Practice Problems: Basics of Fixed Parameter Tractability: Kernelization, and Bounded Search

Palash Dey Indian Institute of Technology, Kharagpur

March 27, 2024

All the problems below are from Cygan et al [CFK⁺15].

- 1. Show that there is an FPT algorithm for a parameterized problem if and only if there is an algorithm for it running in time O(f(k) + poly(n)) for some computable function $f(\cdot)$.
- 2. Show that $(c \log n)^k = k^{O(k)} + O(n)$.
- 3. In the Maximum Satisfiability problem, we are given a CNF formula F, and a non-negative integer k, and we need to decide whether F has a truth assignment satisfying at least k clauses. Design a polynomial time kernel for this problem with at most k variables and 2k clauses.
- 4. In the Edge Clique Cover problem, we are given a graph G and a non-negative integer k, and the goal is to decide whether the edges of G can be covered by at most k cliques. Design a polynomial time kernel for this problem with number of vertices O(2^k).
- 5. Prove Hall's Theorem: Let \mathcal{G} be an undirected bipartite graph with bipartition (V_1, V_2) . The graph \mathcal{G} has a matching saturating V_1 if and only if for all $X \subseteq V_1$, we have $|N(X)| \ge |X|$. Moreover, if there is no matching saturating V_1 , then show that a subset $X \subseteq V_1$ with |N(X)| < |X| can be computed in polynomial time.
- 6. Expansion Lemma: A q-star, $q \ge 1$, is a graph with q + 1 vertices, one vertex of degree q, called the center, and all other vertices of degree 1 adjacent to the center. Let \mathcal{G} be a bipartite graph with vertex bipartition (A, B). For a positive integer q, a set of edges $M \subseteq \mathcal{E}(\mathcal{G})$ is called by a q-expansion of A into B if
 - \triangleright every vertex of A is incident to exactly q edges of M;
 - \triangleright M saturates exactly q|A| vertices in B.

Show the following: Let \mathcal{G} be a bipartite graph with bipartition (A, B). Then there is a q-expansion from A into B if and only if $|N(X)| \ge q|X|$ for every $X \subseteq A$. Furthermore, if there is no q-expansion from A into B, then a set $X \subseteq A$ with |N(X)| < q|X| can be found in polynomial time.

- 7. A graph \mathcal{G} is a cluster graph if every connected component of \mathcal{G} is a clique. In the Cluster Editing problem, we are given as input a graph \mathcal{G} and an integer k, and the objective is to check whether one can edit (add or delete) at most k edges in \mathcal{G} to obtain a cluster graph. That is, we look for a set $F \subseteq \binom{V(G)}{2}$ of size at most k, such that the graph $(\mathcal{V}(\mathcal{G}), (\mathcal{E}(\mathcal{G}) \ F) \cup (F \ \mathcal{E}(\mathcal{G})))$ is a cluster graph.
 - (a) Show that a graph G is a cluster graph if and only if it does not have an induced path on three vertices (sequence of three vertices u, v, w such that {u, v} and {vw} are edges and {u, w} ∉ E(G).
 - (b) Show a kernel for Cluster Editing with $O(k^2)$ vertices.

References

[CFK⁺15] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. *Parameterized Algorithms*. Springer, 2015.