[30];
char rollNum[12];
int marks;

} s1, s2;

struct student can be reused.
For example, somewhere later in
the code, you can write:
struct student s3, s4;

struct student can be reused
later, as the first one.

struct cannot be reused later
because it has no name. In the
previous two cases, it has the
name student.

13.3 The typedef construct

The typedef construct can be used to give new names to (existing) datatypes in C. For example, to define
a new datatype named speed (say, to denote speed in kilometers per hour), we can write:

typedef float speed;
speed u = 0, v = 42.50;

Some more examples of typedef are:

typedef int intarray[50];
intarray A, // A is an array of 50 integers

B[20], // B is an array of 20 arrays of 50 integers (a 20 x 50 array)
*C; // C is a pointer to an array of 50 integers

typedef int *intptr;
intptr p, // p is an int pointer

q[10], // q is an array of 10 int pointers
*r; // r is a pointer to an int pointer

The above declaration styles are usually not practiced in programming but given here to show how things
can be expressed in complicated ways. They are basically equivalent to:

int A[50], B[20][50], (*C)[50];
int *p, *q[10], **r;

13.4 Structures and typedef

The typedef keyword in C allows you to create an alias for a structure, making it easier to declare variables
of that structure type. By combining typedef with structures, we can simplify code, improve readability,
and avoid writing struct repeatedly when defining variables. Here are a couple of examples:

© Partha Bhowmick

13. Structures 181

Without typedef With typedef

struct student {
char name[30];
char rollNum[12];
int marks;

};

struct student s1, s2;

typedef struct {
char name[30];
char rollNum[12];
int marks;

} student;

student s1, s2;

Here struct student is a new datatype. Here student is a new datatype. It has be
addressed just by its name student.

Without typedef With typedef

struct complex{
float real;
float imag;

};

struct complex a, b;

typedef struct {
float real;
float imag;

} complex;

complex a, b;

Here struct complex is a new datatype. Here complex is a new datatype. It has be
addressed just by its name complex.

13.5 Operations with structure

In C, structures enable efficient data management by grouping related variables. In this section, we shall see
various operations that can be performed with structures, including initialization, assignment, and manipu-
lation of structure members, enhancing the organization and functionality of data handling.

13.5.1 Accessing the members: dot operator

The members or fields of a structure are accessed individually, as separate entities. In the following example,
the x and y coordinates of two points p and q are assigned individual values. To do this, the x and y
coordinates of p are denoted by p.x and p.y, respectively, and similarly for q.

typedef struct{
float x, y;

} point;

point p, q;
p.x = p.y = 0;
q.x = 3.5, q.y = 1.75.

The dot operator (.) is used to access members of a structure. There is another operator, denoted by ->
and referred to as arrow operator, which we shall see when dealing with pointer to structure.

© Partha Bhowmick

182 13. Structures

13.5.2 Structure initialization

Structure variables may be initialized following similar rules as array. The values are provided within braces
separated by commas. Here is an example that shows how two points are initialized during declaration:

typedef struct point{
float x, y;

};

point p = {0, 0}, q = {3.5, 1.75};

Suppose now you want to compute the distance d between p and q. You can write:

float d = sqrt((p.x - q.x)*(p.x - q.x) + (p.y - q.y)*(p.y - q.y));

13.6 Assignment of structure variables

A structure variable can be directly assigned to another variable of the same structure. By this, all the
individual members of the former get copied to the latter. Here is an example:

typedef struct point{
float x, y;

};

point p = {0, 0};
point q = p;

However, two structure variables cannot be compared with each other. For example, this is not allowed:

if (p == q) // This will give compilation error
printf("p and q are equal");

13.7 Array inside structure

A positive thing about structure is that although an array cannot be copied directly to another array, a
structure variable can be copied directly to another variable of the same structure, even if they contain
arrays. For example, this is not allowed:

int a[5] = {10, 20, 30, 40, 50};
int b[5];
b = a; // This will give compilation error

However, this is allowed:

struct list {
int x[5];

};
struct list a, b;

a.x[0] = 10; a.x[1] = 20; a.x[2] = 30; a.x[3] = 40; a.x[4] = 50;
b = a; // This is okay

© Partha Bhowmick

13. Structures 183

13.8 Size of a structure

Consider the following code:

struct student {
char name[35];
char rollNum[12];
int marks;

} s;

Calculation shows a total space of 35 ` 12 ` 4 “ 51 bytes is needed to store all the members of
struct student. However, in practice, sizeof(struct student) or sizeof(s) may yield 52 or 56 (the
nearest larger multiple of 4 or 8). The actual value depends on the computer architecture and the compiler,
and it arises due to memory alignment and padding. To enhance access speed, the compiler aligns the
structure members in memory to certain byte boundaries. In this case, the integer marks requires alignment,
leading to padding that increases the overall size of the structure to the nearest multiple of the architecture’s
alignment requirement.

Now, consider the following variation of the above example:

struct student {
char *name;
char rollNum[12];
int marks;

} s;

Assuming 64-bit addresses, the variable name requires 8 bytes to store a 64-bit pointer. The variable
rollNum takes up 12 bytes, and marks occupies 4 bytes.

At first glance, it might seem that sizeof(struct student) or sizeof(s) would be 8 ` 12 ` 4 “ 24
bytes. However, due to memory alignment and padding, the actual size of the structure may be larger, e.g.,
8 ` 16 ` 8 “ 32 bytes It’s important to note that this size is independent of how much memory you allocate
using malloc for s.name.

13.9 Array of structure

Structure is particularly useful when working with an array in which the elements are not simply a basic
datatype but a combination of various fields or members. For example, we may need an array of the student
structure that will contain a large number of students. Here is an example that shows how we can allocate
an array a[] of 100 students:

typedef struct {
char name[30];
char rollNum[12];
int marks;

} student;

student a[100];

Here is a simple code that scans the details of each student, writes them to the array a[], and then
prints all the records.

© Partha Bhowmick

184 13. Structures

1 #include <stdio.h>
2 #include <string.h>
3

4 // Define the student structure
5 typedef struct {
6 char name[30], rollNum[12];
7 int marks;
8 } student;
9

10 int main() {
11 student a[100];
12 int n, i;
13

14 printf("Enter the number of students: ");
15 scanf("%d", &n);
16

17 for (i = 0; i < n; i++) {
18 printf("Enter details for student %d:\n", i + 1);
19

20 printf("Name: ");
21 scanf("%s", a[i].name);
22 printf("Roll Number: ");
23 scanf("%s", a[i].rollNum);
24 printf("Marks: ");
25 scanf("%d", &a[i].marks);
26 }
27

28 printf("\nStudent Records:\n");
29 for (i = 0; i < n; i++) {
30 printf("Student %d:\n", i + 1);
31 printf("Name: %s\n", a[i].name);
32 printf("Roll Number: %s\n", a[i].rollNum);
33 printf("Marks: %d\n\n", a[i].marks);
34 }
35

36 return 0;
37 }

13.10 Nested structure

In C programming, structures can be nested, allowing the creation of complex data types that reflect real-
world entities more accurately. By defining a structure within another structure, developers can model
intricate relationships and hierarchies, enabling better organization of data and improving code readability.

Here is an example that shows how a structure named triangle is declared using another structure
named point:

typedef struct {
float x, y;

} point;

© Partha Bhowmick

13. Structures 185

typedef struct {
point v[3]; // three vertices
float area;

} triangle;

Suppose we need to scan the coordinates of the vertices of a triangle t and compute its area. Then, we
can write as follows:

triangle t;

for (int i = 0; i < 3; i++) {
printf("Enter the coordinates of vertex %d (x y): ", i + 1);
scanf("%f %f", &t.v[i].x, &t.v[i].y);

}

t.area = 0.5 * (t.v[0].x * (t.v[1].y - t.v[2].y) +
t.v[1].x * (t.v[2].y - t.v[0].y) +
t.v[2].x * (t.v[0].y - t.v[1].y));

t.area = (t.area < 0) ? -t.area : t.area;
printf("The area of the triangle is: %.3f\n", t.area);

13.11 Self-referencing structure

Structure containment cannot be recursive, whether directly or indirectly. For example, struct student
cannot contain struct student. Similarly, if struct student contains struct hostel, then struct hostel
cannot contain struct student.

However, a structure can contain a pointer to another structure of the same type. This is known
as self-referencing. Such pointers are extensively used to create chains and various types of linked data
structures. One notable example is the linked list, which we will explore later. For now, consider the
following example:

typedef struct nodeStudent { // A name after struct is mandatory for self-referencing
char name[30];
char rollNum[12];
int marks;
struct nodeStudent *next; // A self-referencing pointer named next

} student;

In the linked list, each node will be the structure student, and so it will contain a student’s name,
rollNum, and marks, along with next that will point to the next node in the list. This enables the formation
of a chain, where the last node points to NULL to signify the end of the list.

13.12 Structure as function argument

In this section, we see how swapping two points can be done by passing them to a swap function. If they
points are passed to the function, the desired result is not achieved in main(). The swapping performed in
the swap function does not affect the points in the calling function main(), similar to the behavior observed
with basic data types such as int or float. Below is the C code:

© Partha Bhowmick

186 13. Structures

#include <stdio.h>

typedef struct {
float x, y;

} point;

void swapPoints(point p1, point p2) {
point temp = p1;
p1 = p2;
p2 = temp;

}

int main() {
point p1 = {1.0, 2.0};
point p2 = {3.0, 4.0};

printf("Before swap: p1 = (%f, %f), p2 = (%f, %f)\n", p1.x, p1.y, p2.x, p2.y);
swapPoints(p1, p2); // Won’t swap
printf("After swap: p1 = (%f, %f), p2 = (%f, %f)\n", p1.x, p1.y, p2.x, p2.y);
return 0;

}

13.13 Pointer to structure as function argument

We observed in §13.12 that the swap function cannot exchange two entities in the caller function when
they are structures and passed directly. However, by passing pointers to these structures instead, the swap
operation can be achieved. This approach allows the function to modify the original values in the calling
function, main(), effectively performing the swap. The code below demonstrates this concept.

#include <stdio.h>

typedef struct {
float x, y;

} point;

void swapPoints(point *p1, point *p2) {
point temp = *p1;
*p1 = *p2;
*p2 = temp;

}

int main() {
point p1 = {1.0, 2.0};
point p2 = {3.0, 4.0};

printf("Before swap: p1 = (%f, %f), p2 = (%f, %f)\n", p1.x, p1.y, p2.x, p2.y);
swapPoints(&p1, &p2); // Will swap
printf("After swap: p1 = (%f, %f), p2 = (%f, %f)\n", p1.x, p1.y, p2.x, p2.y);
return 0;

}

© Partha Bhowmick

13. Structures 187

Now consider the task of swapping the coordinates of a point. To get it done, we have to again use
pointer to the structure as argument of the called function. Here is the function and its caller:

void swapCoords(point *p) {
float temp = p->x;
p->x = p->y;
p->y = temp;

}

int main() {
point p = {1.0, 2.0};
printf("Before swap: p = (%f, %f)\n", p.x, p.y);
swapCoords(&p); // Will swap the coordinates of p
printf("After swap: p = (%.1f, %.1f)\n", p.x, p.y); // Will print (2.0, 1.0)
return 0;

}

The symbol -> is called arrow operator. It is used to access members of a structure, through a structure-
type pointer. For example, p->x is needed to access the member x of p, and it is basically a shortcut for
(*p).x.

13.14 Operator Precedence

When working with structure pointers, operator precedence must be carefully considered. The dot op-
erator (.) has higher precedence than the dereferencing operator (*). While both p->x and (*p).x are
syntactically correct and equivalent, *p.x is invalid.

The arrow operator (->) is among the highest precedence operators. For instance, ++p->x increments
the x member of p. This is equivalent to ++(p->x)—you should verify this. However, if p points to a
structure in an array of structures, (++p)->x will move p to the next structure in the array and access the
x member of that next structure.

13.15 Solved problems

1. rAddition and subtraction of complex numberss Recall the definition of structure complex given
in §13.4. Use it to write a code for addition and subtraction of two complex numbers. You should write
a single user-defined function that will perform both addition and subtraction. It has to be called from
main(), and the results have to be printed from main(). The values of the complex numbers should be
taken in as input from main().

1 #include <stdio.h>
2

3 typedef struct {
4 float real;
5 float imag;
6 } complex;
7

8 void operateComplex(complex a, complex b, complex *sum, complex *dif) {
9 sum->real = a.real + b.real; sum->imag = a.imag + b.imag;

10 dif->real = a.real - b.real; dif->imag = a.imag - b.imag;
11 }

© Partha Bhowmick

188 13. Structures

12

13 int main() {
14 complex a, b, sum, dif;
15

16 printf("Enter 1st complex number (real and imaginary parts): ");
17 scanf("%f %f", &a.real, &a.imag);
18 printf("Enter 2nd complex number (real and imaginary parts): ");
19 scanf("%f %f", &b.real, &b.imag);
20

21 operateComplex(a, b, &sum, &dif);
22

23 printf("Sum = %.3f + %.3fi\n", sum.real, sum.imag);
24 printf("Difference = %.3f + %.3fi\n", dif.real, dif.imag);
25

26 return 0;
27 }

2. Recall the definition of structure student given in §13.4. Use it to write a code for the following tasks:

(i) In main(), declare an array of 100 students. Read an integer n (at most 100) and then read in
the details of n students in this array.
During insertion of each new record, use insertion sort so that the records are sorted by roll
numbers in lexicographic order.

