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Language Mix: Corpora

Social media sources

TWITTER: micro-blog posts from Twitter
COMMENTS: comments from YouTube
BLOGS: blog posts from Spinn3r dataset

FORUMS: forum posts from popular forums
WIKIPEDIA: documents from English Wikipedia
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Language Mix: Corpora

Social media sources

TWITTER: micro-blog posts from Twitter
COMMENTS: comments from YouTube
BLOGS: blog posts from Spinn3r dataset

FORUMS: forum posts from popular forums
WIKIPEDIA: documents from English Wikipedia

A random sample of 4K sentences was taken from all these sources. J

Reference: Baldwin et al. How Noisy Social Media Text, How Diffrnt Social
Media Sources? IJCNLP 2013.
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Language Mix
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Language Mix: Overall Findings

o Twitter most multilingual (> 50% non-EN), followed by Comments, blogs
and forums

o All 97 languages modeled by langid.py found in Twitter and Comments
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Lexical Analysis: Average Word and Sentence length

Corpus Word Sentence
length length
TWITTER-1 3.842.4 0.2+4+6.4
TWITTER-2 3.842.4 9.04+6.3
COMMENTS 3.94+3.2 10.5+10.1
ForumMs 3.8+2.3 1424127
BLOGS 414+2.8 18.5+24.8
WIKIPEDIA 45428 21.9+16.2
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Lexical Analysis: Out-of-vocabulary words

Word Sentence %00V
Corpus

length length
TWITTER-1 3.84+2.4 02464 24.6
TWITTER-2 3.8+2.4 9.0+6.3 24.0
COMMENTS 3.943.2 10.54+10.1 19.8
ForuwMms 3.8+23 142+12.7 18.1
Broas 41+28 185+248 20.6
WIKIPEDIA 45428 21.9+16.2 19.0
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Natural Language processing (NLP)
is a field of computer science and
linguistics concerned with the
interactions between computers
and human (natural) languages. In
theory. natural-language
processing is a very attractive
method of human-computer
interaction.
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L'Elaborazione del linguaggio
naturale, detta anche NLP
(dall'inglese Natural Language
Processing), € il processo di
estrazione di informazioni
semantiche da espressioni del
linguaggio umano o naturale, scritte
o parlate, tramite |'elaborazione di
un calcolatore elettronico.
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Language ldentification

RT @ThotsOnTees: Its not rocket
science.....Man was designed to
fail.So to those that av their trust in
Man,goodluck...mine is on GOD!
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#Campiglio stellata. freddo. neve
dura, ma sufficiente. Rossi, Alo e
Massa ok, Hayden spalla ancora
immobile e dolorante.Domani
#StudioSport

Pawan Goyal (IIT Kharagpur)



LanglD for Twitter

Why?
Twitter is highly multilingual J
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LanglD for Twitter

Why?
Twitter is highly multilingual

What are the challenges?
@ Short message length: individual documents are generally short.
@ Lexical variation: There is a lot of fluidity in how a given word is spelled.

o Linguistic diversity: A rich mix of languages can be found, with no
“closed-world” guarantee.

Limited labelled corpora: language-labelled corpora of social media data
are few.
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Granularity-level
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Granularity-level

Huge traffic restrictions for PM’s visit to #blast site mean deserted roads in
#Hyderabad. “Itna sanaata kyon hai bhai?”
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Granularity-level

Huge traffic restrictions for PM’s visit to #blast site mean deserted roads in

#Hyderabad. “Itna sanaata kyon hai bhai?”
Modi ke speech se India inspired ho gaya #namo

NE | Hn En Hn NE En Hn Hn Other

¥ J g T

Pawan Goyal (IIT Kharagpur) NLP for Social Media: Language Identification July 29, 2016 14/25



Granularity-level

Huge traffic restrictions for PM’s visit to #blast site mean deserted roads in
#Hyderabad. “Itna sanaata kyon hai bhai?”
Modi ke speech se India inspired ho gaya #namo

NE Hn En Hn NE En Hn Hn Other
F J g T
document level language identification
We start with the case where the whole tweet belongs to one language only. J
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LI: Approaches

Unicode Block
Idea: Different languages use different scripts. J
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LI: Approaches

Unicode Block
Idea: Different languages use different scripts.

Unicode blocks and contained scripts

Block range Block name Code points!® ;:s':lg:'\::! Scriptslolicldllelll]
U+0000..U+007F Basic Latind! 128 128 Latin (52 Common (76 ct
U+0080..U+00FF Latin-1 Supplementln! 128 128 Latin (64 Common (84 ct
U+0100..U+017F Latin Extended-A 128 128 Latin
U+0180..U+024F Latin Extended-B 208 208 Latin
U+0250..U+02AF IPA Extensions 98 96 Latin
U+02B0..U+02FF Spacing Modifier Letters 80 80 Bopomofo (2 characters), Latin {14 characters), Common (64 char
U+0300..U+036F Combining Diacritical Marks 12 12 Inherited
U+0370..U+03FF Greek and Coptic 144 135 Coptic (14 characters), Greek (117 characters), Common (4 chara
U+0400..U+04FF Cyrillic 256 256 Cyrillic (254 characters), Inherited (2 characters)
U+0500..U+052F Cyrillic Supplement 48 48 Cyrillie
U+0530..U+058F Armenian 96 89 ian (88 ct Common (1 )
U+0590..U+05FF Hebrew 112 a7 Hebrew
L40600..U+0BFF Arabic 258 255 Arabic (236 GCommon (7 Inherited (12
characters)
U+0700..U+074F Syriac 80 77 Syriac
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LI: Approaches

Unicode Block
Idea: Different languages use different scripts. J
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Unicode Block

Idea: Different languages use different scripts.

