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Input

@ A document d
o A fixed set of classes C = {cj,c2,...,cn}
e A training set of m hand-labeled documents (dy,c1),- .., (dm,cm)
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LI: Supervised Approaches

Input
@ A document d
o A fixed set of classes C = {cj,c2,...,cn}
@ A training set of m hand-labeled documents (di,c1), ..., (dm,cm)

Output

A learned classifier y: d — ¢
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Supervised Machine Learning

(a) Training

@ 1 machine

learning
algorithm

| feature
extractor

features

input

(b) Prediction l
. feature classifier
input
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Bayes’ rule for documents and classes

For a document d and a class ¢
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Bayes’ rule for documents and classes

For a document d and a class ¢

P(d|c)P(c)

Pleld) = =500

Naive Bayes Classifier

cyap = argmax P(c|d)
ceC
= argmax P(d|c)P(c)
ceC

= argmax P(x,x2,...,%,|c)P(c)
ceC
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cation assumptions

P(x1,x2,...,%|C)
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Naive Bayes classification assumptions

P(x1,x2,...,%|C)

Bag of words assumption
Assume that the position of a word in the document doesn’'t matter J
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Naive Bayes classification assumptions

P(x1,x2,...,%|C)

Bag of words assumption

Assume that the position of a word in the document doesn’'t matter

Conditional Independence

Assume the feature probabilities P(x;|c;) are independent given the class c;.

P(x1,x2,...,%5|c) = P(x1|c) - P(x2|c) ... P(x4|c)
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Naive Bayes classification assumptions

P(x1,x2,...,%|C)

Bag of words assumption

Assume that the position of a word in the document doesn’'t matter

Conditional Independence

Assume the feature probabilities P(x;|c;) are independent given the class c;.

P(x1,x2,...,%5|c) = P(x1|c) - P(x2|c) ... P(x4|c)

cyg = argmax P(c HP x|c)
ceC xeX
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Learning the model parameters

Maximum Likelihood Estimate

R doc — count(C = cj)
P(cj) = o ’
doc
A count(wj, c;
P(wilc)) = Z#
count(w, c;j)
weV
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Learning the model parameters

Maximum Likelihood Estimate

\_ doc — count(C = ;)

P(gj) = N,
oc
Pwilc) count(wj, c;)
wile)) = ————
o Z count(w, c;j)

weV

Problem with MLE
Suppose in the training data, we haven’t seen one of the words (say pure) in a
given language.

P(pure|Hindi) =0
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Learning the model parameters

Maximum Likelihood Estimate

\_ doc — count(C = ;)

P(gj) = N,
oc
Pwilc) count(wj, c;)
wile)) = ————
o Z count(w, c;j)

weV

Problem with MLE
Suppose in the training data, we haven’t seen one of the words (say pure) in a
given language.

P(pure|Hindi) =0

cyp = argmax P(c) H P(x;|c)

xeX
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Laplace (add-1) smoothing

count(wi,c)+1

Y (count(w,c)+1)

weV

P(wilc) =

count(w;,c)+1

- ( Z (count(w,c))+|V|

weV
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A worked out example

Doc Words Class
Training 1 English Wikipedia editor en
2 free English Wikipedia en
3 Wikipedia editor en
4 espafol de Wikipedia es
Test 5 Wikipedia espafiol el ?
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A worked out example: No smoothing

Doc Words
Training 1 English Wikipedia editor en
2 free English Wikipedia en
3 Wikipedia editor en
4 espafol de Wikipedia es
Test 5 Wikipedia espafiol el ?
P(c)= _count(c) P(en)=3/4 P(sp)=1/4
Z count(c;)
N “ ECC ount(t.c)  P(Wikipedia” len) = 3/8 , P(“Wikipedia” les) = 1/3
P(tlo)= 2 P(“espafol”len) = 0/8, P(“espafiol” les) = 1/3

Z count(t;,c) P(“el”len)=0/8, P(“el”les) = 0/3
eV
P(enldoc5) = 3/4x3/8x0/8x0/8 = 0
P(esldoc5) = 1/4x2/9x1/3x0/3 = 0

Pawan Goyal (IIT Kharagpur) NLP for Social Media: Language Identification II August 3-4, 2016 9/48



