NLP for Social Media: Language Identification II and Text Normalization

Pawan Goyal

CSE, IITKGP

August 3-4, 2016

Pawan Goyal (IIT Kharagpur)

NLP for Social Media: Language Identification II

August 3-4, 2016 1/48

Input

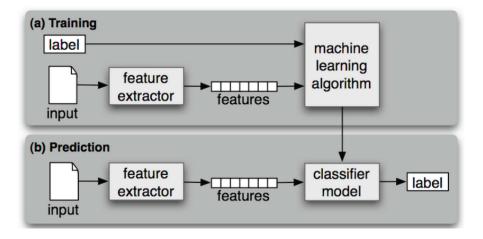
- A document d
- A fixed set of classes $C = \{c_1, c_2, \dots, c_n\}$
- A training set of *m* hand-labeled documents $(d_1, c_1), \ldots, (d_m, c_m)$

Input

- A document d
- A fixed set of classes $C = \{c_1, c_2, \dots, c_n\}$
- A training set of *m* hand-labeled documents $(d_1, c_1), \ldots, (d_m, c_m)$

Output

A learned classifier $\gamma : d \rightarrow c$



Bayes' rule for documents and classes

For a document d and a class c

$$P(c|d) = \frac{P(d|c)P(c)}{P(d)}$$

Bayes' rule for documents and classes

For a document d and a class c

$$P(c|d) = \frac{P(d|c)P(c)}{P(d)}$$

Naïve Bayes Classifier $c_{MAP} = \underset{c \in C}{\operatorname{arg\,max}} P(c|d)$ $= \underset{c \in C}{\operatorname{arg\,max}} P(d|c)P(c)$ $= \underset{c \in C}{\operatorname{arg\,max}} P(x_1, x_2, \dots, x_n|c)P(c)$

 $P(x_1, x_2, \ldots, x_n | c)$

$$P(x_1, x_2, \ldots, x_n | c)$$

Bag of words assumption

Assume that the position of a word in the document doesn't matter

$$P(x_1, x_2, \ldots, x_n | c)$$

Bag of words assumption

Assume that the position of a word in the document doesn't matter

Conditional Independence

Assume the feature probabilities $P(x_i|c_j)$ are independent given the class c_j .

$$P(x_1, x_2, \ldots, x_n | c) = P(x_1 | c) \cdot P(x_2 | c) \ldots P(x_n | c)$$

$$P(x_1, x_2, \ldots, x_n | c)$$

Bag of words assumption

Assume that the position of a word in the document doesn't matter

Conditional Independence

Assume the feature probabilities $P(x_i|c_j)$ are independent given the class c_j .

$$P(x_1, x_2, \ldots, x_n | c) = P(x_1 | c) \cdot P(x_2 | c) \ldots P(x_n | c)$$

$$c_{NB} = \operatorname*{arg\,max}_{c \in C} P(c) \prod_{x \in X} P(x|c)$$

Learning the model parameters

Maximum Likelihood Estimate

$$\hat{P}(c_j) = \frac{doc - count(C = c_j)}{N_{doc}}$$
$$\hat{P}(w_i | c_j) = \frac{count(w_i, c_j)}{\sum_{w \in V} count(w, c_j)}$$

Learning the model parameters

Maximum Likelihood Estimate

$$\hat{P}(c_j) = rac{doc - count(C = c_j)}{N_{doc}}$$
 $\hat{P}(w_i|c_j) = rac{count(w_i, c_j)}{\sum_{w \in V} count(w, c_j)}$

Problem with MLE

Suppose in the training data, we haven't seen one of the words (say *pure*) in a given language.