(ii) Write a function to print the array.
(iii) Write a function to search the array for a student by roll number using binary search. If it is

found, return the corresponding index to main() and print the details from main().
It it is not found, return -1.

1 #include <stdio.h>
2 #include <string.h>
3

4 typedef struct {
5 char name[30];
6 char rollNum[12];
7 int marks;
8 } student;
9

10 void insertStudent(student a[], int n) {
11 student key;
12 for (int i = 1; i < n; i++) {
13 key = a[i];
14 int j = i - 1;
15 while (j >= 0 && strcmp(a[j].rollNum, key.rollNum) > 0) {
16 a[j + 1] = a[j];
17 j--;
18 }
19 a[j + 1] = key;
20 }
21 }
22

23 int binarySearch(student a[], int n, const char* rollNum) {
24 int left = 0, right = n - 1, mid;
25

© Partha Bhowmick

13. Structures 189

26 while (left <= right) {
27 int mid = (left + right)/2;
28

29 if (strcmp(a[mid].rollNum, rollNum) == 0)
30 return mid;
31 if (strcmp(a[mid].rollNum, rollNum) < 0)
32 left = mid + 1;
33 else
34 right = mid - 1;
35 }
36 return -1;
37 }
38

39 void printStudents(student a[], int n) {
40 printf("Students List:\n");
41 printf("---\n");
42 printf("%-30s %-12s %-5s\n", "Name", "Roll Number", "Marks");
43 printf("---\n");
44

45 for (int i = 0; i < n; i++)
46 printf("%-30s %-12s %3d\n", a[i].name, a[i].rollNum, a[i].marks);
47 }
48

49 int main() {
50 student students[100];
51 int n;
52

53 printf("Enter the number of students (at most 100): ");
54 scanf("%d", &n);
55

56 for (int i = 0; i < n; i++) {
57 printf("Student %d (name, roll number, marks): ", i + 1);
58 scanf("%s %s %d", students[i].name, students[i].rollNum, &students[i].marks);
59 }
60

61 insertStudent(students, n);
62 printStudents(students, n);
63

64 char searchRollNum[12];
65 printf("Enter the roll number to search: ");
66 scanf("%s", searchRollNum);
67

68 int index = binarySearch(students, n, searchRollNum);
69 if (index != -1) {
70 printf("Student found:\n");
71 printf("Name: %s\n", students[index].name);
72 printf("Roll Number: %s\n", students[index].rollNum);
73 printf("Marks: %d\n", students[index].marks);
74 } else {
75 printf("Student with roll number %s not found.\n", searchRollNum);
76 }
77

78 return 0;
79 }

© Partha Bhowmick

190 13. Structures

13.16 Exercise problems

1. rMultiplication and division of complex numberss Recall the definition of structure complex
given in §13.4. Use it to write a code for multiplication and division of two complex numbers. You
should write a single user-defined function that will perform both multiplication and division. It has to
be called from main(), and the results have to be printed from main(). The count and values of the
complex numbers should be taken in as input from main().

2. rSorting of pointss Write a function named QuickSortPoints that will take as arguments an array
of points (structure point given in §13.5) and the number of points. Its task is to sort the complex
numbers in lexicographic order of their radius and angle (in this order) in the polar coordinate system.
It has to be called from main(), and the Cartesian as well as the polar coordinates of the sorted points
have to be printed from main(). The count and the coordinates of the points should be taken in as
input from main(). You can use math.h.
Example of 5 points (after sorting):

Point 1: (1.000, 2.000) = Radius: 2.236, Angle: 63.435 degrees
Point 2: (-2.000, 1.000) = Radius: 2.236, Angle: 153.435 degrees
Point 3: (-2.000, -2.000) = Radius: 2.828, Angle: 225.000 degrees
Point 4: (-5.000, -5.000) = Radius: 7.071, Angle: 225.000 degrees
Point 5: (7.000, -1.000) = Radius: 7.071, Angle: 351.870 degrees

3. rLibrary system managements Write a program to manage a library system. Define a structure
book with fields like title, author, ISBN, and price. Declare a structure library containing an array of
books. The program should allow the user to add new books, search for a book by ISBN, and display
details of all books in the library.

4. rEmployee management systems Write a program that stores employee details using a nested struc-
ture. The structure employee should contain fields like name, ID, and salary, as well as a nested structure
address with fields like street, city, and postal code. The program should prompt the user to enter
details for multiple employees, then print all details.

5. rShopping cart systems Develop a program to simulate a shopping cart system. Define a structure
item with fields for name, quantity, and price. Then, create a structure cart that contains an array
of 100 items, along with the count for each item in a suitable manner. The program should calculate
the total price of items (at most 100) in the cart and print the result. It should have the provision of
choosing an item in multiple (at most 10, which is stored as its count).

♣ 6. rAirline reservation systems Write a program to manage an airline reservation system using nested
structures. Define a structure flight with fields for flight number, departure time, and destination.
Inside flight, include a nested structure passenger that holds passenger details, such as name, seat
number, and a sub-structure for contact information (address, email ID, mobile phone number). Write a
function to book a seat, ensuring that seats are not double-booked, and a function to search and display
passengers by flight number. You should create an array of flights. For every flight, use sorting and
binary search for efficiently managing the passengers by their seat numbers.

♣ 7. rMulti-level bank management systems Design a program for a multi-level bank management
system. Define a structure account with fields like account number, balance, and type of account.
Inside account, include a nested structure transaction with fields for transaction ID, date, and amount.
Further, have another nested structure branch that holds branch details such as branch ID and branch
address. Implement a function to perform deposits and withdrawals, update the account balance, and
generate a detailed report of all transactions for a specific account. Use 1D arrays wherever necessary.

♠ 8. rPolygon areas Write a program to compute and print the signed area of a simple polygon. A
positive value will indicate a counterclockwise orientation, while a negative value will denote a clockwise
orientation. The program should take in as input the vertices in sequential order, either clockwise or
counterclockwise, store them in an array of the structure point, given in §13.5. This problem can be
challenging unless you take the hint.

© Partha Bhowmick

13. Structures 191

Hint:

The Shoelace Theorem provides a formula to calculate the area of a simple (i.e., non-self-intersecting)
polygon P whose vertices are known. Given n vertices v1 to vn, either in clockwise or in counterclockwise
order, the area can be computed using a determinant-like expression:

areapP q “
1

2

∣∣∣∣x1 x2 x3 ¨ ¨ ¨ xn x1

y1 y2 y3 ¨ ¨ ¨ yn y1

∣∣∣∣ (13.1)

which basically means:

areapP q “
1

2

ˆ∣∣∣∣x1 x2

y1 y2

∣∣∣∣ `

∣∣∣∣x2 x3

y2 y3

∣∣∣∣ ` ¨ ¨ ¨ `

∣∣∣∣xn´1 xn

yn´1 yn

∣∣∣∣ `

∣∣∣∣xn x1

yn y1

∣∣∣∣˙
“

1

2

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

pxiyi`1 ´ yixi`1q

ˇ

ˇ

ˇ

ˇ

ˇ

.

(13.2)

The vertices of the polygon are represented as pairs of coordi-
nates pxi, yiq for i “ 1, 2, . . . , n, with vn`1pxn`1, yn`1q defined
as v1px1, y1q. As depicted in the inset figure, v6 is same as v1, as
there are 5 vertices. In this figure, a red edge signifies that the
area of the trapezoid below it is negative, while green indicates
a positive area. The plus and minus signs for a region indicate
how many times it has been accounted and discounted while
summing up the trapezoidal areas. For example, the region
highlighted in yellow has been accounted twice (for the edges
pv3, v4q and pv5, v6q) and also discounted twice (for pv2, v3q and
pv4, v5q), effectively contributing nothing to the area of P .

v1p“ v6q

v2

v3

v4

v5

© Partha Bhowmick

14 | Abstract Data Types

An abstract data type (ADT) is a specification of a set of organized data and the set of operations that can
be performed on that data. It is abstract because it does not depend on specific implementations. The user
only calls a function to perform an operation on the ADT, without needing to know the implementation
details. Even if the internal implementation changes, the user can still use the ADT as long as the function
interfaces remain the same. Each ADT defines a set of operations like insertion, deletion, and search, offering
efficient ways to manage and manipulate data for specific use cases.

Examples of ADT: List, Set, Stack, and Queue are the most common examples of ADT, which we
discuss here. Apart from these, there are some more, which include Priority Queues, Double-Ended Queues,
Circular Queues, Dictionaries or Maps, Trees, Graphs, and Hash Tables.

Implementation of ADT: The ADTs that we shall study here can be implemented using either arrays or
pointers (linked list, in particular). Array-based implementation is usually quicker and easier, but in some
cases, pointer-based implementation is more efficient. We shall first study the array-based implementation.

14.1 List

List is an ADT representing a sequence of data items, usually of the same type. It is indexed, meaning that
it has a first element, a second element, a third element, and so on. Thus, identical elements, if present, are
assigned different indexes. Here are some key points about list:

1. An array is one way to represent a list.
2. Advantage of array-based list: Arrays are compact, with no wastage of space, and provide easy and

constant-time access to an element if its index is known.
3. Limitations of array-based list: The size of an array must be statically or dynamically allocated. Insert-

ing or deleting an element requires shifting other elements. Linked list is an alternative implementation
to address these limitations.

A 1D array with single-valued elements, as discussed in Chapter 5, can be treated as a list. When the
array contains elements of a structure type, as explained in Chapter 13, it can also be treated as a list.
However, the typical operations on list, shown in Table 14.1, must be defined for the array.

14.2 Set

Set is an ADT representing an unordered collection of unique elements. For example, the sets t1, 2, 3u

and t3, 1, 2u are considered identical, although they are not so if treated as lists. Similar to list, set can be
implemented using a linear datatype like array. However, array-based implementation of set is sometimes not
a good option, and then more efficient implementations are done using nonlinear structures. The common
operations on a set include insertion, deletion, checking the size, and performing set operations like union,
intersection, and difference, which are shown in Table 14.2.

192

14. Abstract Data Types 193

Table 14.1: Operations on array-based list (elements are of type char).

Operation Meaning

list init() Initialize an empty list (say, L, declared and allocated in main())

int isEmpty(L) Return 1 (True) if the list L is empty, otherwise return 0 (False)

int isFull(L)
Return 1 (True) if the list L holds the maximum number of elements that it
can, otherwise return 0 (False)

char get(L, i)
Return the element at index i of the list L if it is valid, otherwise return an
error value or message

list insert(L, i, x) Insert the element x at index i of the list L

list delete(L, i) Delete the element at index i of the list L

int size(L) Return the number of elements in the list L

void print(L) Print the elements of the list L from first to last

Table 14.2: Operations on array-based set.

Operation Meaning

void insert(a, x) Insert element x into set a

void delete(a, x) Remove element x from set a

int size(a) Return number of elements in the set a

set union(a, b) Return union of sets a and b

set intersection(a, b) Return intersection of sets a and b

set difference(a, b) Return difference of sets a and b

14.3 Stack

Stack is a linear data structure that follows the last-in, first-out (LIFO) principle, where elements are
added and removed from the top. The stack is specified by the operations listed in Table 14.3, which are
implemented as functions. Stack elements can be of any datatype, similar to a list or set. A demonstration
of push and pop operations on a stack is provided in Fig. 14.1.

In an array-based implementation of stack, the following steps are performed:

1. Declare an array S[] of fixed size, say n, to serve as the stack, where n is the maximum stack-size. The
allocation can be static or dynamic.

2. Store stack elements in S[] starting from index 0.
3. Use a variable top that points to the top of the stack. If the stack contains k elements, then top“ k-1.

The value of k can be at most n when the stack is full. top“ k-1 indicates that elements S[0] to S[k-1]
belong to the stack, while S[k] to S[n-1] are not part of the stack.

4. Both push and pop operations occur at the top of the stack. The most recently pushed element will be
at the top. When an element is popped, it is removed from the stack, and top is decremented by one.

© Partha Bhowmick

194 14. Abstract Data Types

Iempty
stack

push push push push

I

I

I

I

I

I

I

I

MT
pop

top

top top

top

top

T

top = -1 top = 0 top = 1 top = 2 top = 1 top = 2

Figure 14.1: Effect of push and pop on a stack.

Table 14.3: Operations on array-based stack (elements are of type char). The actual prototypes are shown
in Code 14.54.