A worked out example: Smoothing

Doc Words
1 English Wikipedia editor en
Training 2 free English Wikipedia en
3 Wikipedia editor en
4 espafol de Wikipedia sp
Test 5 Wikipedia espafiol el ?
count(c)

P(C)=~————— P(en)=3/4 P(sp)=1/4
Zcount(cj)

c;eC

! c ount(t C) P(“Wikipedia”len) = 3+1/8+6 , P(“Wikipedia”lsp) = 1+1/3+6

=" P(“espafiol”len) = 0+1/8+6 , P(“espafiol”|sp) = 1+1/3+6
z count(t,,c) P(“el”len) =0+1/8+6, P(“el”sp) = 0+1/3+6

eV

P(tlc)

P(enldoc5) = 3/4x4/14x1/14x1/14 = 0.00109
P(spldoc5) = 1/4x2/9x2/9x1/9 = 0.00137
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Character n-gram based Approach

Input: A word w (e.g., khiprata)
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Character n-gram based Approach

Input: A word w (e.g., khiprata)

Features: character n-grams (n=2 to 5)
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Character n-gram based Approach

Input: A word w (e.g., khiprata)

kshiprata > Skshiprata$
2: Sk, ks, sh, hi, ip, pr, ra, at, ta, a$

3: Sks, ksh, shi, hip, ipr, ... ta$
4: Sksh, kshi, ship, ..., ata$

Features: character n-grams (n=2 to 5) BRSNS
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Character n-gram based Approach

Input: A word w (e.g., khiprata)

kshiprata > Skshiprata$
2: Sk, ks, sh, hi, ip, pr, ra, at, ta, a$

3: Sks, ksh, shi, hip, ipr, ... ta$
4: Sksh, kshi, ship, ..., ata$
Features: character n-grams (n=2 to 5) kel ol JEIAECS

Classifier: Naive Bayes, Max-Ent, SVMs
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Character n-gram based Approach

Input: A word w (e.g., khiprata)

kshiprata > Skshiprata$
2: Sk, ks, sh, hi, ip, pr, ra, at, ta, a$

3: Sks, ksh, shi, hip, ipr, ... ta$

4: Sksh, kshi, ship, ..., ata$
Features: character n-grams (n=2 to 5) BRSNS
Classifier: Naive Bayes, Max-Ent, SVMs

Prob (kshiprata is Sanskrit) » Prob (kshiprata is English)
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LangID Tools

langid.py Luiand Baldwin [2012]
ChromeCLD McCandless [2010]
LangDetect Nakatani [2010]

LDIG Nakatani [2012]
whatlang Brown [2013]

YALI Majlig [2012]
TextCat Scheelen [2003]
MSR-LID Goldszmidt et al. [2013]
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Using langid.py

python

Python 2.7.2+ (default, Oct 4 2011, 20:86:09)
[GCC 4.6.1] on linux2

Type “"help", “copyright", "credits" or "license" for more information.
>»> import langid

>»> langid.classify("I do not speak english")
('en', B.57133487679980674)

>»> langid.set_languages(['de’,'fr','it'])

>»> langid.classify("I do not speak english")
('it', ©.99999835791478453)

>»> langid.set_languages(['en','it'])

>»> langid.classify("I do not speak english")
('en', ©.99176190378750373)

https://github.com/saffsd/langid.py
Supports 97 languages
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Word-level Language Labeling

Modi ke speech se |India inspired ho gaya #namo

NE | Hn En Hn NE En Hn Hn Other

F ¥ L]
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Word-level Language Labeling

Modi ke speech se |India inspired ho gaya #namo

NE | Hn En Hn NE En Hn Hn Other

F ¥ L]

Modeling as a Sequence Prediction Problem
Given X: X| = Modi, X, =ke,. ..
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Word-level Language Labeling

Modi ke speech se |India inspired ho gaya #namo

NE | Hn En Hn NE En Hn Hn Other

F ¥ L]

Modeling as a Sequence Prediction Problem
Given X: X| = Modi, X, =ke,. ..
Output: Y = Y (label for X1), Y> (label for X5),. ..
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Word-level Language Labeling

Modi ke speech se |India inspired ho gaya #namo

NE | Hn En Hn NE En Hn Hn Other

F ¥ L]

Modeling as a Sequence Prediction Problem
Given X: X| = Modi, X, =ke,. ..