 $\hat{P}(pure|Hindi) = 0$

< A

Learning the model parameters

Maximum Likelihood Estimate

$$\hat{P}(c_j) = rac{doc - count(C = c_j)}{N_{doc}}$$
 $\hat{P}(w_i | c_j) = rac{count(w_i, c_j)}{\displaystyle\sum_{w \in V} count(w, c_j)}$

Problem with MLE

Suppose in the training data, we haven't seen one of the words (say *pure*) in a given language.

$$\hat{P}(pure|Hindi) = 0$$

$$c_{NB} = \arg\max_{c} \hat{P}(c) \prod_{x \in X} \hat{P}(x_i | c)$$

< A

$$\hat{P}(w_i|c) = \frac{count(w_i, c) + 1}{\sum_{w \in V} (count(w, c) + 1)}$$
$$= \frac{count(w_i, c) + 1}{(\sum_{w \in V} (count(w, c)) + |V|}$$

イロト イポト イヨト イヨ

	Doc	Words	Class
Training	1	English Wikipedia editor	en
	2	free English Wikipedia	en
	3	Wikipedia editor	en
	4	español de Wikipedia	es
Test	5	Wikipedia español el	?

A worked out example: No smoothing

	Doc	Words	Class
Training	1	English Wikipedia editor	en
	2	free English Wikipedia	en
	3	Wikipedia editor	en
	4	español de Wikipedia	es
Test	5	Wikipedia español el	?

P(en)=3/4

$$\hat{P}(c) = \frac{count(c)}{\sum_{c_j \in C} count(c_j)}$$
$$\hat{P}(t \mid c) = \frac{count(t,c)}{\sum_{t_i \in V} count(t_i,c)}$$

P("Wikipedia" len) = 3/8 , P("Wikipedia" les) = 1/3 P("español" len) = 0/8 , P("español" les) = 1/3 P("el" len) = 0/8 , P("el" les) = 0/3

P(sp)=1/4

 $P(en|doc5) = 3/4 \times 3/8 \times 0/8 \times 0/8 = 0$ $P(es|doc5) = 1/4 \times 2/9 \times 1/3 \times 0/3 = 0$

A worked out example: Smoothing

	Doc	Words	Class
	1	English Wikipedia editor	en
Training	2	free English Wikipedia	en
Training	3	Wikipedia editor	en
	4	español de Wikipedia	sp
Test	5	Wikipedia español el	?

P(en)=3/4

$$\hat{P}(c) = \frac{count(c)}{\sum_{c_j \in C} count(c_j)}$$
$$\hat{P}(t \mid c) = \frac{count(t,c)}{\sum_{t_i \in V} count(t_i,c)}$$

P("Wikipedia" len) = 3+1/8+6 , P("Wikipedia" lsp) = 1+1/3+6 P("español" len) = 0+1/8+6 , P("español" lsp) = 1+1/3+6

P("el" | en) = 0+1/8+6, P("el" | sp) = 0+1/3+6

P(sp)=1/4

 $P(enldoc5) = 3/4 \times 4/14 \times 1/14 \times 1/14 = 0.00109$ $P(spldoc5) = 1/4 \times 2/9 \times 2/9 \times 1/9 = 0.00137$ Input: A word w (e.g., khiprata)

Input: A word w (e.g., khiprata)

Features: character n-grams (n=2 to 5)

Input: A word w (e.g., *khiprata*) *kshiprata* \rightarrow \$kshiprata\$ 2: \$k, ks, sh, hi, ip, pr, ra, at, ta, a\$ 3: \$ks, ksh, shi, hip, ipr, ... ta\$ 4: \$ksh, kshi, ship, ..., ata\$ 5: \$kshi, kship, shipr, ..., rata\$

 Input: A word w (e.g., khiprata)

 kshiprata → \$kshiprata\$

 2: \$k, ks, sh, hi, ip, pr, ra, at, ta, a\$

 3: \$ks, ksh, shi, hip, ipr, ..., ta\$

 4: \$ksh, kshi, ship, ..., ata\$

 5: \$kshi, kship, shipr, ..., rata\$

 Classifier: Naïve Bayes, Max-Ent, SVMs

Input: A word *w* (e.g., *khiprata*) *kshiprata* → \$kshiprata\$ 2: \$k, ks, sh, hi, ip, pr, ra, at, ta, a\$ 3: \$ks, ksh, shi, hip, ipr, ..., ta\$ 4: \$ksh, kshi, ship, ..., ata\$ 5: \$kshi, kship, shipr, ..., rata\$ Classifier: Naïve Bayes, Max-Ent, SVMs Prob (kshiprata is Sanskrit) » Prob (kshiprata is English)