Operation Meaning

void init(S) Initialize an empty stack S (with its pointer as argument)

int isEmpty(S) Return 1 (True) if the stack S is empty, otherwise return 0 (False)

int isFull(S)
Return 1 (True) if the stack S holds the maximum number of elements that
it can, otherwise return 0 (False)

int push(S, x) Push the element x to the top of the stack S and adjust its top index

char pop(S) Pop the element from the top of the stack S and adjust its top index

char peek(S)
Return the element at top of the stack S if it is nonempty, otherwise return
an error value or message

Q47 Can we change the convention to fix the stack-top always at index 0?

Q48 Let S[top] = x. What is the change in S[top] just after x is popped?

14.3.1 Header Files

Header files, such as stackArray.h shown in Code 14.53, enhance modularity by organizing code into reusable
components. They act as guards to prevent multiple inclusions of the same file, avoiding redefinition errors
and compilation issues. The preprocessor directives used in Code 14.53 and their purposes are explained
below.

1. #ifndef _STACK_H: This directive checks whether the macro _STACK_H is not defined. If it is not, the
code within the guard will be processed.

2. #define _STACK_H: This defines the macro _STACK_H. Once defined, any further inclusion of the same
header file will skip its content.

3. #endif: This marks the end of the conditional block that began with #ifndef.

The header file stackArray.h is included in stackArrayOperations.c to define all its functions that
simulate the stack operations. This is shown in Code 14.54. The functions are called from main(), as shown
in Code 14.55.

© Partha Bhowmick

14. Abstract Data Types 195

Code 14.53: Stack macro written as a header (.h) file. stackArray.h

1 #ifndef _STACK_H
2 #define _STACK_H
3 #define MAXSIZE 100
4

5 typedef struct {
6 char data[MAXSIZE];
7 int top;
8 } stack;
9

10 void init(stack *);
11 int isEmpty(stack *);
12 int isFull(stack *);
13 int push(stack *, char);
14 char pop(stack *);
15 char peek(stack *);
16

17 #endif

Code 14.54: Stack operations. stackArrayOperations.c

1 #include "stackArray.h" // header file included
2

3 void init(stack *S) {
4 S->top = -1; }
5

6 int isFull(stack *S) {
7 return S->top == MAXSIZE - 1; }
8

9 int isEmpty(stack *S) {
10 return S->top == -1; }
11

12 int push(stack *S, char c) {
13 if (isFull(S)) {
14 printf("Cannot be pushed, the stack is full!\n");
15 return 0; // Indicates failure
16 }
17 S->data[++S->top] = c;
18 return 1; // Indicates success
19 }
20

21 char pop(stack *S) {
22 if (isEmpty(S)) {
23 printf("The stack is empty.\n");
24 return ’\0’; // Indicates failure
25 }
26 return S->data[S->top--];
27 }
28

29 char peek(stack *S) {
30 if (isEmpty(S)) {
31 printf("The stack is empty.\n");
32 return ’\0’; // Indicates failure
33 }
34 return S->data[S->top];
35 }

© Partha Bhowmick

196 14. Abstract Data Types

Code 14.55: The main function operating on an array-based stack. stackArrayMain.c

1 #include <stdio.h>
2 #include "stackArrayOperations.c"
3

4 int main() {
5 stack S;
6 char c, x;
7 int success;
8

9 init(&S);
10

11 while (1) {
12 printf("Choose operation (P = push | p = pop | k = peek | e = exit)\n");
13 c = getchar();
14

15 switch (c) {
16 case ’e’:
17 return 0;
18 case ’P’: {
19 scanf(" %c", &x);
20 success = push(&S, x);
21 break;
22 }
23 case ’p’:
24 success = pop(&S);
25 if (success != ’\0’)
26 printf("Popped element: %c\n", success);
27 break;
28 case ’k’:
29 success = peek(&S);
30 if (success != ’\0’)
31 printf("Peeked element: %c\n", success);
32 break;
33 default:
34 printf("Invalid choice, please provide a valid choice...\n");
35 break;
36 }
37

38 while (getchar() != ’\n’)
39 ; // It’s an empty statement, used to skip leftover newline or white space
40 }
41

42 return 0;
43 }

© Partha Bhowmick

14. Abstract Data Types 197

14.4 Queue

Queue is a linear data structure that follows the first-in, first-out (FIFO) principle. Elements are inserted at
the rear and removed from the front. Insertion refers to adding an element, which is known as the enqueue
operation, while removal refers to deleting an element, also known as the dequeue operation.

In addition to enqueue and dequeue, checking whether the queue is empty or full, similar to stacks,
is essential. Another important operation is determining the number of elements currently present in the
queue.

In a stack, both insertion and deletion occur at the top, managed by a single pointer named top. In
contrast, a queue uses two pointers: front, which tracks the first element, and rear, which tracks the last.
A macro containing the structure and operations for the queue is provided in Code 14.56. This macro can
be included as a header file in different implementations of queues, as discussed in §14.4.2 and §14.4.3.

Code 14.56: Queue macro as a header file (for both linear and circular arrays). queueArray.h

1 #ifndef _QUEUE_H
2 #define _QUEUE_H
3

4 #define MAXSIZE 12
5

6 typedef struct {
7 char data[MAXSIZE];
8 int front;
9 int rear;

10 } queue;
11

12 void init(queue *q);
13 int add(queue *q, char val);
14 int delete(queue *q);
15 int front(queue *q, char *val);
16

17 #endif

14.4.1 Applications

Queues have a broad range of applications, often outnumbering those of stacks, as the principle of waiting
in turn is fundamental in both computing and daily life. In computer systems, queues manage tasks awaiting
shared resources, such as print jobs pending on a printer, processes waiting for disk storage access, or tasks
in time-sharing systems waiting for CPU execution.

Within individual programs, queues facilitate sequential processing of multiple requests. For instance,
one task may spawn additional tasks that must be completed in order, all managed by a queue.

Moreover, queues are crucial in various computational problems. For example, they are employed in
Breadth-First Search (BFS) (beyond the scope of this course) for traversing all nodes in a graph, layer by
layer. Practical applications include packet scheduling in network routers and managing customer service
requests, where clients are served based on their position in the queue. They also simulate call centers by
organizing customer requests in the order of arrival.

In coding challenges, queues are essential for processing elements systematically. In the sliding window
maximum problem, a deque (double-ended queue) helps identify the maximum element in each window of
a specified size within an array. Queues are also valuable in job scheduling scenarios, such as implementing
round-robin task management.

© Partha Bhowmick

198 14. Abstract Data Types

front = rear = -1
initial empty queue

add ’I’ I

front rear

add ’n’, ’d’, ’i’, ’a’ I

front rear

n d i a

front rear

n d i adelete I

delete, delete, delete

front rear

an d iI

frontrear
empty queue (7 front > rear)

delete an d iI

I n d i aadd ’I’, ’n’, ’d’, ’i’, ’a’ an d iI

front rear

five successive delete

frontrear

an d iI an d iIempty queue (7 front > rear)

add ’I’, ’n’ I nan d iI an d iI

front rear

an d iI an d iI nIdelete, delete
full queue (7 rear == MAXSIZE - 1)

rear = 11 and front = 12

full queue (7 rear == MAXSIZE - 1)

0 1 2 3 4 5 6 7 8 9 10 11

Figure 14.2: Add (enqueue) and delete (dequeue) operations on a queue implemented with a linear array of 12
elements. The faded elements are present in the array but are not part of the active queue. Note
that in the last two configurations, the queue is considered full, preventing further enqueues,
even though the array is empty. This illustrates a serious limitation of this implementation.

14.4.2 Linear queue

We can implement a queue using a linear array, say q[], equipped with the pointers front and rear. Both
pointers are initialized to -1 when q[] is first created. To add an element to q[], we increment rear by one
and store the element in q[rear]. To remove an element from q[], we retrieve it from q[front] and then
increment front by one. This queue is known as a linear queue, as it is implemented using a linear array.

This implementation has a significant limitation due to the way the pointers are managed. Since both
front and rear are only incremented and never reset, they will eventually reach the end of q[]. As a
result, the queue will not accept any new elements, even though q[] may have free space. This highlights
an inherent flaw in linear array-based queue implementations. See an illustration in Figure 14.2.

© Partha Bhowmick

14. Abstract Data Types 199

Code 14.57: Queue operations on linear array. queueArrayOperations.c

1 #include "queueArray.h"
2

3 void init(queue *q) {
4 q->front = q->rear = -1;
5 }
6

7 int add(queue *q, char val) {
8 if (q->rear == MAXSIZE - 1)
9 return 0; // Queue is full

10

11 if (q->front == -1)
12 q->front = 0; // Set front to 0 if the queue was empty
13

14 q->data[++q->rear] = val;
15 return 1; // Success
16 }
17

18 int delete(queue *q) {
19 if (q->front == -1 || q->front > q->rear)
20 return 0; // Queue is empty
21

22 q->front++; // Move the front pointer forward
23 return 1; // Success
24 }
25

26 int front(queue *q, char *val) {
27 if (q->front == -1 || q->front > q->rear)
28 return 0; // Queue is empty
29

30 *val = q->data[q->front]; // Retrieve front character
31 return 1; // Success
32 }

1. #include "queueArray.h": Includes the header file defining the queue structure and constants, such
as MAXSIZE.

2. void init(queue *q): Initializes a queue by setting front and rear to -1, marking it as empty.
3. int add(queue *q, char val):

• Checks if the queue is full by comparing rear with MAXSIZE - 1.
• If the queue was empty, sets front to 0.
• Adds val to the queue by incrementing rear and storing the value in q->data.
• Returns 1 for success or 0 if the queue is full.

4. int delete(queue *q):

• Checks if the queue is empty by verifying if front is -1 or front > rear.
• If not empty, increments front to remove an element.
• Returns 1 for success or 0 if the queue is empty.

5. int front(queue *q, char *val):

• Checks if the queue is empty.
• If not, retrieves the front element in val.
• Returns 1 for success or 0 if the queue is empty.

© Partha Bhowmick

200 14. Abstract Data Types

Code 14.58: The main function for a queue (for both linear and circular arrays). queueArrayMain.c

1 #include <stdio.h>
2 #include "queueArrayOperations.c"
3

4 int main() {
5 queue q;
6 char c, x;
7 int success;
8

9 init(&q);
10

11 while (1) {
12 printf("Choose operation (a = add | d = delete | f = front | e = exit):\n");
13 c = getchar();
14

15 switch (c) {
16 case ’e’:
17 return 0;
18

19 case ’a’: {
20 printf("Enter character to add: ");
21 scanf(" %c", &x);
22 success = add(&q, x);
23 if (success)
24 printf("’%c’ added to the queue\n", x);
25 else
26 printf("Queue is full. Could not add ’%c’\n", x);
27 break;
28 }
29

30 case ’d’:
31 success = delete(&q);
32 if (success)
33 printf("Deleted an element from the queue\n");
34 else
35 printf("Queue is empty. Nothing to delete\n");
36 break;
37

38 case ’f’:
39 success = front(&q, &x);
40 if (success)
41 printf("Front element: %c\n", x);
42 else
43 printf("Queue is empty. Nothing at the front\n");
44 break;
45

46 default:
47 printf("Invalid choice, please provide a valid choice...\n");
48 break;
49 }
50

51 while (getchar() != ’\n’) ; // Empty loop to skip leftover input
52 }
53

54 return 0;
55 }

© Partha Bhowmick

14. Abstract Data Types 201

Enqueue 5 elements:
I, n, d, i, a

Dequeue
two elements

Enqueue 9 elements:
1, 9, . . . 1, 5

0

1

23

4

5

6

7

8 9

10

11

I
n

di
a

front

rear

0

1

23

4

5

6

7

8 9

10

11

I
n

di
a

front

rear

0

1

23

4

5

6

7

8 9

10

11

di
a

1

9
4

7 A
u
g

front

rear

1
5

0

1

23

4

5

6

7

8 9

10

11

front = rear = -1 front = 0, rear = 4 front = 2, rear = 4 front = 2, rear = 1
Empty queue Full queue

Figure 14.3: Enqueue (add) and dequeue (delete) operations on a circular queue of 12 elements. The faded
elements (after dequeue) are present in the array but are not part of the active queue. Note
that in the last configuration, when the queue is considered full, the array is also fully occupied
by the elements of queue. In this example, this is the first time when the value of rear becomes
less than the value of front.

14.4.3 Circular queue

The limitation of a linear array can be overcome by using a circular array. Various queue implementations
based on circular arrays, such as those in [1, 2], efficiently utilize memory by allowing the rear and front
pointers to wrap around, minimizing wasted space. This type of queue, called a circular queue, maintains
the FIFO principle and enables efficient queue management.

Here, we illustrate a simple and efficient implementation of a circular queue that fully utilizes the array.
A demonstration of the enqueue and dequeue operations is shown in Figure 14.3.

The circular queue builds on the same header (Code 14.56) and main function (Code 14.58), which are
used in linear array-based queue. The main() function simply includes the modified C file in place of the
previous one: #include "queueCirArrayOperations.c"

Only the functions implementing queue operations (Code 14.57) are adjusted to handle the array in a
circular manner. The modified code is shown in Code 14.59, with an outline of its functions provided below.

• Initialization (init):
Sets both front and rear to -1 to indicate an empty queue, initializing the queue at the start.