Output: Y = Y (label for X1), Y> (label for X5),. ..
Such that p(Y|X) is maximized
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Conditional Random Fields: Modelling the Conditional

Distribution
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Conditional Random Fields: Modelling the Conditional

Distribution

Model the Conditional Distribution:
P(y|x)

To predict a sequence compute:
y =argmax P(y |x )
I y

Must be able to compute it efficiently.
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Conditional Random Fields: Feature Functions

AHA-B10-0

\ Feature Functions:

f;(yr-nyfsxai)
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Feature Functions

Express some characteristic of the empirical distribution
that we wish to hold in the model distribution

1 if y,_, =IN and
y, = NNP and

/ x, = September
N

S Vicis Yis X,)

0 otherwise
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Conditional Random Fields: Distribution

Label sequence modelled as a normalized product of
feature functions:

1 n
P(y | X, }") = %exp 2 2 A’,r'f;‘(yi—l,yi’XH I.)

200= 33 D41, 01
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Features for word level Language Identification

Token-based Lexical Features Context
features Features
* Capitalization * Regular * Next 3 tokens
e Script lexicon e Last 3 tokens
* Special * Unigram e Current token
Characters Frequency e Previous label
e Character n- * Entity Lexicon (Bigram or B)
gram based ¢ Acronym/slang
classifiers lexicon
¢ Word length
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Lexical Normalization

Characteristics of Text in Social Media

Social media text contains varying levels of “noise” (lexical, syntactic and
otherwise), e.g.
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Lexical Normalization

Characteristics of Text in Social Media

Social media text contains varying levels of “noise” (lexical, syntactic and
otherwise), e.g.

o Tell ppl u luv them cuz 2morrow is truly not promised.
e SUPER BOWL SUNDAY!!! Enjoy yourselves!!l Sunday
morning GOODIES R sent out! C U 2Nyt!

e Follow @QOFA today for more coverage of the gun violence
petition delivery to Congress. #NotBackingDown #EarlyFF
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Why is Social Media

Eisenstein [2013] identified the following possible contributing factors to
“badness” in social media text:

@ Lack of literacy?
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Why is Social Media

Eisenstein [2013] identified the following possible contributing factors to
“badness” in social media text:

@ Lack of literacy? no
@ Length restrictions?
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Why is Social Media

Eisenstein [2013] identified the following possible contributing factors to
“badness” in social media text:

@ Lack of literacy? no
@ Length restrictions? not primarily
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Why is Social Media Text “Bad”?

Eisenstein [2013] identified the following possible contributing factors to
“badness” in social media text:

@ Lack of literacy? no
@ Length restrictions? not primarily
@ Text input method-driven?
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Why is Social Media Text “Bad”?

Eisenstein [2013] identified the following possible contributing factors to
“badness” in social media text:

@ Lack of literacy? no
@ Length restrictions? not primarily
@ Text input method-driven? to some degree, yes
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Why is Social Media Text “Bad”?

Eisenstein [2013] identified the following possible contributing factors to
“badness” in social media text:

@ Lack of literacy? no

@ Length restrictions? not primarily

@ Text input method-driven? to some degree, yes

@ Pragmatics (mimicking prosodic effects etc. in speech)?
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Why is Social Media Text “Bad”?

Eisenstein [2013] identified the following possible contributing factors to
“badness” in social media text:

@ Lack of literacy? no

@ Length restrictions? not primarily

@ Text input method-driven? to some degree, yes

@ Pragmatics (mimicking prosodic effects etc. in speech)? yeeees

Eisenstein, What to do about bad language on the internet, NAACL-HLT, 2013 )
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What can be done about it?

Lexical normalization
Translate expressions into their canonical form J
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What can be done about it?

Lexical normalization

Translate expressions into their canonical form
v
Issues
@ What are the candidate tokens for normalization?
.
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What can be done about it?

Lexical normalization

Translate expressions into their canonical form

Issues
@ What are the candidate tokens for normalization?
@ To what degree do we allow normalization?

@ What is the canonical form of a given expression? (e.g., aini)
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What can be done about it?

Lexical normalization
Translate expressions into their canonical form

Issues
@ What are the candidate tokens for normalization?
@ To what degree do we allow normalization?

