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Answer any FIVE questions.

1. Consider the following card shuffling: insert the top card at a uniformly random position from 1 to n. Model the
shuffling process as a Markov chain.

(a) (4 points) Show that the uniform distribution is the unique stationary distribution.

(b) (8 points) Show that the mixing time is at most n lnn+n ln( 1
ε
).





2. (12 points) Consider two random walks on a cycle of length 2n starting at diagonally opposite vertices. In each
random walk, we move to one of its neighbors with probability 1

4 and stay at the current vertex with probability
1
2 . Compute the expected number of steps for them to meet.
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3. (12 points) Assuming that we can pick a uniformly random clique from the set of all cliques in any graph, design
a Monte Carlo algorithm to estimate the number of cliques in a graph. A clique is a subset K of vertices where we
have an edge between every pair of vertices in K.
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4. (12 points) Let X1,X2, . . . ,Xn be independent random variables such that

Pr[Xi = 1− pi] = pi and Pr[Xi =−pi] = 1− pi,

where 0 < pi < 1 for all i ∈ [n]. Let X = ∑
n
i=1 Xi. Prove that

Pr[|X | ≥ a]≤ 2e−2a2/n.

Hint: Use the inequality piet(1−pi)+(1− pi)e−t pi ≤ et2/8.
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5. Consider n balls thrown randomly into n bins. Let Xi = 1 if i-th bin is empty and 0 otherwise. Let X = ∑
n
i=1 Xi.

Let Yi, i ∈ [n] be Bernoulli random variables that are 1 with probability p =
(
1− 1

n

)n
. Let Y = ∑

n
i=1 Yi.

(a) (2 points) Show that E [X1X2 · · ·Xk]≤ E [Y1Y2 · · ·Yk] for any k ≥ 1. (Use the fact that (1−k/n)≤ (1−1/n)kn

for all positive integers n,k.)

(b) (6 points) Prove that E
[
etX
]
≤ E

[
etY
]

for all t ≥ 0. (Use the expansion for etX , etY ; compare E
[
Xk
]

and
E
[
Y k
]
).

(c) (4 points) Derive the following Chernoff bound:

Pr[X ≥ (1+δ )E [X ]]≤

(
eδ

(1+δ )(1+δ )

)E[Y ]

.
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6. (12 points) Let A ∈ {0,1}n×m and b⃗ ∈ {0,1}n be uniformly and independently distributed. Define for x⃗ ∈ {0,1}m,
a random variable Z⃗x = (A⃗x + b⃗) mod 2. Show that the random variables {Z⃗x | x⃗ ∈ {0,1}m} are pairwise
independent.
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