
Parameterized complexity

Problem: Vertex Cover Independent Set
Input: Graph G , integer k Graph G , integer k
Question: Is it possible to cover

the edges with k vertices?
Is it possible to find
k independent vertices?

Complexity: NP-complete NP-complete

4

Slides by Prof. Daniel Marx

Parameterized complexity

Problem: Vertex Cover Independent Set
Input: Graph G , integer k Graph G , integer k
Question: Is it possible to cover

the edges with k vertices?
Is it possible to find
k independent vertices?

Complexity: NP-complete NP-complete
Brute force: O(nk) possibilities O(nk) possibilities

4

Parameterized complexity

Problem: Vertex Cover Independent Set
Input: Graph G , integer k Graph G , integer k
Question: Is it possible to cover

the edges with k vertices?
Is it possible to find
k independent vertices?

Complexity: NP-complete NP-complete
Brute force: O(nk) possibilities O(nk) possibilities

O(2kn2) algorithm No no(k) algorithm
exists known

4

Bounded search tree method

13

Bounded search tree method
Algorithm for Vertex Cover

Main idea: reduce problem instance (x , k) to
solving a bounded number of instances with
parameter < k .
We should be able to solve instance (x , k) in
polynomial time using the solutions of the new
instances.
If the parameter strictly decreases in every
recursive call, then the depth is at most k .

e1 = u1v1

u1 v1

e2 = u2v2
u2 v2 ≤ k

Size of the search tree:
If we branch into c directions: ck .
If we branch into O(k) directions: kO(k) = 2O(k log k).
(If we branch into O(log n) directions: O(n) + 2O(k log k).)

14

Bounded search tree method
Algorithm for Vertex Cover

Main idea: reduce problem instance (x , k) to
solving a bounded number of instances with
parameter < k .
We should be able to solve instance (x , k) in
polynomial time using the solutions of the new
instances.
If the parameter strictly decreases in every
recursive call, then the depth is at most k .

e1 = u1v1

u1 v1

e2 = u2v2
u2 v2 ≤ k

Size of the search tree:
If we branch into c directions: ck .
If we branch into O(k) directions: kO(k) = 2O(k log k).
(If we branch into O(log n) directions: O(n) + 2O(k log k).)

Next: A 1.41k · nO(1) time algorithm for Vertex Cover.
14

Bounded search tree method
Algorithm for Vertex Cover

Main idea: reduce problem instance (x , k) to
solving a bounded number of instances with
parameter < k .
We should be able to solve instance (x , k) in
polynomial time using the solutions of the new
instances.
If the parameter strictly decreases in every
recursive call, then the depth is at most k .

e1 = u1v1

u1 v1

e2 = u2v2
u2 v2 ≤ k

Size of the search tree:
If we branch into c directions: ck .
If we branch into O(k) directions: kO(k) = 2O(k log k).
(If we branch into O(log n) directions: O(n) + 2O(k log k).)

Next: A O∗(1.41k) time algorithm for Vertex Cover.
14

Improved branching for Vertex Cover

If every vertex has degree ≤ 2, then the problem can be solved in polynomial time.
Branching rule:
If there is a vertex v with at least 3 neighbors, then

either v is in the solution,
or every neighbor of v is in the solution.

Crude upper bound: O∗(2k), since the branching rule decreases the parameter.

15

Each component is a path or a cycle!

Improved branching for Vertex Cover

If every vertex has degree ≤ 2, then the problem can be solved in polynomial time.
Branching rule:
If there is a vertex v with at least 3 neighbors, then

either v is in the solution, ⇒ k decreases by 1
or every neighbor of v is in the solution. ⇒ k decreases by at least 3

Crude upper bound: O∗(2k), since the branching rule decreases the parameter.

But it is somewhat better than that, since in the second branch, the parameter
decreases by at least 3.

15

Better analysis
Let T (k) be the maximum number of leaves of the search tree if the parameter is at
most k (let T (k) = 1 for k ≤ 0).

T (k) ≤ T (k − 1) + T (k − 3)

There is a standard technique for bounding such functions asymptotically.

16

Better analysis
Let T (k) be the maximum number of leaves of the search tree if the parameter is at
most k (let T (k) = 1 for k ≤ 0).

T (k) ≤ T (k − 1) + T (k − 3)

There is a standard technique for bounding such functions asymptotically.

We prove by induction that T (k) ≤ ck for some c > 1 as small as possible.