@ What is the canonical form of a given expression? (e.g., aini)

@ Is lexical normalization always appropriate? (e.g., bro)
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Task Definition

One standard definition
@ relative to some standard tokenization
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Task Definition

One standard definition
@ relative to some standard tokenization
@ consider only OOV tokens as candidates for normalization
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Task Definition

One standard definition
@ relative to some standard tokenization
@ consider only OOV tokens as candidates for normalization
o allow only one-to-one word substitutions

ileft ACL cus im sickk ! Yuu better be their tmrw

L I

i left ACL because I'm sick | You better be their tomorrow
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Task Definition

One standard definition
@ relative to some standard tokenization
@ consider only OOV tokens as candidates for normalization
o allow only one-to-one word substitutions

ileft ACL cus im sickk ! Yuu better be their tmrw

L I

i left ACL because I'm sick | You better be their tomorrow

Assumptions/corrolaries of the task definition:
@ not possible to normalize in-vocabulary tokens, e.g. their
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Task Definition

One standard definition
@ relative to some standard tokenization
@ consider only OOV tokens as candidates for normalization
o allow only one-to-one word substitutions

ileft ACL cus im sickk ! Yuu better be their tmrw

L I

i left ACL because I'm sick | You better be their tomorrow

Assumptions/corrolaries of the task definition:
@ not possible to normalize in-vocabulary tokens, e.g. their
@ not possible to normalise the multiword tokens, e.g., tty/
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Task Definition

One standard definition
@ relative to some standard tokenization
@ consider only OOV tokens as candidates for normalization
o allow only one-to-one word substitutions

ileft ACL cus im sickk ! Yuu better be their tmrw

L I

i left ACL because I'm sick | You better be their tomorrow

Assumptions/corrolaries of the task definition:
@ not possible to normalize in-vocabulary tokens, e.g. their
@ not possible to normalise the multiword tokens, e.g., tty/
@ ignore Twitter-specific entities, e.g., obama, #mandela, bit.ly/1iRgm
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Task Definition

One standard definition
@ relative to some standard tokenization
@ consider only OOV tokens as candidates for normalization
o allow only one-to-one word substitutions

ileft ACL cus im sickk ! Yuu better be their tmrw

L I

i left ACL because I'm sick | You better be their tomorrow

Assumptions/corrolaries of the task definition:
not possible to normalize in-vocabulary tokens, e.g. their

not possible to normalise the multiword tokens, e.g., tty/
ignore Twitter-specific entities, e.g., obama, #mandela, bit.ly/1iRgm

assume a unique correct “norm” for each token
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Spelling Errors

TOMORROW

* Tomorow Phonetic/Cognitive

* Tommorow Errors

« Tommorrow Unintentional
Errors

Typos or “slip of finger”
errors
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Understanding unintentional spelling errors

TOMORROW
* Tomorow

Double letter omission Phonetic/Cognitive

Doubling of wrong letter Errors

* Tommorow

T

Doubling of letter

* Tommorrow

Substitution: 0> p

Metathesis: or=> ro Typos or “slip of finger”

Deletion: 0> € errors

Insertion: € = n
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Edit Distance

* Cost of Edit Operations: Metathesis (cc’ > c’c) is either modeled
* Insertion(e 2 ¢): 1 as a single edit operation (cost = 1) or as a
* Deletion (c 2 €): 1 deletion-insertion pair (cc’ = ec’ = c’),
* Substitution: (c 2 c¢’): 1or 2 and therefore cost of 2.

* Edit Distance between two strings s:c,¢,¢,...c, and s":¢’,¢’,¢’5...c7,
defined as the minimum value of the sum of the cost o# a sequence of
edit operations required to convert s to s’.

* engine & begin, elevator & evaluator, east & csar

* Dynamic Programming Algorithm
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What about spelling errors in Social Media?