langid.py Lui and Baldwin [2012] ChromeCLD McCandless [2010] LangDetect Nakatani [2010] LDIG Nakatani [2012] whatlang Brown [2013] YALI Majliš [2012] TextCat Scheelen [2003] MSR-LID Goldszmidt et al. [2013]

```
python
Python 2.7.2+ (default, Oct 4 2011, 20:06:09)
[GCC 4.6.1] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import langid
>>> langid.classify("I do not speak english")
('en', 0.57133487679906674)
>>> langid.set_languages(['de','fr','it'])
>>> langid.classify("I do not speak english")
('it', 0.99999835791478453)
>>> langid.set_languages(['en','it'])
>>> langid.classify("I do not speak english")
('en', 0.99176190378758973)
```

https://github.com/saffsd/langid.py Supports 97 languages

イロト イポト イヨト イヨト

Modi	ke	speech	se	India	inspired	ho	gaya	#namo
NE	Hn	En	Hn	NE	En	Hn	Hn	Other
	के		से			हो	गया	

< 口 > < 同

Modi	ke	speech	se	India	inspired	ho	gaya	#namo
NE	Hn	En	Hn	NE	En	Hn	Hn	Other
	के		से			हो	गया	

Modeling as a Sequence Prediction Problem

Given **X**: $X_1 = Modi, X_2 = ke, \ldots$

Modi	ke	speech	se	India	inspired	ho	gaya	#namo
NE	Hn	En	Hn	NE	En	Hn	Hn	Other
	के		से			हो	गया	

Modeling as a Sequence Prediction Problem

Given **X**: $X_1 = Modi, X_2 = ke, ...$ Output: **Y** = Y_1 (label for X_1), Y_2 (label for X_2),...

Modi	ke	speech	se	India	inspired	ho	gaya	#namo
NE	Hn	En	Hn	NE	En	Hn	Hn	Other
	के		से			हो	गया	

Modeling as a Sequence Prediction Problem

Given **X**: $X_1 = Modi, X_2 = ke, ...$ Output: **Y** = Y_1 (label for X_1), Y_2 (label for X_2),... Such that p(Y|X) is maximized

Conditional Random Fields: Modelling the Conditional Distribution

Conditional Random Fields: Modelling the Conditional Distribution

Model the Conditional Distribution: $P(\mathbf{y} \mid \mathbf{x})$

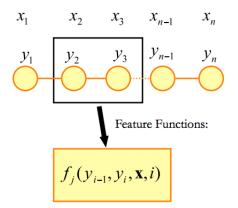
To predict a sequence compute:

y

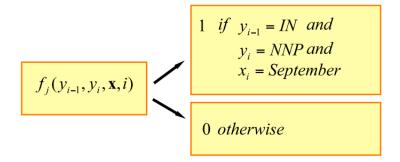
$$\mathbf{y}^* = \arg \max P(\mathbf{y} \mid \mathbf{x})$$

Must be able to compute it efficiently.

Conditional Random Fields: Feature Functions



Express some characteristic of the empirical distribution that we wish to hold in the model distribution



Conditional Random Fields: Distribution

Label sequence modelled as a normalized product of feature functions:

$$P(\mathbf{y} \mid \mathbf{x}, \boldsymbol{\lambda}) = \frac{1}{Z(\mathbf{x})} \exp \sum_{i=1}^{n} \sum_{j} \lambda_{j} f_{j}(y_{i-1}, y_{i}, \mathbf{x}, i)$$

$$Z(\mathbf{x}) = \sum_{\mathbf{y} \in Y} \sum_{i=1}^{n} \sum_{j} \lambda_{j} f_{j}(y_{i-1}, y_{i}, \mathbf{x}, i)$$

Pawan Goyal (IIT Kharagpur)

NLP for Social Media: Language Identification II

August 3-4, 2016 18/48

Features for word level Language Identification

Token-based features

- Capitalization
- Script
- Special Characters
- Character ngram based classifiers
- Word length

Lexical Features

- Regular lexicon
- Unigram
 Frequency
- Entity Lexicon
- Acronym/slang lexicon

Context Features

- Next 3 tokens
- Last 3 tokens
- Current token
- Previous label (Bigram or B)

Characteristics of Text in Social Media

Social media text contains varying levels of "noise" (lexical, syntactic and otherwise), e.g.