• Enqueue (add):
Checks if the queue is full by verifying if the next position of rear matches front:
if ((q->rear + 1) % MAXSIZE == q->front).
When adding the first element, it sets front to 0 and updates rear with:
q->rear = (q->rear + 1) % MAXSIZE;
This moves rear to the next position in a circular fashion, placing the new value in data[q->rear].

• Dequeue (delete):
First, checks if the queue is empty: if (q->front == -1).
If only one element remains, both pointers are reset to -1. Otherwise, it updates front with:
q->front = (q->front + 1) % MAXSIZE;.
This moves front to the next position, maintaining the circular arrangement.

• Accessing the front element (front):
This function retrieves the value at the front index. It checks if the queue is empty and returns the
element if it is not.

© Partha Bhowmick

202 14. Abstract Data Types

Code 14.59: Queue operations on a circular array. queueCirArrayOperations.c

1 #include "queueArray.h" // header file is same as linear array
2

3 void init(queue *q) {
4 q->front = q->rear = -1;
5 }
6

7 int add(queue *q, char val) {
8 if ((q->rear + 1) % MAXSIZE == q->front)
9 return 0; // Queue is full

10

11 if (q->front == -1) {
12 q->front = 0; // Set front to 0 if the queue was empty
13 }
14

15 q->rear = (q->rear + 1) % MAXSIZE; // Move rear circularly
16 q->data[q->rear] = val;
17 return 1; // Success
18 }
19

20 int delete(queue *q) {
21 if (q->front == -1)
22 return 0; // Queue is empty
23

24 if (q->front == q->rear) // Check if the queue is empty after deletion
25 q->front = q->rear = -1; // Reset the queue
26 else
27 q->front = (q->front + 1) % MAXSIZE; // Move front circularly
28

29 return 1; // Success
30 }
31

32 int front(queue *q, char *val) {
33 if (q->front == -1)
34 return 0; // Queue is empty
35

36 *val = q->data[q->front]; // Retrieve front character
37 return 1; // Success
38 }

© Partha Bhowmick

14. Abstract Data Types 203

14.5 Conceptual problems

14.5.1 Linear Queue Operations: In an array-based linear queue of size 10, explain the behavior of
the queue when performing the following operations in sequence:

• Enqueue 5 elements.
• Dequeue 2 elements.
• Enqueue 3 more elements.
• Dequeue all elements.

Describe the state of the front and rear pointers after each operation.

Answer: The sequence of operations is as follows:

• After enqueuing 5 elements, the queue will have elements at positions 0 to 4, and the rear will
be 4.

• After dequeuing 2 elements, the front will be at position 2, and the queue will have elements at
positions 2 to 4.

• After enqueuing 3 more elements, the queue will have elements at positions 2 to 4 and 5 to 7,
and the rear will be 7.

• After dequeuing all elements, the front and rear will both be ´1, indicating the queue is empty.

14.5.2 Queue Overflow and Underflow: Explain what happens when you try to enqueue an element
into a full queue and when you try to dequeue from an empty queue. Assume a queue implemented
with a fixed-size array.

Answer: In a fixed-size array-based queue:

• If an attempt is made to enqueue an element into a full queue, the operation will result in a
"Queue Overflow" error.

• If an attempt is made to dequeue from an empty queue, the operation will result in a "Queue
Underflow" error.

14.5.3 Circular Queue vs. Linear Queue: Compare and contrast the circular queue and linear queue
in terms of space utilization, memory usage, and handling of overflow.

Answer:

• A linear queue has a limitation that the rear pointer can only move forward and is unable to
reuse the spaces freed by dequeued elements, leading to inefficient space utilization.

• A circular queue, on the other hand, reuses the spaces freed by dequeued elements, resulting
in better space utilization. It uses modular arithmetic to wrap the pointers around when they
reach the end of the array.

14.5.4 Circular Queue Operations: Consider a circular queue of size 6. You enqueue 5 elements and
then dequeue 3 elements. After that, you enqueue 2 more elements. Describe the state of the queue
at the end (contents of the queue and positions of front and rear).

Answer: After the operations:

• After enqueuing 5 elements, the queue will have elements at positions 0 to 4, with the rear at
4 and the front at 0.

• After dequeuing 3 elements, the queue will have elements at positions 3 to 4, with the front
moved to 3 and the rear still at 4.

• After enqueuing 2 more elements, the queue will have elements at positions 3 to 5 and 0 to 1,
with the rear wrapping around to position 1 and the front remaining at 3.

14.5.5 Queue and Stack Differences: Describe the primary differences between a queue and a stack
in terms of their structure, order of element access, and typical use cases.

© Partha Bhowmick

204 14. Abstract Data Types

Answer:

• A queue follows a First-In-First-Out (FIFO) order, meaning the element that is enqueued first
will be dequeued first.

• A stack follows a Last-In-First-Out (LIFO) order, meaning the element that is pushed last will
be popped first.

• Queues are typically used in situations like task scheduling and resource management, while
stacks are used in recursive function calls, undo operations, and syntax parsing.

14.5.6 Stack Overflow and Underflow: Explain what happens when you try to push an element
into a full stack and when you try to pop an element from an empty stack. Assume the stack is
implemented with a fixed-size array.

Answer: In a fixed-size array-based stack:

• If an attempt is made to push an element into a full stack, the operation will result in a "Stack
Overflow" error.

• If an attempt is made to pop an element from an empty stack, the operation will result in a
"Stack Underflow" error.

14.5.7 Stack Operations: Push and Pop: Describe the sequence of stack operations for the following
actions:

• Push 4 elements onto an empty stack.
• Pop 2 elements.
• Push 3 more elements.
• Pop all elements.

What will be the stack content and top pointer after each operation?

Answer: After the operations:

• After pushing 4 elements, the stack will have elements at positions 0 to 3, and the top pointer
will be 3.

• After popping 2 elements, the stack will have elements at positions 0 to 1, and the top pointer
will be 1.

• After pushing 3 more elements, the stack will have elements at positions 0 to 5, and the top
pointer will be 5.

• After popping all elements, the stack will be empty, and the top pointer will be ´1.

14.5.8 Evaluating Postfix Expressions: Describe how to evaluate a postfix expression using a stack.
For example, given the expression 6 5 2 3 + 8 * + 3 + *, show the sequence of operations and
the final result.

Answer: To evaluate a postfix expression:

• Traverse each element of the expression.
• Push numbers onto the stack, say S.
• When an operator is encountered, pop the required number of operands, apply the operator,

and push the result back onto the stack.
• Continue until the end of the expression. The final result will be the only element left on the

stack.

For 6 5 2 3 + 8 * + 3 + *, the sequence of operations is:

• Push 6, 5, 2, and 3: S = {6, 5, 2, 3} with S.top = 3.
• Encounter +: Pop 3 and 2, push 5: S = {6, 5, 5} with S.top = 5.
• Push 8: S = {6, 5, 5, 8} with S.top = 8.

© Partha Bhowmick

14. Abstract Data Types 205

• Encounter *: Pop twice to get 8 and 5, multiply them to get 40, push 40: S = {6, 5, 40}
with S.top = 40.

• Encounter +: Pop twice to get 40 and 5, push their sum 45: S = {6, 45} with S.top = 45.
• Push 3, then encounter +: Pop 3 and 45, push their sum 48: S = {6, 48} with S.top = 48.
• Encounter *: Pop twice to get 48 and 6, push their product 288: S = {288}.
• No more elements in the sequence, pop to get the final result: 288.

14.5.9 Detecting a Circular Queue Overflow Condition: In a circular queue implementation (with-
out any extra slot or cell), explain how you can differentiate between a full and empty queue when
using a fixed-size array.
Answer: To detect overflow and underflow conditions in a circular queue using a fixed-size array
(without any extra slot or cell), see §14.4.3 and Code 14.59. Here is the idea:

• When the queue is empty, both front == -1 and rear == -1.
• When the queue is full, the condition (rear + 1) % size == front is used. This indicates

that the next position after rear will overwrite front, meaning the queue is full.
• When an element is dequeued, front is updated using (front + 1) % size.
• When the queue is empty after a dequeue operation, both front and rear are reset to -1.

14.5.10 Checking Palindromes Using Stack: Explain how a stack can be used to check if a string is
a palindrome. For example, show the process for a string like level.
Answer: To check if a string is a palindrome using a stack S:

• First, find the length of the string, denoted as n.
• Push the first n

2 characters of the string onto the stack.
• If n is odd, skip the next character.
• For the second half of the string, pop each character from the stack and compare it with the

corresponding character in the second half.
• If all characters match, the string is a palindrome.

For the string level, where n “ 5:

• First, push the first n
2 “ 2 characters onto the stack:

– Push l: Now S = [l].
– Push e: Now S = [l, e].

• Next, pop and compare the characters with the second half of the string:

– Pop e: Compare with the leftover character (e). They match.
– Pop l: Compare with the next leftover character (l). They match.

Since all characters match, the string level is a palindrome.

♣14.5.11 Simulating Browser Back Button and Forward Button with Stacks: Describe how two
stacks can be used to implement the back and forward buttons of a web browser.
Answer: To simulate browser navigation:

• Use one stack for the history (back stack) and another for the forward stack.
• When a page is visited, push it onto the back stack and clear the forward stack.
• For the back button, pop from the back stack and push it onto the forward stack, displaying

the previous page.
• For the forward button, pop from the forward stack and push it onto the back stack.

♣14.5.12 Implementing a Min Stack: Describe how to design a stack that supports retrieving the
minimum element in constant time, along with regular push and pop operations. How would you

© Partha Bhowmick

206 14. Abstract Data Types

handle both efficiency and memory usage?
Answer: To implement a min stack:

• Maintain two stacks: the main stack and a min stack.
• For push, add the element to the main stack. Also, push it onto the min stack if it is smaller

than or equal to the current top of the min stack.
• For pop, remove the element from the main stack. Also pop the min stack if the popped element

matches its top.
• Retrieve the minimum element by looking at the top of the min stack.
• This approach uses Opnq space for the additional min stack, but all operations are Op1q.

Consider a sequence of operations with duplicates:

(i) Push 2 Ñ Main Stack: [2], Min Stack: [2]
(ii) Push 1 Ñ Main Stack: [2, 1], Min Stack: [2, 1] (since 1 is a new minimum)
(iii) Push 1 Ñ Main Stack: [2, 1, 1], Min Stack: [2, 1, 1] (duplicate minimum)
(iv) Push 3 Ñ Main Stack: [2, 1, 1, 3], Min Stack: [2, 1, 1] (no change in minimum)
(v) Pop Ñ Main Stack: [2, 1, 1], Min Stack: [2, 1, 1]

(vi) Pop Ñ Main Stack: [2, 1], Min Stack: [2, 1]

(vii) Pop Ñ Main Stack: [2], Min Stack: [2]

© Partha Bhowmick

14. Abstract Data Types 207

14.6 Solved problems

14.6.1 rBalanced Parenthesess Given a string containing only three types of parentheses, determine
whether it is balanced. For example, "[()]{}" is balanced, but "([)]{}" and "[]({)}" are not.
Use a stack to push open parentheses and ensure each has a corresponding close by popping them
appropriately.

1 #include <stdio.h>
2 #include <stdbool.h>
3

4 #define MAXSIZE 100
5

6 typedef struct {
7 char data[MAXSIZE];
8 int top;
9 } Stack;

10

11 void init_stack(Stack *s) { s->top = -1; }
12 void push(Stack *s, char c) { s->data[++(s->top)] = c; }
13 char pop(Stack *s) { return s->data[(s->top)--]; }
14

15 bool is_balanced(const char *exp) {
16 Stack s;
17 init_stack(&s);
18

19 for (int i = 0; exp[i] != ’\0’; i++) {
20 char current = exp[i];
21

22 if (current == ’(’ || current == ’[’ || current == ’{’)
23 push(&s, current);
24 else if (current == ’)’ || current == ’]’ || current == ’}’) {
25 if (s.top == -1)
26 return false;
27

28 char top = pop(&s);
29 if ((current == ’)’ && top != ’(’) ||
30 (current == ’]’ && top != ’[’) ||
31 (current == ’}’ && top != ’{’))
32 return false;
33 } // end else-if
34 } // end for
35 return s.top == -1;
36 }
37

38 int main() {
39 char exp[MAXSIZE];
40 printf("Enter an expression: ");
41 scanf("%s", exp);
42 printf("%s.\n", is_balanced(exp) ? "Balanced" : "Not balanced");
43

44 return 0;
45 }

© Partha Bhowmick

208 14. Abstract Data Types

♣14.6.2 rInfix to Postfixs An infix expression is an arithmetic expression in which an operator is posi-
tioned between its operands, for example, 1+2. Generally, if op1 and op2 are two operands and opr
is the operator, the infix expression can be represented as (op1 opr op2). Note that enclosing an
infix expression in parentheses is always safe, as it allows the expression to be treated as an operand
in another expression.
A postfix expression, also known as Reverse Polish Notation, places operators after their respective
operands. Therefore, the structure is represented as op1 op2 opr, such as in the example 12+.
The advantage of postfix notation is that it eliminates the need for parentheses to indicate operator
precedence, allowing for evaluation from left to right using a stack. We shall see it soon.
The objective is to convert a given infix expression into a postfix expression. Assume that the
infix expression will contain the digits 1 through 9 as operands, along with the operators +, -, *,
and /, as well as parentheses (and). Also assume that the provided infix expression is properly
parenthesized and valid.
Here are some examples:
Infix Postfix
1+2*3 123*+
(1+2)*(3-4) 12+34-*
1+2*3-4 123*+4-
(((1*9-4)/(7*8)+1/5)/((1-9)*(4+7))) 19*4-78*/15/+19-47+*/

Algorithm: Use a stack to handle operators and parentheses as you scan the infix expression from left
to right. Here are the steps:

(i) Send any operand directly to the postfix.
(ii) For operators, pop elements from the stack until the stack top has an operator with lower

precedence. Then, push the current operator.
(iii) Push (directly onto the stack, and on encountering), pop all elements until a (is encountered.