The shorter = the faster
Constraint: understandability

dis is n eg 4 txtin lang

This is an example for Texting language

Other factors: Coolness, group-membership, accommodating
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The case of ‘Tomorrow’

* 2moro (9) *tomm (1)

* tomoz (25) * tomo (3)

* tomoro (12) * tomorow (3)
* tomrw (5) *2mro (2)
*tom (2) * morrow (1)
* tomra (2) * tomor (2)

* tomorrow (24) * tmorro (1)

* tomora (4) * moro (1)

Spell-checkers, such as Aspell, perform very

Data from (Choudhury et al., 2007)

poorly on such data (<22%)
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Patterns or Compression Operators

Phonetic substitution (phoneme) J
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Patterns or Compression Operators

Phonetic substitution (phoneme)
psycho — syco, then — den J
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Patterns or Compression Operators

Phonetic substitution (phoneme)
psycho — syco, then — den J

Phonetic substitution (syllable) J
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Patterns or Compression Operators

Phonetic substitution (phoneme)
psycho — syco, then — den J

Phonetic substitution (syllable)
today — 2day, see — ¢ J
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Patterns or Compression Operators

Phonetic substitution (phoneme)

psycho — syco, then — den
Phonetic substitution (syllable)
today — 2day, see — ¢
Deletion of vowels
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Patterns or Compression Operators

Phonetic substitution (phoneme)

psycho — syco, then — den
Phonetic substitution (syllable)
today — 2day, see — ¢
Deletion of vowels

message — mssg, about — abt
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Patterns or Compression Operators

Phonetic substitution (phoneme)
psycho — syco, then — den

Phonetic substitution (syllable)
today — 2day, see — ¢

Deletion of vowels

message — mssg, about — abt

Deletion of repeated characters
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Patterns or Compression Operators

Phonetic substitution (phoneme)
psycho — syco, then — den

Phonetic substitution (syllable)
today — 2day, see — ¢

Deletion of vowels

message — mssg, about — abt

Deletion of repeated characters

tomorrow — tomorow
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Patterns or Compression Operators

Truncation (deletion of tails) J
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Patterns or Compression Operators

Truncation (deletion of tails)
introduction — intro, evaluation — eval J
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Patterns or Compression Operators

Truncation (deletion of tails)
introduction — intro, evaluation — eval J

Common Abbreviations J
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Patterns or Compression Operators

Truncation (deletion of tails)
introduction — intro, evaluation — eval J

Common Abbreviations
Kharagpur — kgp, text back — tb J
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Patterns or Compression Operators

Truncation (deletion of tails)

introduction — intro, evaluation — eval |
Common Abbreviations

Kharagpur — kgp, text back — tb

Informal pronunciation
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Patterns or Compression Operators

Truncation (deletion of tails)
introduction — intro, evaluation — eval

Common Abbreviations
Kharagpur — kgp, text back — tb

Informal pronunciation
going to — gonna
Emphasis by repetition
.
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Patterns or Compression Operators

Truncation (deletion of tails)
introduction — intro, evaluation — eval

Common Abbreviations
Kharagpur — kgp, text back — tb

Informal pronunciation
going to — gonna

Emphasis by repetition

Funny — fuuuunnnnnyyyyyy
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@ Because — cause (informal usage)
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@ Because — cause (informal usage)

@ cause — cauz (phonetic substitution)
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@ Because — cause (informal usage)

@ cause — cauz (phonetic substitution)

@ cauz — cuz (vowel deletion)
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Categorisation of non-standard words in English Twitter

Category Ratio Example
Letter&Number 2.36% b4 “before”

Letter 72.44%  shuld “should”
Number Substitution  2.76% 4 “for"

Slang 12.20% o/ “laugh out loud”
Other 10.24%  sucha “such a”

Table : Types of non-standard words in a 449 message sample of
English tweets
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Categorisation of non-standard words in English Twitter

Category Ratio Example
Letter&Number 2.36% b4 “before”

Letter 72.44%  shuld “should”
Number Substitution  2.76% 4 “for"

Slang 12.20% o/ “laugh out loud”
Other 10.24%  sucha “such a”

Table : Types of non-standard words in a 449 message sample of
English tweets

Most non-standard words in sampled tweets are morphophonemic variations. J
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Token-based Approach (Han and Baldwin, 2011)
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Token-based Approach (Han and Baldwin, 2011)

® Confusion set generation (i.e., find correction candidates)
® Non-standard word detection (i.e., is the OOV a

non-standard word?)
©® Normalisation of a non-standard word (i.e., select the

candidate)

... crush da redberry b4 da water ...

