# Supervised Random Walks 

Pawan Goyal

CSE, IITKGP

October 7th, 2016

## Correlation Discovery by random walk

## Problem definition

Estimate the importance/affinity of node "B" with respect to another node "A" in the graph.

## Correlation Discovery by random walk

## Problem definition

Estimate the importance/affinity of node "B" with respect to another node "A" in the graph.

Framework: Random walk with restarts

- Goal: Compute the importance of node "B" for node "A"


## Correlation Discovery by random walk

## Problem definition

Estimate the importance/affinity of node "B" with respect to another node "A" in the graph.

Framework: Random walk with restarts

- Goal: Compute the importance of node "B" for node "A"
- Consider a random walker that starts from node "A", choosing among the available edges every time


## Correlation Discovery by random walk

## Problem definition

Estimate the importance/affinity of node "B" with respect to another node "A" in the graph.

Framework: Random walk with restarts

- Goal: Compute the importance of node "B" for node "A"
- Consider a random walker that starts from node "A", choosing among the available edges every time
- Except that, before he makes a choice, with probability $c$, he goes back to node "A" (restart)


## Random walk with restarts

- Let $u_{A}(B)$ denote the steady state probability that the random walker will find himself at node " $B$ ".


## Random walk with restarts

- Let $u_{A}(B)$ denote the steady state probability that the random walker will find himself at node " $B$ ".
- $u_{A}(B)$ is what we want, the importance of " B " with respect to " A ".


## Random walk with restarts

- Let $u_{A}(B)$ denote the steady state probability that the random walker will find himself at node " $B$ ".
- $u_{A}(B)$ is what we want, the importance of " $B$ " with respect to " $A$ ".
- $u_{A}=\left(u_{A}(1), \ldots, u_{A}(N)\right)$


## Random walk with restarts

- Let $u_{A}(B)$ denote the steady state probability that the random walker will find himself at node " $B$ ".
- $u_{A}(B)$ is what we want, the importance of " $B$ " with respect to " $A$ ".
- $u_{A}=\left(u_{A}(1), \ldots, u_{A}(N)\right)$
- Steady-state vector: $u_{A}=\left(1-c_{r}\right) u_{A} A+c_{r} v_{A}$


## Random walk with restarts

- Let $u_{A}(B)$ denote the steady state probability that the random walker will find himself at node " $B$ ".
- $u_{A}(B)$ is what we want, the importance of " $B$ " with respect to " $A$ ".
- $u_{A}=\left(u_{A}(1), \ldots, u_{A}(N)\right)$
- Steady-state vector: $u_{A}=\left(1-c_{r}\right) u_{A} A+c_{r} v_{A}$
- A: transition matrix, $c_{r}$ : restart probability, $v_{A}$ : restart vector with all its $N$ elements zero except for the entry corresponding to node $A$.


## Choice of restart probability $c_{r}$

- $c_{r}$ controls how "far" the walk wanders from the seed node $s$ before it restarts and jumps back to $s$
- High values of $c_{r}$ give very short and local random walks, while low values allow the walk to go further away.


## Choice of restart probability $c_{r}$

- $c_{r}$ controls how "far" the walk wanders from the seed node $s$ before it restarts and jumps back to $s$
- High values of $c_{r}$ give very short and local random walks, while low values allow the walk to go further away.


## A good choice

Depends on the diameter of the graph. A good choice would follow $\left(1-c_{r}\right)^{d}=0.045$, where $d$ is the diameter.
$d=6 \rightarrow c_{r}=0.4, d=19 \rightarrow c_{r}=0.15$

## The problem of link prediction and recommendation

## The problem of link prediction and recommendation

## Link Prediction

- We are given a snapshot of a social network at time $t$


## The problem of link prediction and recommendation

## Link Prediction

- We are given a snapshot of a social network at time $t$
- We seek to predict the edges that will be added to the network during the interval from time $t$ to a future time $t^{\prime}$


## The problem of link prediction and recommendation

## Link Prediction

- We are given a snapshot of a social network at time $t$
- We seek to predict the edges that will be added to the network during the interval from time $t$ to a future time $t^{\prime}$
e.g. we are given a large network, say Facebook, at time $t$ and for each user we would like to predict what new edges (friendships) that particular user will create between $t$ and $t^{\prime}$


## The problem of link prediction and recommendation

## Link Prediction

- We are given a snapshot of a social network at time $t$
- We seek to predict the edges that will be added to the network during the interval from time $t$ to a future time $t^{\prime}$
e.g. we are given a large network, say Facebook, at time $t$ and for each user we would like to predict what new edges (friendships) that particular user will create between $t$ and $t^{\prime}$


## Link Recommendation Problem

The same problem can also be viewed as a link recommendation problem, where we aim to suggest to each user a list of people that the user is likely to create new connections to.

## Challenges Involved

## Sparsity

Real networks are really sparse, in Facebook, a typical user is connected to about 100-200 out of more than 500 million nodes

## Challenges Involved

## Sparsity

Real networks are really sparse, in Facebook, a typical user is connected to about 100-200 out of more than 500 million nodes

Can it be modeled using network features only?
New edges in Facebook social network

## Creation of New Links: Important questions

How do network and node features interact?