This approach ensures that the expression is correctly converted to postfix with proper operator prece-
dence. The algorithm operates in linear time with respect to the length of the infix expression.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4

5 #define MAX 100
6

7 char stack[MAX]; // It’s declared globally to make the code smaller.
8 int top = -1; // Not a conventional way of defining a stack.
9

10 int isEmpty() {
11 return top == -1;
12 }
13

14 void push(char c) {
15 stack[++top] = c;
16 } // assuming no overflow
17

18 char pop() {
19 if (top >= 0)
20 return stack[top--];
21 return ’\0’; // Return null character if stack is empty
22 }
23

© Partha Bhowmick

14. Abstract Data Types 209

24 int precedence(char c) { // Function to check the precedence of operators
25 if (c == ’+’ || c == ’-’) return 1;
26 if (c == ’*’ || c == ’/’) return 2;
27 return 0; // non-operators
28 }
29

30 int isDigit(char c) {
31 return c >= ’1’ && c <= ’9’;
32 }
33

34 void infixToPostfix(char* infix, char* postfix) {
35 int i, j = 0;
36

37 for (i = 0; infix[i]; i++) {
38 if (isDigit(infix[i]))
39 postfix[j++] = infix[i];
40

41 else if (infix[i] == ’(’)
42 push(infix[i]);
43

44 else if (infix[i] == ’)’) {
45 while (!isEmpty()) {
46 char topChar = pop(); // Pop the top element
47 if (topChar == ’(’) break; // Stop if it’s ’(’
48 postfix[j++] = topChar; // Otherwise, add it to output
49 }
50 }
51

52 else { // the character is an operator
53 while (!isEmpty() && precedence(stack[top]) >= precedence(infix[i]))
54 postfix[j++] = pop();
55 push(infix[i]);
56 }
57 }
58

59 // Pop all the operators from the stack
60 while (!isEmpty())
61 postfix[j++] = pop();
62

63 postfix[j] = ’\0’; // Null-terminate the postfix string
64 }
65

66 int main() {
67 char infix[MAX], postfix[MAX];
68

69 printf("Enter an infix expression (digits 1-9): ");
70 scanf("%s", infix);
71

72 infixToPostfix(infix, postfix);
73 printf("Postfix expression: %s\n", postfix);
74

75 return 0;
76 }

© Partha Bhowmick

210 14. Abstract Data Types

14.6.3 rEvaluate postfix expressions As stated in Problem 14.6.2, in a postfix expression, operators
appear after their respective operands. Given a postfix expression, the task is to compute its real
value as a floating point number.
Assume that the expression contains the digits 1 through 9 as operands, along with the operators
+, -, *, and /. Also assume that the provided expression is valid. Here are the same example
expressions as in Problem 14.6.2 and their values computed from the postfix expressions using the
code given below:
Infix Postfix Value
1+2*3 123*+ 7.000000
(1+2)*(3-4) 12+34-* -3.000000
1+2*3-4 123*+4- 3.000000
(((1*9-4)/(7*8)+1/5)/((1-9)*(4+7))) 19*4-78*/15/+19-47+*/ -0.003287

Algorithm: Use a stack to evaluate the postfix expression as you scan it from left to right. For each
token in the expression:

(i) If the token is an operand, push it onto the stack.
(ii) If the token is an operator, pop the top two operands from the stack and apply the operator to

these operands.
(iii) Push the result back onto the stack.
(iv) After processing all tokens, the stack will contain one element, which is the final value of the

expression.
This approach guarantees that the expression is evaluated correctly based on the order of operations
inherent in postfix notation. The algorithm operates in Opnq time, where n is the number of tokens in
the postfix expression.

1 #include <stdio.h>
2 #include <stdlib.h>
3

4 #define MAX 100
5

6 float stack[MAX]; // It’s declared globally to make the code smaller.
7 int top = -1; // Not a conventional way of defining a stack.
8

9 int isEmpty() {
10 return top == -1;
11 }
12

13 void push(float x) {
14 stack[++top] = x;
15 } // assuming no overflow
16

17 float pop() {
18 if (top >= 0)
19 return stack[top--];
20 return 0; // Stack is empty
21 }
22

23 float evaluatePostfix(char* expression) {
24 for (int i = 0; expression[i]; i++) {
25 if (expression[i] >= ’0’ && expression[i] <= ’9’) {
26 push((float)(expression[i] - ’0’));
27 } else { // It’s an operator, pop the top two elements from the stack

© Partha Bhowmick

14. Abstract Data Types 211

28 float operand2 = pop();
29 float operand1 = pop();
30 float result;
31

32 switch (expression[i]) {
33 case ’+’: result = (float)operand1 + operand2; break;
34 case ’-’: result = (float)operand1 - operand2; break;
35 case ’*’: result = (float)operand1 * operand2; break;
36 case ’/’:
37 if (operand2 != 0) result = (float)operand1 / operand2;
38 else {
39 printf("Error: Division by zero\n"); return 0;}
40 break;
41 default: result = 0; // Invalid operator
42 }
43 push(result);
44 }
45 }
46 return pop();
47 }
48

49 int main() {
50 char expression[MAX];
51 printf("Enter a postfix expression (digits and operators): ");
52 scanf("%s", expression); // Use scanf to read input, avoids newline
53 float result = evaluatePostfix(expression);
54 printf("Result: %f\n", result);
55 return 0;
56 }

♣14.6.4 rNetwork Packet Schedulings Implement a packet scheduler using a circular queue of size 5 for
a network interface. The scheduler should ensure that packets are sent in the correct order, and
as new packets are added, old packets are removed as needed to manage memory efficiently within
the circular queue.
The input data will consist of letters and digits and other characters, ending with a newline charac-
ter, and each packet, except possibly the last, should contain exactly 12 characters from the input
data.

Explanation: Network packet scheduling is essential for efficiently managing the order and timing
of data transmission. A packet scheduler organizes packets so they can be transmitted smoothly
over the network, avoiding delays. Here, a circular queue is used, allowing the scheduler to reuse
space continuously as packets are processed. This approach ensures the correct ordering of packets
and prevents memory overflow by discarding old packets when new data arrives.

Here is an example:
Enter data (end with newline):
India@1947-August-15-Independence&Division-J&K-Jinnah-Nehru-Mountbatten-Treaty...
Sending packet: India@1947-A
Sending packet: ugust-15-Ind
Sending packet: ependence&Di
Sending packet: vision-J&K-J
Sending packet: innah-Nehru-
Sending packet: Mountbatten-
Sending packet: Treaty...
--- End --- All packets despatched ---

© Partha Bhowmick

212 14. Abstract Data Types

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4 #include <unistd.h> // to simulate sleep
5

6 #define MAX_PACKETS 5
7 #define PACKET_SIZE 12
8

9 typedef struct {
10 char packets[MAX_PACKETS][PACKET_SIZE + 1]; // +1 for null terminator
11 int front, rear;
12 } CircularQueue;
13

14 // Function to initialize the circular queue
15 void init_queue(CircularQueue *q) {
16 q->front = 0;
17 q->rear = 0;
18 }
19

20 // Function to add a packet to the circular queue
21 int add_packet(CircularQueue *q, const char *packet) {
22 int next_rear = (q->rear + 1) % MAX_PACKETS; // Calculate next rear position
23 if (next_rear == q->front) {
24 printf("Queue is full. Cannot add packet: %s\n", packet);
25 return 0; // Queue is full
26 }
27 strncpy(q->packets[q->rear], packet, PACKET_SIZE); // Copy the packet
28 q->packets[q->rear][PACKET_SIZE] = ’\0’; // Ensure null termination
29 q->rear = next_rear; // Update rear
30 return 1; // Success
31 }
32

33 // Function to send (remove) a packet from the circular queue
34 void send_packet(CircularQueue *q) {
35 if (q->front == q->rear) {
36 printf("Queue is empty. No packet to send.\n");
37 return; // Queue is empty
38 }
39 printf("Sending packet: %s\n", q->packets[q->front]);
40 q->front = (q->front + 1) % MAX_PACKETS; // Update front to remove the sent packet
41 }
42

43 int main() {
44 CircularQueue queue;
45 init_queue(&queue);
46

47 char data[1000]; // To hold user input
48 printf("Enter data (end with newline):\n");
49

50 // Read input data
51 fgets(data, sizeof(data), stdin);
52

53 // Remove newline character from the input

© Partha Bhowmick

14. Abstract Data Types 213

54 size_t len = strlen(data);
55 if (len > 0 && data[len - 1] == ’\n’) {
56 data[len - 1] = ’\0’; // Replace newline with null terminator
57 }
58

59 // Process input for packet creation
60 size_t total_length = strlen(data);
61 for (size_t i = 0; i < total_length; i += PACKET_SIZE) {
62 char packet[PACKET_SIZE + 1]; // +1 for null terminator
63

64 // Copy up to PACKET_SIZE characters from the input
65 size_t j;
66 for (j = 0; j < PACKET_SIZE; j++) {
67 if (i + j < total_length) {
68 packet[j] = data[i + j]; // Fill packet with characters
69 } else {
70 packet[j] = ’\0’; // Ensure remaining space is null-terminated
71 break; // Exit loop if we reach the end of the string
72 }
73 }
74

75 // Null terminate the packet to avoid any garbage values
76 packet[j] = ’\0’;
77

78 // Add packet to the queue
79 if (add_packet(&queue, packet)) {
80 // Simulate sending a packet after a delay
81 sleep(1); // Wait for 1 second
82 send_packet(&queue); // Send the packet
83 }
84 }
85

86 // Send any remaining packets in the queue
87 while (queue.front != queue.rear) {
88 send_packet(&queue);
89 sleep(1); // Optional delay for simulation
90 }
91 printf("--- End --- All packets despatched ---\n");
92

93

94 return 0;
95 }

♠14.6.5 rNext Greater Elements Given an array of n nonzero integers, find the next greater element
(NGE) for each element. Total time complexity should be Opnq. Assume that n ď 100.
For example, if the array contains 7 elements: 1 5 8 1 9 4 7, the output should be 5 8 9 9 - 7 -.

Algorithm: Use a stack and process elements from the last to the first. For each element a[i], pop
elements from the stack that are smaller than or equal to a[i], as they cannot serve as the NGE for
any preceding elements. After these elements are popped, the top of the stack represents the NGE of
a[i]. Now push a[i] onto the stack to allow it to serve as the NGE for any preceding elements.

The operations of push and pop justify the linear time complexity. Each element is pushed onto the
stack exactly once and, once popped, is not pushed again. Thus, the total number of push and pop
operations is at most 2n. Since each push and pop operation takes constant time, the overall complexity
is linear.

© Partha Bhowmick

214 14. Abstract Data Types

1 #include <stdio.h>
2 #define MAX 100
3

4 int stack[MAX], top = -1; // It’s declared globally to make the code smaller :)
5 // Not a conventional way of defining a stack :(
6

7 void push(int value) { stack[++top] = value; } // assuming no overflow
8 int pop() { return stack[top--]; } // assuming no underflow
9 int isEmpty() { return top == -1; }

10

11 void nextGreaterElement(int a[], int n) {
12 int nge[MAX];
13

14 for (int i = n - 1; i >= 0; i--) {
15 while (!isEmpty() && stack[top] <= a[i])
16 pop();
17 nge[i] = isEmpty() ? 0 : stack[top];
18 push(a[i]);
19 printf("top (%d) = %d\n", top, (top < 0) ? 0 : stack[top]);
20 }
21

22 for (int i = 0; i < n; i++)
23 if (nge[i] == 0)
24 printf("- ");
25 else
26 printf("%d ", nge[i]);
27 }
28

29 int main() {
30 int n, a[MAX];
31

32 printf("Enter the number of elements: ");
33 scanf("%d", &n);
34

35 printf("Enter the elements:\n");
36 for (int i = 0; i < n; i++)
37 scanf("%d", &a[i]);
38

39 nextGreaterElement(a, n);
40 return 0;
41 }

© Partha Bhowmick

15 | Linked Lists

A linked list consists of a linear collection of entities, or nodes, all of the same type. Each node contains a
pointer or link to the next node, establishing an ordered chain or sequence.