¢ before
four
— be
bore

Confusion
b4 —>| Generation

August 3-4, 2016 33/48
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Token-based Approach (Han and Baldwin, 2011)

® Confusion set generation (i.e., find correction candidates)
@® Non-standard word detection (i.e., is the OOV a

non-standard word?)
©® Normalisation of a non-standard word (i.e., select the

candidate)
... crush da redberry b4 da water ...
¢ before
four

Confusion

b4 —>| Generation| > b€

bore

before
? da water) ll-formed
word detector Yes or No

(crush da redberry
(3 -2 -1 four +1 +2)
be
bore

1ge Identification II August 3-4, 2016
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Token-based Approach (Han and Baldwin, 2011)

® Confusion set generation (i.e., find correction candidates)
® Non-standard word detection (i.e., is the OOV a

non-standard word?)
©® Normalisation of a non-standard word (i.e., select the

candidate)
... crush da redberry b4 da water ...
¢ before
: four
Confusion
b4 —>| Generation| > b€
bore
before
(crush da redberry 7  da water) lll-formed
(3 2 -1 four +1 +2) | worddetector | Yes or No
be
bore

candidates and context before 1.2
before crush -3 four 0.6

four da -2 — | Normalisation [~ pe 0.1
be redberry -1 bore 0.2
bore da +1

water +2

: Language Identification II August 3-
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Pre-processing

o Filter out any Twitter-specific tokens (user-mentions, hashtags, RT, etc.)
and URLs
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Pre-processing

o Filter out any Twitter-specific tokens (user-mentions, hashtags, RT, etc.)
and URLs

@ I|dentify all OOV words relative to a standard spelling dictionary (aspell)
@ For OOV words, shorten any repetitions of 3+ letters to 2 letters
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Candidate Generation

o Generation via edit distance over letters (7..) and phonemes (7).
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Candidate Generation

o Generation via edit distance over letters (7..) and phonemes (7).
@ This allows to generate “earthquake” for words such as earthquick.
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Candidate Generation

o Generation via edit distance over letters (7..) and phonemes (7).
@ This allows to generate “earthquake” for words such as earthquick.

e Candidates with 7. <2V T, < 1 were taken, further filtered using
frequency to take the top 10% of candidates.
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Detection of lll-formed words

Detection based on candidate context fitness
@ Correct words should fit better with context than substitution candidates
@ Incorrect words should fit worse than substitution candidates
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Detection of lll-formed words

Detection based on candidate context fitness
@ Correct words should fit better with context than substitution candidates
@ Incorrect words should fit worse than substitution candidates

Basic Idea: Use Dependencies from corpus data

An SVM classifier is trained based on dependencies, to indicate candidate
context fitness.

lll-formed word in text snippet Candidate Dependencies
but | was thinkin movies . (thinking, ...) | dobj(thinking, movies)
article poster by ruderrobb : there was (rattrap, ...) -
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Feature Representation using Dependencies

@ Build a dependency bank from existing corpora
o Represent each dependency tuple as a word pair + positional index
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Feature Representation using Dependencies

@ Build a dependency bank from existing corpora
o Represent each dependency tuple as a word pair + positional index

Corpus (NYT)
One obvious difference is the way they look, ...
l Stanford Parser

num(difference-3, One-1)
amod(difference-3, obvious-2)
nsubj(way-6, difference-3) (way, difference, 3)
cop(way-6, is-4) = (look, way, 2)
det(way-6, the-5)

dobj(look-8, way-6)

nsubj(look-8, they-7)

rcmod(way-6, look-8)

Dependency bank
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SVM Training Data Generation

@ Use dependency bank directly as positive features
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SVM Training Data Generation

@ Use dependency bank directly as positive features

o Automatically generate negative dependency features by replacing the
target word with highly-ranked confusion candidates
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SVM Training Data Generation

@ Use dependency bank directly as positive features
o Automatically generate negative dependency features by replacing the
target word with highly-ranked confusion candidates

Dependency bank Positive samples Negative samples
(look way, +2) (hook, way, +2)

(look, way, +2) .
(way, difference, +3) \ /

| Context fitness classifier]|
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Detecting ill-formed words

OOV words with candidates fitting the context (i.e., positive classification
outputs) are probably ill-formed words
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Detecting ill-formed words