Characteristics of Text in Social Media

Social media text contains varying levels of "noise" (lexical, syntactic and otherwise), e.g.

- Tell ppl u luv them <u>cuz 2morrow</u> is truly not promised.
- SUPER BOWL SUNDAY!!! Enjoy yourselves!!! Sunday morning GOODIES <u>R</u> sent out! C U 2Nyt!
- Follow <u>@OFA</u> today for more coverage of the gun violence petition delivery to Congress. #NotBackingDown #EarlyFF

Lack of literacy?

• Lack of literacy? no

- Lack of literacy? no
- Length restrictions?

- Lack of literacy? no
- Length restrictions? not primarily

- Lack of literacy? no
- Length restrictions? not primarily
- Text input method-driven?

- Lack of literacy? no
- Length restrictions? not primarily
- Text input method-driven? to some degree, yes

- Lack of literacy? no
- Length restrictions? not primarily
- Text input method-driven? to some degree, yes
- Pragmatics (mimicking prosodic effects etc. in speech)?

- Lack of literacy? no
- Length restrictions? not primarily
- Text input method-driven? to some degree, yes
- Pragmatics (mimicking prosodic effects etc. in speech)? yeeees

Eisenstein, What to do about bad language on the internet, NAACL-HLT, 2013

Translate expressions into their canonical form

Translate expressions into their canonical form

Issues

What are the candidate tokens for normalization?

Translate expressions into their canonical form

Issues

- What are the candidate tokens for normalization?
- To what degree do we allow normalization?

Translate expressions into their canonical form

Issues

- What are the candidate tokens for normalization?
- To what degree do we allow normalization?
- What is the canonical form of a given expression? (e.g., aint)

Translate expressions into their canonical form

Issues

- What are the candidate tokens for normalization?
- To what degree do we allow normalization?
- What is the canonical form of a given expression? (e.g., aint)
- Is lexical normalization always appropriate? (e.g., bro)

One standard definition

relative to some standard tokenization

One standard definition

- relative to some standard tokenization
- consider only OOV tokens as candidates for normalization

One standard definition

- relative to some standard tokenization
- consider only OOV tokens as candidates for normalization
- allow only one-to-one word substitutions

 $\begin{array}{cccc} \textit{i left ACL} & \underline{cus} & \underline{im} & \underline{sickk} \mid \underline{Yuu} & better & be & their & \underline{tmrw} \\ & & \downarrow & \downarrow & \downarrow & \\ & & \downarrow & \downarrow & \downarrow & \\ \textit{i left ACL} & \underline{because} & \underline{l'm} & \underline{sick} \mid \underline{You} & better & be & their & \underline{tomorrow} \end{array}$

One standard definition

- relative to some standard tokenization
- consider only OOV tokens as candidates for normalization
- allow only one-to-one word substitutions

i left ACL	cus	<u>im</u>	sickk	ļ	Yuu	better l	be	their	<u>tmrw</u>
	\Downarrow	↓	\Downarrow		₩				\Downarrow
i left ACL	<u>because</u>	<u>l'm</u>	sick	ļ	You	better l	be	their	tomorrow

Assumptions/corrolaries of the task definition:

not possible to normalize in-vocabulary tokens, e.g. their

One standard definition

- relative to some standard tokenization
- consider only OOV tokens as candidates for normalization
- allow only one-to-one word substitutions

i left ACL	cus	<u>im</u>	sickk	ļ	Yuu	better	be	their	<u>tmrw</u>
	\Downarrow	₩	\Downarrow		\Downarrow				\Downarrow
i left ACL	<u>because</u>	<u>l'm</u>	sick	ļ	You	better	be	their	tomorrow

Assumptions/corrolaries of the task definition:

- not possible to normalize in-vocabulary tokens, e.g. their
- not possible to normalise the multiword tokens, e.g., ttyl