U+0900..U+097F Devanagari 128 128 E gz Cormon IR eI
characters)
U+0980..U+08FF Bengali 128 93 Bengali
U+0AQ0..U+0A7F Gurmukhi 128 78 Gurmukhi
U+0A80..U+0AFF Gujarati 128 85 Gujarati
U+0B00..U+0B7F Criya 128 90 Oriya
U+0B80..U+0BFF Tamil 128 72 Tamil
U+0C00..U+0C7F Telugu 128 96 Telugu
U+0CB80..U+0CFF Kannada 128 88 Kannada
U+0D00..U+0D7F Malayalam 128 114 Malayalam
U+0D80..U+0DFF Sinhala 128 90 Sinhala
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LI: Approaches

Unicode Block

Idea: Different languages use different scripts.
e.g., English, French, German, Spanish use Basic Latin, while Russian,

Bulgarian, Serbian use Cyrillic.
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LI: Approaches

Unicode Block

Idea: Different languages use different scripts.
e.g., English, French, German, Spanish use Basic Latin, while Russian,

Bulgarian, Serbian use Cyrillic.

Issues
Still, many languages use the same block.
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LI: Approaches

Unicode Block

Idea: Different languages use different scripts.

e.g., English, French, German, Spanish use Basic Latin, while Russian,
Bulgarian, Serbian use Cyrillic.

Issues
Still, many languages use the same block.

Issues
How many of you use devanagari for messaging in Hindi?
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LI: Approaches

Dictionary based
e Compute the intersection with each of the language lexicon.
@ Declare the highest matching lexicon as the winner.
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LI: Approaches

Dictionary based
e Compute the intersection with each of the language lexicon.
@ Declare the highest matching lexicon as the winner.
@ May also work with a subset, such as stop words.
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LI: Approaches

Dictionary based
e Compute the intersection with each of the language lexicon.
@ Declare the highest matching lexicon as the winner.
@ May also work with a subset, such as stop words.

Issues
Coverage, short text, cognates
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Input

@ A document d
o A fixed set of classes C = {cj,c2,...,cn}
e A training set of m hand-labeled documents (dy,c1),- .., (dm,cm)
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LI: Supervised Approaches

Input
@ A document d
o A fixed set of classes C = {cj,c2,...,cn}
@ A training set of m hand-labeled documents (di,c1), ..., (dm,cm)

Output

A learned classifier y: d — ¢
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Supervised Machine Learning

(a) Training

@ 1 machine

learning
algorithm

| feature
extractor

features

input

(b) Prediction l
. feature classifier
input
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Bayes’ rule for documents and classes

For a document d and a class ¢
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Bayes’ rule for documents and classes

For a document d and a class ¢

P(d|c)P(c)

Pleld) = =500

Naive Bayes Classifier

cyap = argmax P(c|d)
ceC
= argmax P(d|c)P(c)
ceC

= argmax P(x,x2,...,%,|c)P(c)
ceC
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cation assumptions

P(x1,x2,...,%|C)
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Naive Bayes classification assumptions

P(x1,x2,...,%|C)

Bag of words assumption
Assume that the position of a word in the document doesn’'t matter J
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Naive Bayes classification assumptions

P(x1,x2,...,%|C)

Bag of words assumption

Assume that the position of a word in the document doesn’'t matter

Conditional Independence

Assume the feature probabilities P(x;|c;) are independent given the class c;.

P(x1,x2,...,%5|c) = P(x1|c) - P(x2|c) ... P(x4|c)
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Naive Bayes classification assumptions

P(x1,x2,...,%|C)

Bag of words assumption

Assume that the position of a word in the document doesn’'t matter

Conditional Independence

Assume the feature probabilities P(x;|c;) are independent given the class c;.

P(x1,x2,...,%5|c) = P(x1|c) - P(x2|c) ... P(x4|c)

cyg = argmax P(c HP x|c)
ceC xeX
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Learning the model parameters

Maximum Likelihood Estimate

R doc — count(C = cj)
P(cj) = o ’
doc
A count(wj, c;
P(wile) = Z#
count(w, c;j)
weV )
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Learning the model parameters

Maximum Likelihood Estimate

\_ doc — count(C = ;)

P(gj) = N,
oc
Pwilc) count(wj, c;)
wile)) = ————
o Z count(w, c;j)

weV

Problem with MLE
Suppose in the training data, we haven’t seen one of the words (say pure) in a
given language.

P(pure|Hindi) =0
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Learning the model parameters

Maximum Likelihood Estimate

\_ doc — count(C = ;)

P(gj) = N,
oc
Pwilc) count(wj, c;)
wile)) = ————
o Z count(w, c;j)

weV

Problem with MLE
Suppose in the training data, we haven’t seen one of the words (say pure) in a
given language.

P(pure|Hindi) =0

cyp = argmax P(c) H P(x;|c)

xeX
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Laplace (add-1) smoothing

count(wi,c)+1

Y (count(w,c)+1)

weV

P(wilc) =

count(w;,c)+1

- ( Z (count(w,c))+|V|

weV
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Homework

Get > 15k tweets from Twitter Streaming API and check:
@ Are all tweets LangID tagged (what %)?
e How many different language tags?

Then run langid.py and check:
o how many different language tagged?
@ what % langid.py and Twitter’s API agree/disagree?
@ what kind of tweets/languages do they disagree?

Now take some of the posts and comments from a public facebook page and
see if langid.py detects the language correctly.
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