- How important it is to have common interests and characteristics?


## Creation of New Links: Important questions

How do network and node features interact?

- How important it is to have common interests and characteristics?
- How important it is to be in the same social circle and be "close" in the network in order to eventually connect.


## Creation of New Links: Important questions

## How do network and node features interact?

- How important it is to have common interests and characteristics?
- How important it is to be in the same social circle and be "close" in the network in order to eventually connect.
- Develop a method that combines the features of nodes (user profile) and edges (interaction) with the network structure


## Supervised Random Walks

## Basic Idea

In a supervised way, learn how to bias a PageRank-like random walk on the network so that it visits given nodes (positive training examples) more often than the others.

## Supervised Random Walks

## Basic Idea

In a supervised way, learn how to bias a PageRank-like random walk on the network so that it visits given nodes (positive training examples) more often than the others.

- Use node and edge features to learn edge strengths.
- Random walk on such a weighted network will be more likely to visit "positive" than "negative" nodes.
- Link Prediction: 'positive': nodes to which new edges will be created in the future, negative: all other nodes.
- Link recommendation: 'positive': nodes to which user clicks on


## Learning Task

Training data
A source node $s$ is given, along with the training examples to which $s$ will create links in the future.

## Learning Task

Training data
A source node $s$ is given, along with the training examples to which $s$ will create links in the future.

## Goal

Learn a function that assigns a strength (random walk probability) to each edge.

## Link Prediction: Baseline Approaches

Link Prediction as a classification task

- Take nodes to which $s$ has created edges as positive training examples, all other nodes as negative training examples
- Learn a classifier that predicts where node $s$ is going to create links


## Link Prediction: Baseline Approaches

Link Prediction as a classification task

- Take nodes to which $s$ has created edges as positive training examples, all other nodes as negative training examples
- Learn a classifier that predicts where node $s$ is going to create links

Random walk with restarts
Start a random walk at node $s$ and compute the proximity of each other node to node $s$.

## Can we do it only using network?

- We are given a source node $s$ and a set of destination nodes $d_{1}, \ldots, d_{k} \in D$ to which $s$ will create edges in the future


## Can we do it only using network?

- We are given a source node $s$ and a set of destination nodes $d_{1}, \ldots, d_{k} \in D$ to which $s$ will create edges in the future
- Aim is to bias the random walk such that it will visit nodes $d_{i}$ more often than the other nodes in the network


## Can we do it only using network?

- We are given a source node $s$ and a set of destination nodes $d_{1}, \ldots, d_{k} \in D$ to which $s$ will create edges in the future
- Aim is to bias the random walk such that it will visit nodes $d_{i}$ more often than the other nodes in the network
- Can we directly set an arbitrary transition probability to each edge?


## Can we do it only using network?

- We are given a source node $s$ and a set of destination nodes $d_{1}, \ldots, d_{k} \in D$ to which $s$ will create edges in the future
- Aim is to bias the random walk such that it will visit nodes $d_{i}$ more often than the other nodes in the network
- Can we directly set an arbitrary transition probability to each edge?
- Would result in drastic over-fitting


## Can we do it only using network?

- We are given a source node $s$ and a set of destination nodes $d_{1}, \ldots, d_{k} \in D$ to which $s$ will create edges in the future
- Aim is to bias the random walk such that it will visit nodes $d_{i}$ more often than the other nodes in the network
- Can we directly set an arbitrary transition probability to each edge?
- Would result in drastic over-fitting
- Instead, we assign the transition probability for each edge $(u, v)$ based on features of nodes $u$ and $v$, as well as features of edge $(u, v)$.


## Problem Formulation

- Directed graph $G(V, E)$
- Node $s$, destination nodes $D=\left\{d_{1}, \ldots, d_{k}\right\}$ and no-link nodes $L=\left\{l_{1}, \ldots, l_{n}\right\}$


## Problem Formulation

- Directed graph $G(V, E)$
- Node $s$, destination nodes $D=\left\{d_{1}, \ldots, d_{k}\right\}$ and no-link nodes $L=\left\{l_{1}, \ldots, l_{n}\right\}$
- Each edge $(u, v)$ has a feature vector $\psi(u, v)$ that describes the nodes $u$ and $v$ (e.g., gender, age, hometown) and the interaction attributes (e.g., time of edge creation, messages exchanges, photos appeared together in)


## Problem Formulation

- Directed graph $G(V, E)$
- Node $s$, destination nodes $D=\left\{d_{1}, \ldots, d_{k}\right\}$ and no-link nodes $L=\left\{l_{1}, \ldots, l_{n}\right\}$
- Each edge $(u, v)$ has a feature vector $\psi(u, v)$ that describes the nodes $u$ and $v$ (e.g., gender, age, hometown) and the interaction attributes (e.g., time of edge creation, messages exchanges, photos appeared together in)
- Compute the strength $a_{u v}=f_{w}\left(\psi_{u v}\right)$ for edge $(u, v)$.
- We want to learn the function $f_{w}(\psi)$ in the training phase of the algorithm