One standard definition

- relative to some standard tokenization
- consider only OOV tokens as candidates for normalization
- allow only one-to-one word substitutions

i left ACL	cus	<u>im</u>	sickk	ļ	Yuu	better b	be	their	<u>tmrw</u>
	\Downarrow	₩	\Downarrow		\Downarrow				\Downarrow
i left ACL	<u>because</u>	<u>l'm</u>	sick	ļ	You	better b	be	their	tomorrow

Assumptions/corrolaries of the task definition:

- not possible to normalize in-vocabulary tokens, e.g. their
- not possible to normalise the multiword tokens, e.g., ttyl
- ignore Twitter-specific entities, e.g., obama, #mandela, bit.ly/1iRqm

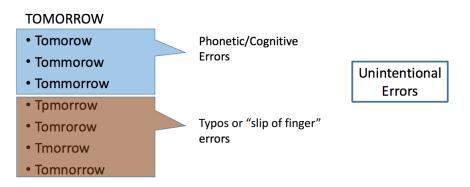
One standard definition

- relative to some standard tokenization
- consider only OOV tokens as candidates for normalization
- allow only one-to-one word substitutions

i left ACL	cus	<u>im</u>	sickk	ļ	Yuu	better b	be	their	<u>tmrw</u>
	\Downarrow	₩	\Downarrow		\Downarrow				\Downarrow
i left ACL	<u>because</u>	<u>l'm</u>	sick	ļ	You	better b	be	their	tomorrow

Assumptions/corrolaries of the task definition:

- not possible to normalize in-vocabulary tokens, e.g. their
- not possible to normalise the multiword tokens, e.g., ttyl
- ignore Twitter-specific entities, e.g., obama, #mandela, bit.ly/1iRqm
- assume a unique correct "norm" for each token



Understanding unintentional spelling errors

TOMORROW

- Tomorow
 Tommorow
 Tommorrow
 Tpmorrow
 Tomrorow
 Tomrorow
 Tmorrow
 Tomorrow
- Double letter omission
- Doubling of wrong letter
- Doubling of letter
- Substitution: $o \rightarrow p$
- Metathesis: or \rightarrow ro
- Deletion: $o \rightarrow \varepsilon$
- Insertion: $\varepsilon \rightarrow n$

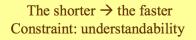
Phonetic/Cognitive Errors

Typos or "slip of finger" errors

- Cost of Edit Operations:
 - Insertion($\varepsilon \rightarrow c$): 1
 - Deletion ($c \rightarrow \varepsilon$): 1
 - Substitution: ($c \rightarrow c'$): 1 or 2

Metathesis $(cc' \rightarrow c'c)$ is either modeled as a single edit operation (cost = 1) or as a deletion-insertion pair $(cc' \rightarrow \varepsilon c' \rightarrow c'c)$, and therefore cost of 2.

- Edit Distance between two strings $s:c_1c_2c_3...c_n$ and $s':c'_1c'_2c'_3...c'_n$ is defined as the minimum value of the sum of the cost of a sequence of edit operations required to convert **s** to **s'**.
 - engine & begin, elevator & evaluator, east & csar
- Dynamic Programming Algorithm



This is an example for Texting language

Other factors: Coolness, group-membership, accommodating

The case of 'Tomorrow'

- 2moro (9)
- tomoz (25)
- tomoro (12)
- tomrw (5)
- tom (2)
- tomra (2)
- tomorrow (24)
- tomora (4)

- tomm (1)
- tomo (3)
- tomorow (3)
- 2mro (2)
- morrow (1)
- tomor (2)
- tmorro (1)
- moro (1)

Spell-checkers, such as Aspell, perform very poorly on such data (<22%)

Data from (Choudhury et al., 2007)