What values of c are good? We need:

ck≥≥≥ck−1 + ck−3

c3 − c2 − 1 ≥ 0

We need to find the roots of the characteristic equation c3 − c2 − 1 = 0.

Note: it is always true that such an equation has a unique positive root.

16

Better analysis

c3 − c2 − 1 = 0

-3

-2

-1

0

1

2

3

1.4656

c = 1.4656 is a good value ⇒ T (k) ≤ 1.4656k

⇒ We have a O∗(1.4656k) algorithm for Vertex Cover.

17

Better analysis

We showed that if T (k) ≤ T (k − 1) + T (k − 3), then T (k) ≤ 1.4656k holds.

Is this bound tight? There are two questions:
Can the function T (k) be that large?
Yes (ignoring rounding problems).
Can the search tree of the Vertex Cover algorithm be that large?
Difficult question, hard to answer in general.

18

Branching vectors

The branching vector of our O∗(1.4656k) Vertex Cover algorithm was (1, 3).

Example: Let us bound the search tree for the branching vector (2, 5, 6, 6, 7, 7).
(2 out of the 6 branches decrease the parameter by 7, etc.).

19

Branching vectors

The branching vector of our O∗(1.4656k) Vertex Cover algorithm was (1, 3).

Example: Let us bound the search tree for the branching vector (2, 5, 6, 6, 7, 7).
(2 out of the 6 branches decrease the parameter by 7, etc.).

The value c > 1 has to satisfy:

ck ≥ ck−2 + ck−5 + 2ck−6 + 2ck−7

c7 − c5 − c2 − 2c − 2 ≥ 0

Unique positive root of the characteristic equation: 1.4483 ⇒ T (k) ≤ 1.4483k .

It is hard to compare branching vectors intuitively.

19

Branching vectors
Example: The roots for branching vector (i , j) (1 ≤ i , j ≤ 6).

T (k) ≤ T (k − i) + T (k − j)⇒ck ≥ ck−i + ck−j

c j − c j−i − 1 ≥ 0

We compute the unique positive root.

1 2 3 4 5 6
1 2.0000 1.6181 1.4656 1.3803 1.3248 1.2852
2 1.6181 1.4143 1.3248 1.2721 1.2366 1.2107
3 1.4656 1.3248 1.2560 1.2208 1.1939 1.1740
4 1.3803 1.2721 1.2208 1.1893 1.1674 1.1510
5 1.3248 1.2366 1.1939 1.1674 1.1487 1.1348
6 1.2852 1.2107 1.1740 1.1510 1.1348 1.1225

20

Example: Triangle Free Deletion

Triangle Free Deletion
Given (G , k), remove at most k vertices to make the graph triangle free.

What is the running time of a simple branching algorithm?

21

Example: Triangle Free Deletion

Triangle Free Deletion
Given (G , k), remove at most k vertices to make the graph triangle free.

What is the running time of a simple branching algorithm?

height ≤ k
v3v1

T

v2

The search tree has at most 3k leaves and the work to be done is polynomial at each
step ⇒ O∗(3k) time algorithm.

Note: If the answer is “NO”, then the search tree has exactly 3k leaves.

21

Revisit: How many leaves in a NO instance of VERTEX COVER when the branch vector is (1,1)? How about when it is (1,3)?

Graph modification problems

A general problem family containing tasks of the following type:

Given (G , k), do at most k allowed operations on G to make it have property P.

Allowed operations: vertex deletion, edge deletion, edge addition, . . .
Property P: edgeless, no triangles, no cycles, planar, chordal, regular,
disconnected, . . .

Examples:
Vertex Cover: Delete k vertices to make G edgeless.
Triangle Free Deletion: Delete k vertices to make G triangle free.
Feedback Vertex Set: Delete k vertices to make G acyclic (forest).

22

Hereditary properties

Definition
A graph property P is hereditary or closed under induced subgraphs if whenever
G ∈ P , every induced subgraph of G is also in P.

“removing a vertex does not ruin the property”
(e.g., triangle free, bipartite, planar)

23

Hereditary properties

Definition
A graph property P is hereditary or closed under induced subgraphs if whenever
G ∈ P , every induced subgraph of G is also in P.

“removing a vertex does not ruin the property”
(e.g., triangle free, bipartite, planar)

Observation
Every hereditary property P can be characterized by a (finite or infinite) set F of
“minimal bad graphs” or “forbidden induced subgraphs”: G ∈ P if and only if G does
not have an induced subgraph isomorphic to a member of F .