## Predicting new edges using Edge Strength

- Edge strengths of all edges are calculated using $f_{w}$
- Random walk with restarts is run from $s$
- Stationary distribution $p$ of the random walk assigns each node $u$ a probability $p_{u}$
- Top ranked nodes are predicted as destinations of future links of $s$


## Using edge weights

- Function $f_{w}\left(\psi_{u v}\right)$ combines the attributes $\psi_{u v}$ and the parameter vector $w$ to output a non-negative weight $a_{u v}$ for each edge
- We use this to build the random walk stochastic transition matrix $Q^{\prime}$ such that

$$
Q_{u v}^{\prime}=\frac{a_{u v}}{\sum_{w} a_{u w}},(u, v) \in E
$$

## Using edge weights

- Function $f_{w}\left(\psi_{u v}\right)$ combines the attributes $\psi_{u v}$ and the parameter vector $w$ to output a non-negative weight $a_{u v}$ for each edge
- We use this to build the random walk stochastic transition matrix $Q^{\prime}$ such that

$$
Q_{u v}^{\prime}=\frac{a_{u v}}{\sum_{w} a_{u w}},(u, v) \in E
$$

- Corresponding matrix for random walk with restart:

$$
Q_{u v}=(1-c) Q_{u v}^{\prime}+c 1(v=s)
$$

## Using edge weights

- Function $f_{w}\left(\psi_{u v}\right)$ combines the attributes $\psi_{u v}$ and the parameter vector $w$ to output a non-negative weight $a_{u v}$ for each edge
- We use this to build the random walk stochastic transition matrix $Q^{\prime}$ such that

$$
Q_{u v}^{\prime}=\frac{a_{u v}}{\sum_{w} a_{u w}},(u, v) \in E
$$

- Corresponding matrix for random walk with restart:

$$
Q_{u v}=(1-c) Q_{u v}^{\prime}+c 1(v=s)
$$

- Verify that $Q$ is row stochastic


## Using edge weights

- Function $f_{w}\left(\psi_{u v}\right)$ combines the attributes $\psi_{u v}$ and the parameter vector $w$ to output a non-negative weight $a_{u v}$ for each edge
- We use this to build the random walk stochastic transition matrix $Q^{\prime}$ such that

$$
Q_{u v}^{\prime}=\frac{a_{u v}}{\sum_{w} a_{u w}},(u, v) \in E
$$

- Corresponding matrix for random walk with restart:

$$
Q_{u v}=(1-c) Q_{u v}^{\prime}+c 1(v=s)
$$

- Verify that $Q$ is row stochastic
- $P_{1 \times n}$ is the stationary distribution of the Random walk with restarts, and is the solution of the following equation:

$$
P=P Q
$$

## Optimization Problem

- Aim: Learn the parameters $w$ of function $f_{w}\left(\psi_{u v}\right)$ that assigns each edge a strength of $a_{u v}$
- Criterion: Assign the weights such that the random walk is more likely to visit nodes in $D$ than $L$, i.e., $p_{l}<p_{d}$, for each $d \in D$ and $l \in L$


## Optimization Problem

- Aim: Learn the parameters $w$ of function $f_{w}\left(\psi_{u v}\right)$ that assigns each edge a strength of $a_{u v}$
- Criterion: Assign the weights such that the random walk is more likely to visit nodes in $D$ than $L$, i.e., $p_{l}<p_{d}$, for each $d \in D$ and $l \in L$


## Optimization function

$\min _{w} F(w)=\|w\|^{2}$ such that $\forall d \in D, l \in L: p_{l}<p_{d}$
$p_{i} \mathrm{~s}$ are the pageRank scores
A smaller $w$ is preferred simply for regularization

## Optimization function: Softer version

$\min _{w} F(w)=\|w\|^{2}+\lambda \sum_{d \in D, l \in L} h\left(p_{l}-p_{d}\right)$
$h($.$) : loss function such that h()=$.0 as $p_{l}<p_{d}$ and $h()>$.0 for $p_{l}-p_{d}>0$

## Features used for the Facebook Network

For each edge $(i, j)$,

## Features used for the Facebook Network

For each edge $(i, j)$,

- The number of common friends between the two nodes


## Features used for the Facebook Network

For each edge $(i, j)$,

- The number of common friends between the two nodes
- Communication and observation features: probability of communication and profile observation in one week period


## Features used for the Facebook Network

For each edge $(i, j)$,

- The number of common friends between the two nodes
- Communication and observation features: probability of communication and profile observation in one week period
- Edge initiator: Individual making the friend request is encoded as +1 or -1


## Features used for the Facebook Network

For each edge $(i, j)$,

- The number of common friends between the two nodes
- Communication and observation features: probability of communication and profile observation in one week period
- Edge initiator: Individual making the friend request is encoded as +1 or -1
- Edge age


## References

- Random Walk with Restarts: Pan, Jia-Yu, et al. "Automatic multimedia cross-modal correlation discovery." Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2004.
- Supervised Random Walks: Backstrom, Lars, and Jure Leskovec. "Supervised random walks: predicting and recommending links in social networks." Proceedings of the fourth ACM international conference on Web search and data mining. ACM, 2011.