Patterns or Compression Operators

Phonetic substitution (phoneme)

psycho \rightarrow syco, then \rightarrow den

psycho \rightarrow syco, then \rightarrow den

Phonetic substitution (syllable)

psycho \rightarrow syco, then \rightarrow den

Phonetic substitution (syllable)

today ightarrow 2day, see ightarrow c

psycho \rightarrow syco, then \rightarrow den

Phonetic substitution (syllable)

today ightarrow 2day, see ightarrow c

Deletion of vowels

psycho \rightarrow syco, then \rightarrow den

Phonetic substitution (syllable)

today ightarrow 2day, see ightarrow c

Deletion of vowels

message \rightarrow mssg, about \rightarrow abt

psycho \rightarrow syco, then \rightarrow den

Phonetic substitution (syllable)

today ightarrow 2day, see ightarrow c

Deletion of vowels

message \rightarrow mssg, about \rightarrow abt

Deletion of repeated characters

psycho \rightarrow syco, then \rightarrow den

Phonetic substitution (syllable)

today ightarrow 2day, see ightarrow c

Deletion of vowels

message \rightarrow mssg, about \rightarrow abt

Deletion of repeated characters

tomorrow \rightarrow tomorow

Pawan Goyal (IIT Kharagpur)

Patterns or Compression Operators

Truncation (deletion of tails)

Truncation (deletion of tails)

introduction \rightarrow intro, evaluation \rightarrow eval

Truncation (deletion of tails)

introduction \rightarrow intro, evaluation \rightarrow eval

Common Abbreviations

introduction \rightarrow intro, evaluation \rightarrow eval

Common Abbreviations

Kharagpur \rightarrow kgp, text back \rightarrow tb

introduction \rightarrow intro, evaluation \rightarrow eval

Common Abbreviations

Kharagpur \rightarrow kgp, text back \rightarrow tb

Informal pronunciation

introduction \rightarrow intro, evaluation \rightarrow eval

Common Abbreviations

Kharagpur \rightarrow kgp, text back \rightarrow tb

Informal pronunciation

going to \rightarrow gonna

introduction \rightarrow intro, evaluation \rightarrow eval

Common Abbreviations

Kharagpur \rightarrow kgp, text back \rightarrow tb

Informal pronunciation

going to \rightarrow gonna

Emphasis by repetition

introduction \rightarrow intro, evaluation \rightarrow eval

Common Abbreviations

Kharagpur \rightarrow kgp, text back \rightarrow tb

Informal pronunciation

going to \rightarrow gonna

Emphasis by repetition

 $\mathsf{Funny} \to \mathsf{fuuuunnnnnyyyyy}$

• Because \rightarrow cause (informal usage)

- Because \rightarrow cause (informal usage)
- cause \rightarrow cauz (phonetic substitution)

- Because \rightarrow cause (informal usage)
- cause \rightarrow cauz (phonetic substitution)
- cauz \rightarrow cuz (vowel deletion)

Categorisation of non-standard words in English Twitter

Category	Ratio	Ratio Example	
Letter&Number	2.36%	<i>b4</i> "before"	
Letter	72.44%	<i>shuld</i> "should"	
Number Substitution	2.76%	4 "for"	
Slang	12.20%	<i>lol</i> "laugh out loud"	
Other	10.24%	<i>sucha</i> "such a"	

Table : Types of non-standard words in a 449 message sample of English tweets

Categorisation of non-standard words in English Twitter

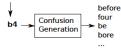
Category	Ratio	o Example	
Letter&Number	2.36%	<i>b4</i> "before"	
Letter	72.44%	<i>shuld</i> "should"	
Number Substitution	2.76%	4 "for"	
Slang	12.20%	<i>lol</i> "laugh out loud"	
Other	10.24%	<i>sucha</i> "such a"	

Table : Types of non-standard words in a 449 message sample of English tweets

Most non-standard words in sampled tweets are *morphophonemic* variations.

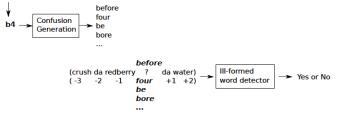
- 1 Confusion set generation (i.e., find correction candidates)
- Non-standard word detection (i.e., is the OOV a non-standard word?)
- Normalisation of a non-standard word (i.e., select the candidate)

... crush da redberry b4 da water ...