The physical placement of the nodes in memory is independent of their sequence. This provides flexibility
to allocate space from available free memory as required. Linked lists are particularly useful in scenarios
where the data size can change dynamically.

Linked lists can take various forms, as outlined below. Both doubly linked lists and circular linked lists
include additional pointers that optimize specific operations.

1. Singly linked list: The most basic form of linked list,
where each node points to the next node only.
(Unless mentioned otherwise, the phrase “linked list”
typically refers to a “singly linked list”.)

2. Doubly linked list: Each node has two pointers—one
to the next node and one to the previous, allowing
bidirectional traversal.

3. Circular linked list: Links the last node back to the
first node, forming a loop, which enables continu-
ous traversal. If it’s made doubly linked, we get
doubly linked circular list, which allows continuous
traversal in both directions.

datahead

head

head

data data data

data

data data data

data

From top to bottom: singly linked list, doubly linked
list, and circular linked list. Each of them has three
nodes. For singly linked and circular linked lists,
each node has a pointer, while for the doubly linked
form, each node has two pointers.

15.1 Essence of linked lists

Linked lists are used for efficient implementation of any abstract data type (ADT), such as lists, stacks, and
queues. For any such ADT, data may need to be arbitrarily inserted or removed, which may eventually
increase in size to an extent where contiguous memory allocation is not possible, making arrays unsuitable.
Linked lists, in such cases, serve the purpose because they do not require contiguous memory allocation.

We discuss below some relevant details of linked lists to understand their merits, demerits, and appli-
cability.

15.1.1 Scope and programmability

The C language has particular strengths in working with linked lists due to its support for pointers, which
allow direct access and manipulation of memory addresses. This enables a high degree of control over
memory management, making C a suitable choice for creating and managing linked lists. Linked lists can
also be implemented in other languages, including C++, Java, and Python. In these languages, linked lists
are generally implemented with classes and object references.

215

216 15. Linked Lists

However, not all programming languages provide direct support for linked lists as part of their standard
library. For example, JavaScript does not offer built-in linked list support, although a linked list can still
be created manually by defining nodes as objects. The flexibility of linked lists makes them a versatile data
structure, adaptable across various programming languages.

15.1.2 Advantages of linked lists

1. Ease of insertion and deletion: Elements can be easily inserted or removed from any position in a linked
list without requiring reallocation or reorganization of the entire structure, unlike arrays, where inserting
or deleting an element typically involves shifting elements. In particular, inserting an element at the
beginning of an array takes linear time because of shifting the existing elements, whereas for linked list
it’s a constant-time operation.

2. No need for contiguous memory: Linked lists do not require contiguous memory allocation, making
them advantageous in cases where memory is fragmented.

3. Dynamic size: Linked lists can grow or shrink in size dynamically, which makes them more memory-
efficient than arrays when the size of the dataset is unpredictable.

15.1.3 Disadvantages of linked lists

1. Linear access time: Accessing an element in a linked list requires iterating from the head of the list to
the desired position, resulting in linear time complexity in the worst case and average case. In contrast,
arrays offer constant-time access with indexing.
For a sorted array, binary search can be utilized to efficiently locate an element. However, in the case
of a linked list, even if the elements are sorted, we must rely on linear search. This limitation poses a
serious bottleneck for linked lists.

A potential solution is to use linked trees, such as bi-
nary search trees (BST), which allow efficient binary
search similar to that in sorted arrays. (The details of
BSTs are beyond the scope of this course.)

2. Higher memory usage: Each node in a linked list must store a reference (link) to the next node, resulting
in additional memory overhead compared to arrays.

3. Poor cache locality: Linked lists lack the contiguous memory layout of arrays, which can lead to poor
cache performance during traversal since elements are scattered throughout memory.

15.1.4 Comparison with array-based datatypes

1. Lists: As elements are added or removed, a linked list resizes itself dynamically in constant time. In
contrast, an array-based list requires reallocation or shifting of elements, which may take linear time.

2. Stacks: A stack implemented with a linked list can grow without limit (within available memory) and
does not need to manage capacity. An array-based stack, however, requires an initial capacity, and
resizing or expanding the array involves reallocating memory.

3. Queues: A doubly linked list with a rear pointer allows efficient insertion at the rear and removal from
the front, making it ideal for implementing queues with minimal overhead. Array-based queues require
handling wraparounds in circular implementations or shifting elements, which can be inefficient for large
or frequently changing data sizes.

© Partha Bhowmick

15. Linked Lists 217

15.2 Node of a linked list

As mentioned in the very beginning of this chapter, each member of a linked list is referred to as a
node. All nodes have the same type, defined using struct or typedef struct. The defined structure
is a self-referential structure because the structure refers to itself in its definition.

Following are the usual ways to define a self-referential structure for a student record, modified from
the structure definition of student given in Chapter 13. This self-referential can be utilized to define and
create nodes in a linked list.

Without typedef With typedef

struct student{
char name[30];
char rollNum[12];
int marks;
struct student *next;

};

typedef struct student{
char name[30];
char rollNum[12];
int marks;
struct student *next;

} student;

typedef struct{
char name[30];
char rollNum[12];
int marks;
struct student *next;

} student;

Here struct student is a new
datatype with a self-referential
structure.

Here student is a new datatype
with a self-referential structure.
This version is the traditional
way of defining structures.

Here student is a new datatype
with a self-referential structure.
Available in newer versions of C
(C99 and later).

All three approaches define a node in a linked list where each node contains student data and a pointer
to the next node. The name next is conventional (but not mandatory) for the pointer that points each node
to the next one in the list. We shall see soon how the pointers are used for different operations on linked
lists. Before that, let’s understand how the definition works with typedef for the traditional version.

1. Structure definition: When we define the structure with typedef struct student { ... }, we are
creating a type called struct student and simultaneously giving it a typedef alias of student.

2. Self-reference: Inside the structure definition, struct student *next; refers to the type written in the
very beginning: struct student, which we are currently defining. The compiler understands that we
are referring to the same structure that is being defined at that moment.

3. Use of typedef: After this typedef, we can refer to this structure as student without needing to prefix
it with struct. However, within the structure definition itself, we still need to use struct student to
refer to the type because it hasn’t been fully defined yet (to the compiler) in the context of the member
declarations.

Nevertheless, to avoid the nuances of aliasing, many programmers prefer to define the structure in the most
traditional way, as follows:

Most traditional

typedef struct student_tag{
char name[30];
char rollNum[12];
int marks;
struct student_tag *next;

} student;

In this style, student_tag acts as a tag for
the structure definition, allowing the com-
piler to recognize the type during the defi-
nition of its members. On the other hand,
student serves as the typedef-name that
can be used to conveniently refer to the
structure throughout the rest of the code.

© Partha Bhowmick

218 15. Linked Lists

Code 15.60: An example of main() function for creating a linked list. linkedList_minimal_main.c

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4

5 typedef struct {
6 char name[30];
7 char rollNum[12];
8 int marks;
9 struct student* next; // Pointer to the next node

10 } student;
11

12 int main() {
13 student *head = NULL; // Initialize an empty linked list
14

15 // Additional operations (e.g., inserting nodes) would follow here
16

17 return 0;
18 }

15.3 Operations on linear linked list

A linked list supports various operations to manage the data it stores. Here, we describe these operations,
including creating a list, inserting into it, deleting elements, searching, and any additional operations such
as displaying the elements.

1. Creating: Initializing an empty linked list by setting the head pointer to NULL.
2. Inserting: Adding new nodes to the linked list in various positions: at the beginning, at the end, or at

a specific position.
3. Deleting: Removing nodes from the linked list, whether from the beginning, end, or a specified location.
4. Searching: Finding a specific node based on certain criteria, such as a matching roll number.
5. Displaying: Traversing the list to view all nodes’ data.

In the following subsections, we discuss each of these operations in detail.

15.3.1 Creating a linked list

To create a linked list, we first declare a pointer of the same type as its node structure. This pointer is named
head (by usual convention, but it’s not mandatory), because it points to the first node of a nonempty linked
list. When the list is empty—that is, when it is just created but has no nodes—the head doesn’t store any
valid address and contains just NULL. To illustrate this, a minimal example of the main() function is given
in Code 15.60. In this example, we initialize an empty linked list by setting the head pointer (declared as
student *head) to NULL. This serves as the starting point for further operations, such as inserting nodes
into the list.

15.3.2 Inserting at the beginning of a linked list

Insertion in a linked list can occur at different positions: at the beginning, at the end, or at a specific position.
Insertion at the beginning is the simplest among these. The function is given in Code 15.61 and a detailed
demonstration is provided in Figure 15.1 and Figure 15.2. The driver code main() is shown in Code 15.62,
which is a modified version of Code 15.60.

© Partha Bhowmick

15. Linked Lists 219

1st call
&head, "Ram", "BC5114", 26

Changes in the linked list
Arguments of

insertAtBeginning(...)
passed from main()

2nd call
&head, "Laxman", "BC5116", 28

3rd call
&head, "Bharat", "BC5117", 23 head NULL

Laxman
BC5116

28

Ram
BC5114

26

Bharat
BC5117

23

head NULL
Laxman
BC5116

28

Ram
BC5114

26

head NULL
Ram

BC5114
26

Before call
(creation of linked list in main())

student *head = NULL;
head NULL

Figure 15.1: Inserting nodes at the beginning of an initially empty linked list, by calling the function
insertAtBeginning(...) from main(). See Figure 15.2 for further details.

Code 15.61: The function to insert a node at the beginning of a linked list. linkedList_insertBeginFun.c

1 void insertAtBeginning(student **head, char name[], char rollNum[], int marks) {
2 student *newNode = (student *)malloc(sizeof(student));
3 strcpy(newNode->name, name);
4 strcpy(newNode->rollNum, rollNum);
5 newNode->marks = marks;
6 newNode->next = *head;
7 *head = newNode;
8 }

Code 15.62: The driver code main() for inserting nodes at the beginning of a linked list.
linkedList_Insert_Display_main.c

1 int main() {
2 student *head = NULL; // Initialize an empty linked list
3 char name[30], rollNum[12], choice;
4 int marks;
5

6 do {
7 printf("Enter student name, roll number, marks: ");
8 scanf("%s%s%d", name, rollNum, &marks);
9 insertAtBeginning(&head, name, rollNum, marks);

10 printf("Do you want to add another student? (y/n): ");
11 scanf(" %c", &choice); // Mind the gap while scanning with %c
12 } while (choice == ’y’ || choice == ’Y’);
13

14 return 0;
15 }

© Partha Bhowmick

220 15. Linked Lists

newNode

Bharat
newNode

Bharat
BC5117newNode

Bharat
BC5117

23
newNode

head NULL
Laxman
BC5116

28

Ram
BC5114

26

Bharat
BC5117

23
newNode

head NULL
Laxman
BC5116

28

Ram
BC5114

26

Bharat
BC5117

23
newNode

Arguments passed from main() to
insertAtBeginning(...)

Line 3
strcpy(newNode->name, name);

Line 5
newNode->marks = marks;

Line 4
strcpy(newNode->rollNum, rollNum);

Line 6
newNode->next = *head;

Line 7
*head = newNode;

Line 2
student *newNode

= (student *)malloc(sizeof(student));

Changes in the linked list

The node created in Line 2
by malloc is pointed to
by newCode. It is cre-
ated within the called func-
tion but persists in mem-
ory after the function ter-
minates, allowing it to be-
come part of the linked
list being constructed in
main(). Observe that head
is a pointer and the address
of this pointer is passed
from main().

Caution!
First assign the value of head to next of newNode.

After that, reset head.

This implies the newly inserted node
becomes the first node in the new list

Figure 15.2: Steps of inserting a new node at the beginning of a linked list with currently two nodes.
The function call from main() is:
insertAtBeginning(&head, "Bharat", "BC5117", 23);.

15.3.3 Inserting at the end of a linked list

Inserting a node at the end of a linked list involves creating a new node and initializing it with the given
data fields. The process starts by checking if the list is empty. If it is, the new node is simply assigned as
the head of the list. However, if the list already contains nodes, a temporary pointer is used to traverse from
the head node to the last node in the list. Once the last node is identified (where its next pointer is NULL),
the next pointer of this last node is updated to point to the new node. Finally, the new node’s next pointer
is set to NULL to mark it as the end of the list. The function is given in Code 15.63.

© Partha Bhowmick

15. Linked Lists 221

Code 15.63: The function to insert a node at the end of a linked list. linkedList_insertEndFun.c

1 void insertAtEnd(student **head, char name[], char rollNum[], int marks) {
2

3 // Allocate memory for the new node
4 student *newNode = (student *)malloc(sizeof(student));
5

6 // Set node field values
7 strcpy(newNode->name, name); // Set name
8 strcpy(newNode->rollNum, rollNum); // Set roll number
9 newNode->marks = marks; // Set marks

10 newNode->next = NULL; // New node will be last, so next is NULL
11

12 // If the list is empty, new node becomes the head
13 if (*head == NULL) {
14 *head = newNode;
15 return;
16 }
17

18 // Traverse to the end of the list
19 student *endNode = *head;
20 while (endNode->next != NULL) {
21 endNode = endNode->next;
22 }
23

24 // Link the last node’s next to the new node
25 endNode->next = newNode;
26 }

15.3.4 Inserting in an ordered linked list

The function is given in Code 15.64. This is a little more complex than the previous two cases. Here are the
steps:

1. Create a new node with the specified data value to be inserted.
2. Check if the list is empty or if the new data is smaller than or equal to the head node’s data. If either

condition holds, insert the new node at the beginning of the list by making it the new head. This step
ensures that the list remains in ascending order.