OOV words with candidates fitting the context (i.e., positive classification
outputs) are probably ill-formed words

...way yu lookin shuld be a sin ..
Prediction

looking ~ (way, looking, -2)

hooking ~ (way, hooking, -2) — ‘ Context fitness classifier

Y

If positive outputs exceed the threshold, looking ~ +1
feed all candidates for normaliation. hooking ~-1
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Detecting ill-formed words

OOV words with candidates fitting the context (i.e., positive classification
outputs) are probably ill-formed words

...way yu lookin shuld be a sin ..
Prediction

looking ~ (way, looking, -2)

hooking ~ (way, hooking, -2) — ‘ Context fitness classifier

Y

If positive outputs exceed the threshold, looking ~ +1
feed all candidates for normaliation. hooking ~-1

Threshold = 1— lookin is considered to be an ill-formed word
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Normalization Candidate Selection

For each ill-formed word and its possible correction candidates, the following
features are considered for normalization:

Word Similarity
@ letter and phoneme edit distance (ED)

e prefix, suffix, and longest common subsequence
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Normalization Candidate Selection

For each ill-formed word and its possible correction candidates, the following
features are considered for normalization:
Word Similarity

@ letter and phoneme edit distance (ED)

o prefix, suffix, and longest common subsequence

Context Support
e trigram language model score

@ dependency score (weighted dependency count, derived from the
detection step)
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Type-based approach

Observation

The longer the ill-formed word, the more likely there is a unique normalization
candidate
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Type-based approach

Observation

The longer the ill-formed word, the more likely there is a unique normalization
candidate

o y= {why, you, ...}, hw = {how, homework, ...}
o 4eva = {forever}, tlkin = {talking}
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Type-based approach

Observation

The longer the ill-formed word, the more likely there is a unique normalization
candidate

o y= {why, you, ...}, hw = {how, homework, ...}
o 4eva = {forever}, tlkin = {talking}

Approach

Construct a dictionary of (lexical variant, standard form) pair for longer word
types (character length > 4) of moderate frequency (> 16)
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Type-based Approach (Han et al. (2012)

Construct the dictionary based on distributional similarity + string similarity
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Type-based Approach (Han et al. (2012)

Construct the dictionary based on distributional similarity + string similarity

Input: Tokenised English tweets
e Extract (OOV, IV) pairs based on distributional similarity
@ Re-rank the extracted pairs by string similarity
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Type-based Approach (Han et al. (2012)

Construct the dictionary based on distributional similarity + string similarity

Input: Tokenised English tweets
e Extract (OOV, IV) pairs based on distributional similarity
@ Re-rank the extracted pairs by string similarity

Output

A list of (OQV, IV) pairs ordered by string similarity; select the top-n pairs for
inclusion in the normalisation lexicon.
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. see you tmrw ...
tmrw morning ...
tomorrow morning ...

| distributional similarity
{tmrw, 2morow, tomorrow, Monday}
1} string similarity

tmrw — tomorrow
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Context Modelling

Components/parameters of the method

@ context wondow size: +1, +2, £3
context word sensitivity: bag-of-words vs. positional indexing
context word representation: unigram, bigram or trigram

context word filtering: all tokens vs. only dictionary words

context similarity: KL divergence, Jensen-Shannon divergence, Cosine
similarity, Euclidean distance
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Context Modelling

Components/parameters of the method

context wondow size: +1, +2, £3

context word sensitivity: bag-of-words vs. positional indexing
context word representation: unigram, bigram or trigram

context word filtering: all tokens vs. only dictionary words

context similarity: KL divergence, Jensen-Shannon divergence, Cosine
similarity, Euclidean distance

Tune parameters relative to (OOV,IV) pair develepment data )
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Rerank pairs by string similarity

(OQV,IV) pairs derived by distributional similarity:
(Obama, Adam) |

(tmrw, tomorrow) 1
(Youtube, web) |
(

deva, forever) 1
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Rerank pairs by string similarity

(OQV,IV) pairs derived by distributional similarity:
(Obama, Adam) |

(tmrw, tomorrow) 1
(Youtube, web) |
(

deva, forever) 1

(tmrw, tomorrow)

Get the top-ranked pairs as lexicon entries: (4eva, forever)
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