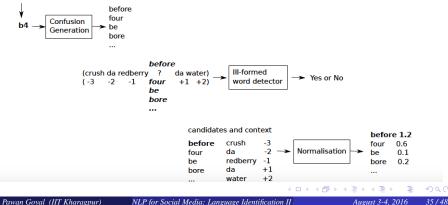
- 1 Confusion set generation (i.e., find correction candidates)
- Non-standard word detection (i.e., is the OOV a non-standard word?)
- Normalisation of a non-standard word (i.e., select the candidate)

... crush da redberry b4 da water ...



- 1 Confusion set generation (i.e., find correction candidates)
- Non-standard word detection (i.e., is the OOV a non-standard word?)
- Normalisation of a non-standard word (i.e., select the candidate)

... crush da redberry b4 da water ...



 Filter out any Twitter-specific tokens (user-mentions, hashtags, RT, etc.) and URLs

- Filter out any Twitter-specific tokens (user-mentions, hashtags, RT, etc.) and URLs
- Identify all OOV words relative to a standard spelling dictionary (aspell)

- Filter out any Twitter-specific tokens (user-mentions, hashtags, RT, etc.) and URLs
- Identify all OOV words relative to a standard spelling dictionary (aspell)
- For OOV words, shorten any repetitions of 3+ letters to 2 letters

36/48

• Generation via edit distance over letters (T_c) and phonemes (T_p) .

- Generation via edit distance over letters (T_c) and phonemes (T_p) .
- This allows to generate "earthquake" for words such as *earthquick*.

- Generation via edit distance over letters (T_c) and phonemes (T_p) .
- This allows to generate "earthquake" for words such as earthquick.
- Candidates with $T_c \le 2 \lor T_p \le 1$ were taken, further filtered using frequency to take the top 10% of candidates.

37/48

Detection based on candidate context fitness

- Correct words should fit better with context than substitution candidates
- Incorrect words should fit worse than substitution candidates

Detection based on candidate context fitness

- Correct words should fit better with context than substitution candidates
- Incorrect words should fit worse than substitution candidates

Basic Idea: Use Dependencies from corpus data

An SVM classifier is trained based on dependencies, to indicate candidate context fitness.

Ill-formed word in text snippet	Candidate	Dependencies
but I was thinkin movies .	(thinking,)	dobj(thinking, movies)
article poster by ruderrobb : there was	(rattrap,)	_

Feature Representation using Dependencies

- Build a dependency bank from existing corpora
- Represent each dependency tuple as a word pair + positional index

Feature Representation using Dependencies

- Build a dependency bank from existing corpora
- Represent each dependency tuple as a word pair + positional index

Corpus (NYT)

One obvious difference is the way they look, ...

Stanford Parser

num(difference-3, One-1) amod(difference-3, obvious-2) nsubj(way-6, difference-3) cop(way-6, is-4) ______ det(way-6, the-5) dobj(look-8, way-6) nsubj(look-8, they-7) rcmod(way-6, look-8)

Dependency bank

```
(way, difference, 3)
(look, way, 2)
```

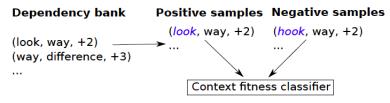
•••

...

• Use dependency bank directly as positive features

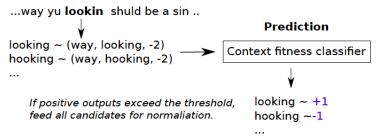
- Use dependency bank directly as positive features
- Automatically generate negative dependency features by replacing the target word with highly-ranked confusion candidates

- Use dependency bank directly as positive features
- Automatically generate negative dependency features by replacing the target word with highly-ranked confusion candidates

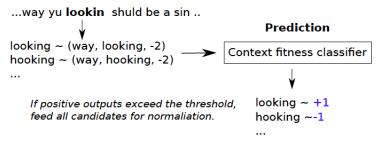


OOV words with candidates fitting the context (i.e., positive classification outputs) are probably ill-formed words

OOV words with candidates fitting the context (i.e., positive classification outputs) are probably ill-formed words



OOV words with candidates fitting the context (i.e., positive classification outputs) are probably ill-formed words