3. Traverse the list to find the correct position for insertion if the new data is greater than the head’s data.
Start from the head and move through each node until you find a node with a data value greater than
the new data or reach the end of the list. This position will maintain the ordered sequence.

4. Insert the new node by adjusting the pointers so that the current node points to the new node, and the
new node points to the next node in the list.

Code 15.64: The function to insert a node in an ordered linked list. linkedList_insertOrdFun.c

1 void insertInOrder(student **head, char name[], char rollNum[], int marks) {
2 // Create a new node
3 student *newNode = (student *)malloc(sizeof(student));
4 strcpy(newNode->name, name);
5 strcpy(newNode->rollNum, rollNum);
6 newNode->marks = marks;
7 newNode->next = NULL;

© Partha Bhowmick

222 15. Linked Lists

8

9 // Case 1: Insert at the beginning if list is empty or if new data is smallest
10 if (*head == NULL || (*head)->marks >= marks) {
11 newNode->next = *head;
12 *head = newNode;
13 return;
14 }
15

16 // Case 2: Find the insertion point
17 student *current = *head;
18 while (current->next != NULL) {
19 if (current->next->marks < marks)
20 current = current->next;
21 else
22 break;
23 }
24

25 // Insert the new node
26 newNode->next = current->next;
27 current->next = newNode;
28 }

15.3.5 Deleting from a linked list

Deletion in a linked list, similar to insertion, can occur at various positions: the beginning, the end, or
a specific node. Among these, deletion of a specific node requires a little deeper understanding. Let’s
concentrate on this scenario, while the other cases are left as exercises. Its function is provided in Code 15.65,
along with an explanation below. The input consists of a roll number corresponding to the node that needs
to be deleted and the head of the linked list.

1. Check if the list is empty. If it is, there is no node to delete.
2. Traverse the list to identify the node with the specified roll number. Start from the head and move

through each node, comparing the roll number of each node with the specified roll number until you
find a match or reach the end of the list.

3. Delete the identified node by adjusting the pointers. If the node to be deleted is the head, update the
head pointer to point to the next node in the list. If the node is found elsewhere in the list, update the
previous node’s next pointer to skip over the node being deleted and point to the subsequent node.

4. Free the memory allocated for the deleted node to prevent memory leaks.

Code 15.65: The function to delete a node from a linked list. linkedList_delete_rollNumFun.c

1 void deleteByRollNum(student **head, char rollNum[]) {
2 student *current = *head;
3 student *previous = NULL;
4

5 // Traverse the list to find the node to delete
6 while (current != NULL && strcmp(current->rollNum, rollNum) != 0) {
7 previous = current;
8 current = current->next;
9 }

10

11 // If rollNum not found
12 if (current == NULL) {
13 printf("Student with roll number %s not found.\n", rollNum);

© Partha Bhowmick

15. Linked Lists 223

14 return;
15 }
16

17 // If node to be deleted is the head node
18 if (previous == NULL)
19 *head = current->next;
20 else
21 previous->next = current->next;
22

23 free(current);
24 printf("Student with roll number %s deleted successfully.\n", rollNum);
25 }

15.3.6 Searching in a linked list

To search for a node in the linked list, we traverse the list and compare each node’s data with the target
value. The function searchByRollNum to search for a student node in a linked list by roll number is provided
in Code 15.66. The function takes the head of the linked list and a roll number as parameters. It returns a
pointer to the student node if found, or NULL if not. Here are the steps:

1. Traversal: A pointer current is initialized to traverse the list starting from the head.
2. Comparison: Inside the while loop, the function compares the rollNum of the current node with the

specified roll number using strcmp. If a match is found, the function returns the pointer to that student
node.

3. Moving to next node: If the roll number does not match, the current pointer is moved to the next
node in the list.

4. Return NULL: If the end of the list is reached without finding a match, the function returns NULL,
indicating that the student was not found.

Code 15.66: The function to search a node in a linked list. linkedList_search_rollNumFun.c

1 student* searchByRollNum(student *head, char rollNum[]) {
2 student *current = head;
3

4 while (current != NULL) {
5 if (strcmp(current->rollNum, rollNum) == 0)
6 return current;
7 current = current->next;
8 }
9

10 return NULL; // Student is not found
11 }

15.3.7 Displaying a Linked List

Displaying a list is helpful to view the list after certain operations. The function displayList to display all
records in the linked list is shown in Code 15.67. The head pointer, passed to this function from main(), is
used by the function to access the first node of the list and print its data. Afterward, it uses the next pointer
of the first node to move to the second node, if it exists, and repeats the process until it reaches the end of
the list. The end of the linked list is identified when the address of the current node is equal to NULL.

© Partha Bhowmick

224 15. Linked Lists

Code 15.67: The function to display all records in the linked list. linkedList_displayFun.c

1 void displayList(student *head) {
2 student *current = head;
3 while (current != NULL) {
4 printf("Name: %s, Roll Number: %s, Marks: %d\n",
5 current->name, current->rollNum, current->marks);
6 current = current->next;
7 }
8 }

The function displayList has the pointer to head as the argument. It uses a similar pointer variable
named current and initializes its value with the value stored in head. The pointer current visits each node
starting from the first, and prints the values stored in the data fields: current->name, current->rollNum,
and current->marks. Since current is a pointer, the data fields in every node are accessed by the arrow
operator (->) instead of the dot operator (.). The usages of these operators are mentioned earlier in §13.5.1
and §13.13.

15.4 Stack as a linked list

In §15.3, we explored how various operations on a linear list are implemented through functions. This
provides a clear understanding of how a stack can be effectively implemented using a linked list. In this
context, the top of the stack corresponds to the head of the list, with the push and pop operations realized
as functions for the insertion and deletion of nodes at the beginning of the list. The code for stack based on
linear linked list is given in Code 15.68.

Code 15.68: The function to search a node in a linked list. stack_pushpop_llist.c

1 #include <stdio.h>
2 #include <stdlib.h>
3

4 typedef struct Node {
5 int data;
6 struct Node *next; // Self-reference
7 } Node;
8

9 void push(Node **top, int value) {
10 Node *newNode = (Node *)malloc(sizeof(Node));
11 newNode->data = value;
12 newNode->next = *top;
13 *top = newNode;
14 printf("Pushed %d onto the stack.\n", value);
15 }
16

17 int pop(Node **top) {
18 if (*top == NULL) {
19 printf("Stack is empty. Cannot pop.\n");
20 return -1; // Return an invalid value or handle error appropriately
21 }
22 Node *temp = *top;
23 int poppedValue = temp->data;
24 *top = (*top)->next;
25 free(temp);

© Partha Bhowmick

15. Linked Lists 225

26 printf("Popped %d from the stack.\n", poppedValue);
27 return poppedValue;
28 }
29

30 int main() {
31 Node *stack = NULL; // Initialize an empty stack
32 char choice;
33 int value;
34

35 do {
36 printf("\nEnter ’P’ to push, ’p’ to pop, or ’e’ to exit: ");
37 scanf(" %c", &choice); // Notice the space before %c to consume any leading whitespace
38

39 switch (choice) {
40 case ’P’:
41 printf("Enter a value to push: ");
42 scanf("%d", &value);
43 push(&stack, value);
44 break;
45 case ’p’:
46 pop(&stack);
47 break;
48 case ’e’:
49 printf("Exiting.\n");
50 break;
51 default:
52 printf("Invalid choice. Please try again.\n");
53 }
54 } while (choice != ’e’);
55

56 return 0;
57 }

15.5 Queue as a linked list

The operations enqueue (to add an element) and dequeue (to remove an element) are implemented as insertion
and deletion operations on the linked list. To optimize efficiency, we maintain an additional pointer, termed
rear, which points to the last node of the list.

Dequeue operations occur at the front of the queue, tracked by the head pointer, while enqueue op-
erations are performed at the rear end using the rear pointer. This design allows us to avoid traversing
the entire list for each enqueue operation. The implementation of the queue based on a linear linked list is
provided in Code 15.69.

Code 15.69: The function to search a node in a linked list. queue_enqdeq_llist.c

1 #include <stdio.h>
2 #include <stdlib.h>
3

4 typedef struct Node {
5 int data;
6 struct Node *next; // Self-reference
7 } Node;
8

9 void enqueue(Node **head, Node **rear, int value) {

© Partha Bhowmick

226 15. Linked Lists

10 Node *newNode = (Node *)malloc(sizeof(Node));
11 newNode->data = value;
12 newNode->next = NULL;
13

14 // If the queue is empty, both head and rear point to the new node
15 if (*rear == NULL)
16 *head = *rear = newNode;
17 else {
18 (*rear)->next = newNode; // Link the new node at the end of the queue
19 *rear = newNode; // Move rear to point to the new node
20 }
21 printf("Enqueued %d to the queue.\n", value);
22 }
23

24 int dequeue(Node **head, Node **rear) {
25 if (*head == NULL) {
26 printf("Queue is empty. Cannot dequeue.\n");
27 return -1; // Return an invalid value or handle error appropriately
28 }
29

30 Node *temp = *head;
31 int dequeuedValue = temp->data;
32 *head = (*head)->next; // Move head to the next node
33

34 // If the queue becomes empty, reset rear to NULL
35 if (*head == NULL) {
36 *rear = NULL;
37 }
38

39 free(temp);
40 printf("Dequeued %d from the queue.\n", dequeuedValue);
41 return dequeuedValue;
42 }
43

44 int main() {
45 Node *head = NULL; // Initialize head of the queue
46 Node *rear = NULL; // Initialize rear of the queue
47 char choice;
48 int value;
49

50 do {
51 printf("\nEnter ’e’ to enqueue, ’q’ to dequeue, or ’x’ to exit: ");
52 scanf(" %c", &choice); // Notice the space before %c to consume any leading whitespace
53

54 switch (choice) {
55 case ’e’:
56 printf("Enter a value to enqueue: ");
57 scanf("%d", &value);
58 enqueue(&head, &rear, value);
59 break;
60 case ’q’:
61 dequeue(&head, &rear);
62 break;
63 case ’x’:
64 printf("Exiting.\n");
65 break;
66 default:
67 printf("Invalid choice. Please try again.\n");
68 }

© Partha Bhowmick

15. Linked Lists 227

69 } while (choice != ’x’);
70

71 return 0;
72 }

15.6 Solved problems

Unless mentioned, assume the following node structure for all problems here.

typedef struct Node {
int data;
struct Node* next;

} Node;

15.6.1 rReverse a linked lists Write a function to reverse a singly linked list. The function should take
the head of the list as input and return the new head after reversing the list.
Example:
Original list: 1 -> 9 -> 4 -> 7 -> NULL
Reversed list: 7 -> 4 -> 9 -> 1 -> NULL

1 Node* reverseList(Node* head) {
2 Node* prev = NULL;
3 Node* current = head;
4 Node* next = NULL;
5

6 while (current != NULL) {
7 next = current->next;
8 current->next = prev;
9 prev = current;

10 current = next;
11 }
12 return prev;
13 }

15.6.2 rMerge two linked listss Write a function that merges two linked lists into a single linked list.
The input will be the heads of the two linked lists, and the output should be the head of the first
list, with the second list appended at the end. Assume both input lists are nonempty.
Example:
List 1: 1 -> 9 -> 4 -> 7 -> NULL
List 2: 0 -> 8 -> NULL
Merged List: 1 -> 9 -> 4 -> 7 -> 0 -> 8 -> NULL

1 Node* mergeLists(Node* head1, Node* head2) {
2 Node* tail = head1;
3 while (tail->next != NULL)
4 tail = tail->next;
5 tail->next = head2;
6 return head1;
7 }

© Partha Bhowmick

228 15. Linked Lists

♣15.6.3 rPolynomial additions Given two polynomials represented as linked lists where each node con-
tains a coefficient and an exponent, write a function to add the two polynomials and return the
resulting polynomial as a new linked list. For example, the polynomial 3x5 ` 2x2 ` x ` 1 will have
4-node list for its three terms and x9 ` 4x2 will have a 2-node list for its two terms, and should
return x9 ` 3x5 ` 6x2 ` x` 1 in a linked list of five nodes. This is particularly useful when polyno-
mials have large coefficients but just a few terms. Assume that the coefficients and exponents are
all integers.
Example:
Enter the first polynomial:
Enter the number of terms in the polynomial: 4
Enter coefficient and exponent (e.g., 3 2 for 3x^2): 3 5
Enter coefficient and exponent (e.g., 3 2 for 3x^2): 2 2
Enter coefficient and exponent (e.g., 3 2 for 3x^2): 1 1
Enter coefficient and exponent (e.g., 3 2 for 3x^2): 1 0
Enter the second polynomial:
Enter the number of terms in the polynomial: 2
Enter coefficient and exponent (e.g., 3 2 for 3x^2): 1 9
Enter coefficient and exponent (e.g., 3 2 for 3x^2): 4 2
Resultant Polynomial: 1x^9 + 3x^5 + 6x^2 + 1x^1 + 1

