Problem Set 5

Hash Functions, Sub-Guassian Random Variables, Heoffding Bound

1. For any family of hash functions from X to Y where $|X| = m$, $|Y| = n$, show that for h chosen at random from the family, there exists a pair of elements $x, x' \in X$ such that

$$
\mathbf{Pr}[h(x) = h(x')] \ge \frac{1}{n} - \frac{1}{m},
$$

irrespective of the distribution according to which h is chosen.

- 2. (a) Let X and Y be numbers that are chosen independently and uniformly at random from \mathbb{Z}_{n+1} . Let $Z = X + Y \mod (n+1)$. Show that X, Y, Z are pairwise independent but not independent.
	- (b) Extend this example to give a collection of random variables that are k-wise independent but not $(k + 1)$ -wise independent.
- 3. Suppose we are given m vectors $\vec{v}_1, \ldots, \vec{v}_m \in \{0,1\}^{\ell}$ such that any k of the m vectors are linearly independent modulo 2. Let $\vec{v}_i = (v_{i,1}, v_{i,2}, \ldots, v_{i,\ell})$. Let \vec{u} be chosen uniformly at random from $\{0,1\}^{\ell}$ and let $X_i = \sum_{i=1}^{\ell} v_{i,j} u_j \mod 2$. Show that the X_i are uniform k-wise independent bits.
- 4. Suppose that Alice and Bob secretly agree on a hash function h from a 2-universal family $\mathcal{H} = \{h : \mathcal{M} \to \mathbb{Z}_p\}$ of hash functions, where p is a prime. Later, Alice sends a message m to Bob over the Internet, where $m \in \mathcal{M}$. She authenticates this message to Bob by also sending an authentication tag $t = h(m)$, and Bob checks that the pair (m, t) he receives satisfies $t = h(m)$. Suppose that an adversary intercepts (m, t) en route and tries to fool Bob by replacing the pair with a different pair (m', t') . Argue that the probability that the adversary succeeds in fooling Bob into accepting (m', t') is at most $1/p$, no matter how much computing power the adversary has, even if the adversary knows the family H of hash functions used.
- 5. Prove the following variants of Hoeffding bound.
	- (a) Let X_1, X_2, \ldots, X_n be independent random variables with $\mathbf{E}[X_i] = \mu_i$ and $\mathbf{Pr}[a_i \leq X_i]$ b_i = 1 (i.e., X_i is a bounded random variable with lower bound a_i and upper bound b_i) where a_i, b_i are constants. Then

$$
\Pr\left[\left|\sum_{i=1}^n X_i - \sum_{i=1}^n \mu_i\right| \ge \epsilon\right] \le 2e^{-2\epsilon^2/\sum_{i=1}^n (b_i - a_i)^2}.
$$

Hint: Use the Heoffding inequality discussed in class and the fact that bounded random variables are sub-Gaussian (show this!).

(b) Let X_1, X_2, \ldots, X_n be independent random variables with $\mathbf{E}[X_i] = \mu$ for all $i \in [n]$ and $\Pr[a \leq X_i \leq b] = 1.$ Then

$$
\Pr\left[\left|\frac{1}{n}\sum_{i=1}^n X_i - \mu\right| \ge \epsilon\right] \le 2e^{-2n\epsilon^2/(b-a)^2}.
$$