Threshold = $1 \rightarrow lookin$ is considered to be an ill-formed word

For each ill-formed word and its possible correction candidates, the following features are considered for normalization:

Word Similarity

- letter and phoneme edit distance (ED)
- prefix, suffix, and longest common subsequence

For each ill-formed word and its possible correction candidates, the following features are considered for normalization:

Word Similarity

- letter and phoneme edit distance (ED)
- prefix, suffix, and longest common subsequence

Context Support

- trigram language model score
- dependency score (weighted dependency count, derived from the detection step)

Observation

The longer the ill-formed word, the more likely there is a unique normalization candidate

Observation

The longer the ill-formed word, the more likely there is a unique normalization candidate

•
$$\underline{y} \Rightarrow {\underline{why}, \underline{you}, \dots}, \underline{hw} \Rightarrow {\underline{how}, \underline{homework}, \dots}$$

• $\underline{4eva} \Rightarrow {\underline{forever}}, \underline{tlkin} \Rightarrow {talking}$

Observation

The longer the ill-formed word, the more likely there is a unique normalization candidate

•
$$\underline{y} \Rightarrow \{\underline{why}, \underline{you}, \dots\}, \underline{hw} \Rightarrow \{\underline{how}, \underline{homework}, \dots\}$$

•
$$\underline{4eva} \Rightarrow \{\underline{forever}\}, \underline{tlkin} \Rightarrow \{\underline{talking}\}$$

Approach

Construct a dictionary of (lexical variant, standard form) pair for longer word types (character length \geq 4) of moderate frequency (\geq 16)

Construct the dictionary based on distributional similarity + string similarity

Construct the dictionary based on distributional similarity + string similarity

Input: Tokenised English tweets

- Extract (OOV, IV) pairs based on distributional similarity
- Re-rank the extracted pairs by string similarity

Construct the dictionary based on distributional similarity + string similarity

Input: Tokenised English tweets

- Extract (OOV, IV) pairs based on distributional similarity
- Re-rank the extracted pairs by string similarity

Output

A list of (OOV, IV) pairs ordered by string similarity; select the top-n pairs for inclusion in the normalisation lexicon.

. . .

- ... see you tmrw ...
- ... tmrw morning ...
- ... tomorrow morning ...

↓ distributional similarity

{tmrw, 2morow, tomorrow, Monday}

 \Downarrow string similarity

 $tmrw \rightarrow tomorrow$

Components/parameters of the method

- context wondow size: ± 1 , ± 2 , ± 3
- context word sensitivity: bag-of-words vs. positional indexing
- context word representation: unigram, bigram or trigram
- context word filtering: all tokens vs. only dictionary words
- context similarity: KL divergence, Jensen-Shannon divergence, Cosine similarity, Euclidean distance

Components/parameters of the method

- context wondow size: ± 1 , ± 2 , ± 3
- context word sensitivity: bag-of-words vs. positional indexing
- context word representation: unigram, bigram or trigram
- context word filtering: all tokens vs. only dictionary words
- context similarity: KL divergence, Jensen-Shannon divergence, Cosine similarity, Euclidean distance

Tune parameters relative to (OOV,IV) pair development data

(OOV,IV) pairs derived by distributional similarity:

```
(Obama, Adam) ↓
(tmrw, tomorrow) ↑
(Youtube, web) ↓
(4eva, forever) ↑
```

. . .

(OOV,IV) pairs derived by distributional similarity:

```
(Obama, Adam) ↓
(tmrw, tomorrow) ↑
(Youtube, web) ↓
(4eva, forever) ↑
```

Get the top-ranked pairs as lexicon entries:

(tmrw, tomorrow) (4eva, forever)

. . .

- Han, Bo, and Timothy Baldwin. "Lexical normalisation of short text messages: Makn sens a# twitter." Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1. Association for Computational Linguistics, 2011.
- Han, Bo, Paul Cook, and Timothy Baldwin. "Automatically constructing a normalisation dictionary for microblogs." Proceedings of the 2012 joint conference on empirical methods in natural language processing and computational natural language learning. Association for Computational Linguistics, 2012.