1 #include <stdio.h>
2 #include <stdlib.h>
3

4 typedef struct Node {
5 int coef, exp;
6 struct Node* next;
7 } Node;
8

9 Node* createNode(int coef, int exp) {
10 Node* newNode = (Node*)malloc(sizeof(Node));
11 newNode->coef = coef, newNode->exp = exp, newNode->next = NULL;
12 return newNode;
13 }
14

15 void appendNode(Node** head, int coef, int exp) {
16 Node* newNode = createNode(coef, exp);
17 if (*head == NULL)
18 *head = newNode;
19 else {
20 Node* temp = *head;
21 while (temp->next != NULL)
22 temp = temp->next;
23 temp->next = newNode;
24 }
25 }
26

27 Node* addPolynomials(Node* poly1, Node* poly2) {
28 Node* result = NULL;
29 Node* p1 = poly1;
30 Node* p2 = poly2;
31

32 while (p1 != NULL && p2 != NULL) {
33 if (p1->exp == p2->exp) { // Exponents are the same, add coefficients

© Partha Bhowmick

15. Linked Lists 229

34 appendNode(&result, p1->coef + p2->coef, p1->exp);
35 p1 = p1->next;
36 p2 = p2->next;
37 } else if (p1->exp > p2->exp) { // Add the term from poly1
38 appendNode(&result, p1->coef, p1->exp);
39 p1 = p1->next;
40 } else { // Add the term from poly2
41 appendNode(&result, p2->coef, p2->exp);
42 p2 = p2->next;
43 }
44 }
45

46 // Append any remaining terms from poly1 or poly2
47 while (p1 != NULL) {
48 appendNode(&result, p1->coef, p1->exp);
49 p1 = p1->next;
50 }
51 while (p2 != NULL) {
52 appendNode(&result, p2->coef, p2->exp);
53 p2 = p2->next;
54 }
55

56 return result;
57 }
58

59 void printPolynomial(Node* head) {
60 Node* temp = head;
61 while (temp != NULL) {
62 if (temp->exp == 0) {
63 printf("%d", temp->coef);
64 } else {
65 printf("%dx^%d", temp->coef, temp->exp);
66 }
67 if (temp->next != NULL && temp->next->coef > 0) {
68 printf(" + ");
69 }
70 temp = temp->next;
71 }
72 printf("\n");
73 }
74

75 Node* createPolynomial() {
76 Node* head = NULL;
77 int n, coef, exp;
78

79 printf("Enter the number of terms in the polynomial: ");
80 scanf("%d", &n);
81

82 for (int i = 0; i < n; i++) {
83 printf("Enter coefficient and exponent (e.g., 3 2 for 3x^2): ");
84 scanf("%d %d", &coef, &exp);
85 appendNode(&head, coef, exp);
86 }
87

© Partha Bhowmick

230 15. Linked Lists

88 return head;
89 }
90

91 int main() {
92 printf("Enter the first polynomial:\n");
93 Node* poly1 = createPolynomial();
94 printf("Enter the second polynomial:\n");
95 Node* poly2 = createPolynomial();
96 Node* result = addPolynomials(poly1, poly2);
97 printf("Resultant Polynomial: ");
98 printPolynomial(result);
99 return 0;

100 }

15.7 Exercise problems

Unless mentioned, assume the following node structure for all problems here.

typedef struct Node {
int data;
struct Node* next;

} Node;

15.7.1 rMerge Two Sorted Linked Listss Write a function to merge two sorted linked lists into a single
sorted linked list. The merged list can be a new list, requiring extra space. The input will be the
heads of the two linked lists, and the output should be the head of the merged list. Assume neither
input list is empty.

15.7.2 rMerging Two Sorted Linked Lists In-Places Improve your code for Problem 15.7.1 to merge
two sorted linked lists into a single sorted linked list without using any additional space (other than
pointers).

15.7.3 rImplement a doubly linked lists Create a doubly linked list with the following functionalities:
insert at the beginning, insert at the end, delete a node by value, and print the list in both forward
and backward directions.

15.7.4 rCreate a circular linked lists Implement a function to create a circular linked list from an
array of integers. The function should return the head of the new circular linked list.

15.7.5 rRotate a doubly linked lists Write a function to rotate a doubly linked list by k positions.
The function should take the head of the list and the integer k as input and return the new head
of the rotated list. For example, list 3 Ñ 5 Ñ 8 Ñ 2 Ñ 1 will be become 1 Ñ 3 Ñ 5 Ñ 8 Ñ 2 if
rotated by k “ 1.

15.7.6 rRemoving the nth node from the ends Implement a function to remove the nth node from
the end of a linked list. The function should handle cases where n is equal to the length of the
list, as well as other scenarios. For example, for a linked list 1 Ñ 2 Ñ 3 Ñ 4 Ñ 5 and n “ 2, the
resulting list should be 1 Ñ 2 Ñ 3 Ñ 5.

15.7.7 rIntersection of two linked listss Given two linked lists, determine the nodes at which the two
lists intersect. Implement an efficient solution that traverses each list only once. The lists are singly
linked and may have different lengths.

♣15.7.8 rPolynomial multiplications Implement a function to multiply two polynomials represented as
linked lists. Each node should represent a term of the polynomial, as in Problem 15.6.3. Assume
that the coefficients and exponents are all integers.

♣15.7.9 rReversing a linked list in groupss Write a function to reverse a linked list in groups of a given
size k. If the number of nodes is not a multiple of k, the remaining nodes at the end should remain

© Partha Bhowmick

15. Linked Lists 231

in their original order. For example, for a linked list 1 Ñ 2 Ñ 3 Ñ 4 Ñ 5 and k “ 2, the resulting
list should be 2 Ñ 1 Ñ 4 Ñ 3 Ñ 5.

♣15.7.10 rPartitioning a linked lists Given a linked list and a value x, partition the list such that all
nodes less than x come before nodes greater than or equal to x. Assume that all have distinct data.
The original relative order of nodes should be preserved. For example, for the linked list 3 Ñ 5 Ñ

8 Ñ 7 Ñ 10 Ñ 2 Ñ 1 and x “ 5, the resulting list may be 3 Ñ 2 Ñ 1 Ñ 5 Ñ 8 Ñ 7 Ñ 10.
♠15.7.11 rDetect a cycle in a linked lists Write a function to determine if a given singly linked list

contains a cycle (i.e., the last node points back to some node). The code is efficient if you do not
use any auxiliary list but use a few variables only.

♠15.7.12 rSparse matrix multiplication using linked listss A sparse matrix is one in which only a few
elements are nonzero, and only those are represented by nodes in a linked list. Each node contains
the following information:

• row: Row index of the element.
• col: Column index of the element.
• val: Value p‰ 0q at the given row and column.

Given two compatible sparse matrices A and B, represented as linked lists, write a function that
takes their heads as input, computes the product C “ A ˆ B, and returns the head of the linked
list for C.
As mentioned earlier, only non-zero entries should be stored in the linked list representation. You
need to employ efficient traversal and multiplication for sparse structures, taking advantage of the
linked list format to minimize operations on zero elements.
Example:

»

–

0 0 1 0
0 2 0 3
0 0 0 5

fi

fl

loooooooomoooooooon

A

ˆ

»

–

0 2 0
3 0 0
0 1 0

fi

fl

looooomooooon

B

“

»

–

0 6 3
12 0 8
15 0 0

fi

fl

loooooomoooooon

C

While running the code, the above input and output should look as follows:
Enter Matrix A:
0 0 1 0
0 2 0 3
0 0 0 5

Enter Matrix B:
0 2 0
3 0 0
0 1 0

Resulting Matrix C:
C =
(1, 2) -> 6
(1, 3) -> 3
(2, 1) -> 12
(2, 3) -> 8
(3, 1) -> 15

© Partha Bhowmick

Bibliography

[1] R. L. Kruse, B. P. Leung, and C. L. Tondo. Data Structures and Program Design in C. Prentice-Hall of
India Private Limited, New Delhi, 1991.

[2] Y. Langsam, M. J. Augenstein, and A. M. Tenenbaum. Data Structures using C and C++. Prentice-Hall
of India, New Delhi, 2000.

232

	Introduction
	Computer
	Components of a computer
	Algorithm and flowchart
	Computer program
	Exercise problems

	Variables and expressions
	Variables
	Data types
	Constants
	Statements
	Operands, operators, expressions
	Precedence of arithmetic operators
	Type casting
	Types of expressions
	Solved problems
	Exercise problems

	Conditionals
	Solved problems
	Exercise problems

	Loops
	Syntax of codeColorwhile loop and codeColordo-codeColorwhile loop
	Syntax of codeColorfor loop
	codeColorbreak and codeColorcontinue
	Nested loops
	Solved problems
	Exercise problems

	One-dimensional arrays
	What is array?
	Why array?
	Declaring arrays
	Initializing arrays
	Accessing and working with arrays
	Solved problems
	Exercise problems

	Functions
	What is function?
	Defining a function
	Execution of a Function
	Prototype versus Definition
	The codeColorreturn statement
	Local and global variables
	Scope of a variable
	Parameter passing
	Passing by value
	Passing by reference

	Recursive function
	Activation record and recursion stack
	Tower of Hanoi
	Direct and indirect recursion
	Mutual recursion

	Passing an array to a function
	Macros (codeColor#define)
	codeColor#define with arguments
	Extra topics
	Generating random input using codeColorrand
	codeColormain() with arguments

	Solved problems
	Exercise problems

	Strings
	Characters and strings
	Declaring a string
	Initializing a string
	Reading strings with codeColor%s
	Reading strings with white spaces
	String library
	codeColorstrlen
	codeColorstrcpy
	codeColorstrcat

	Solved problems
	Exercise problems

	Pointers
	What is a pointer?
	Types of pointer
	Use of pointer
	Operations with pointers and dereferenced pointers
	Dereferencing

	Pointer to 1D array
	Usefulness
	Indexing with pointer

	Pointer arithmetic
	Scale factor: codeColorsizeof()
	Passing pointers to a function
	Dynamic memory allocation
	Memory Allocation Functions
	Dynamic memory allocation and error handling

	Solved problems
	Exercise problems

	Two-dimensional arrays
	Examples
	Declaration (static)
	Initialization
	Operations
	2D array storage
	Passing 2D arrays to functions
	Dynamic memory allocation for 2D array
	Declaration (dynamic): A summary
	Arrays with higher dimension
	Solved problems
	Exercise problems

	Searching in 1D array
	Linear search
	Binary search
	Solved problems
	Exercise problems

	Sorting
	Bubble Sort: A basic sorting algorithm
	Selection Sort (Version 1)
	Selection Sort (Version 2)
	Insertion Sort: Another basic sorting algorithm
	Quick Sort
	Merge Sort
	Classification of sorting algorithms
	Recursive vs Iterative Algorithms
	Exercise problems

	Number systems
	Representation of Integers
	Decimal number system
	Octal number system
	Hexadecimal number system
	Conversion from decimal number system
	Conversion from decimal to binary
	Unsigned binary number system
	Word of CPU
	Signed number
	Sign-magnitude
	1's complement numeral
	2's complement numeral
	Word extension in 2's complement
	Carry-out and overflow in 2's complement
	10's complement

	Decimal numbers: Standard floating-point representation
	Floating-point representation versus fixed-point representation

	Binary numbers: Normalized floating-point representation
	Data classes and normalization
	Examples
	codeColornan
	About codeColorinf, codeColor+0, codeColor-0

	Solved problems
	Exercise problems

	Structures
	Structure declaration
	Structure variable declaration
	The codeColortypedef construct
	Structures and codeColortypedef
	Operations with structure
	Accessing the members: dot operator
	Structure initialization

	Assignment of structure variables
	Array inside structure
	Size of a structure
	Array of structure
	Nested structure
	Self-referencing structure
	Structure as function argument
	Pointer to structure as function argument
	Operator Precedence
	Solved problems
	Exercise problems

	Abstract Data Types
	List
	Set
	Stack
	Header Files

	Queue
	Applications
	Linear queue
	Circular queue

	Conceptual problems
	Solved problems

	Linked Lists
	Essence of linked lists
	Scope and programmability
	Advantages of linked lists
	Disadvantages of linked lists
	Comparison with array-based datatypes

	Node of a linked list
	Operations on linear linked list
	Creating a linked list
	Inserting at the beginning of a linked list
	Inserting at the end of a linked list
	Inserting in an ordered linked list
	Deleting from a linked list
	Searching in a linked list
	Displaying a Linked List

	Stack as a linked list
	Queue as a linked list
	Solved problems
	Exercise problems