Example: a graph is bipartite if and only if it does not contain an odd cycle as an
induced subgraph.

23

Graph properties
all graph properties

hereditary properties

hereditary with finite set of
forbidden induced subgraphs

regular bipartite triangle free connected
planar empty complete acyclic

24

Graph properties
all graph properties

hereditary properties

hereditary with finite set of

regular

forbidden induced subgraphs

bipartite triangle free connected
planar empty complete acyclic

24

Graph properties
all graph properties

hereditary properties

hereditary with finite set of

regular

bipartite forbidden induced subgraphs

triangle free connected
planar empty complete acyclic

24

Graph properties
all graph properties

hereditary properties

hereditary with finite set of

regular

bipartite

triangle free
forbidden induced subgraphs

connected
planar empty complete acyclic

24

Graph properties
all graph properties

hereditary properties

hereditary with finite set of

regular

bipartite

triangle free

connected

forbidden induced subgraphs

planar empty complete acyclic

24

Graph properties
all graph properties

hereditary properties

hereditary with finite set of

regular

bipartite

triangle free

connected

planar
forbidden induced subgraphs

empty complete acyclic

24

Graph properties
all graph properties

hereditary properties

hereditary with finite set of

regular

bipartite

triangle free

connected

planar

empty

forbidden induced subgraphs

complete acyclic

24

Graph properties
all graph properties

hereditary properties

hereditary with finite set of

regular

bipartite

triangle free

connected

planar

empty
complete

forbidden induced subgraphs

acyclic

24

Graph properties
all graph properties

hereditary properties

hereditary with finite set of

regular

bipartite

triangle free

connected

planar

empty
complete

acyclic

forbidden induced subgraphs

24

Graph properties
all graph properties

hereditary properties

hereditary with finite set of

regular

bipartite

triangle free

connected

planar

empty
complete

acyclic

forbidden induced subgraphs

24

Using finite obstructions

Theorem
If P is hereditary and can be characterized by a finite set F of forbidden induced
subgraphs, then the graph modification problems corresponding to P are FPT.

Proof:
Suppose that every graph in F has at most r vertices. Using brute force, we can
find in time O(nr) a forbidden subgraph (if exists).
If a forbidden subgraph exists, then we have to delete one of the at most r vertices
or add/delete one of the at most

�r
2

�
edges

⇒ Branching factor is a constant c depending on F .
The search tree has at most ck leaves and the work to be done at each node is
O(nr).

25

Graph modification problems

A very wide and active research area in parameterized algorithms.
If the set of forbidden subgraphs is finite, then the problem is immediately FPT
(e.g., Vertex Cover, Triangle Free Deletion). Here the challange is
improving the naive running time.
If the set of forbidden subgraphs is infinite, then very different techniques are
needed to show that the problem is FPT (e.g., Feedback Vertex Set,
Bipartite Deletion, Planar Deletion).

26

Feedback Vertex Set

Feedback Vertex Set:
Given (G , k), find a set S of at most k vertices such that G − S has no cycles.

We allow multiple parallel edges and self loops.
A feedback vertex set is a set that hits every cycle in the graph.

27

Feedback Vertex Set

Feedback Vertex Set:
Given (G , k), find a set S of at most k vertices such that G − S has no cycles.

We allow multiple parallel edges and self loops.
A feedback vertex set is a set that hits every cycle in the graph.

27

Feedback Vertex Set

If we find a cycle, then we have to include at least one of its vertices into the
solution. But the length of the cycle can be arbitrary large!
Main idea: We identify a set of O(k) vertices such that any size-k feedback
vertex set has to contain one of these vertices.
But first: some reductions to simplify the problem.

28

Reduction rules

(R1) If there is a loop at v , then delete v and decrease k by one.
(R2) If there is an edge of multiplicity larger than 2, then reduce its multiplicity to 2.
(R3) If there is a vertex v of degree at most 1, then delete v .
(R4) If there is a vertex v of degree 2, then delete v and add an edge between the

neighbors of v .

29

Reduction rules

(R1) If there is a loop at v , then delete v and decrease k by one.
(R2) If there is an edge of multiplicity larger than 2, then reduce its multiplicity to 2.
(R3) If there is a vertex v of degree at most 1, then delete v .
(R4) If there is a vertex v of degree 2, then delete v and add an edge between the

neighbors of v .

29

Reduction rules

(R1) If there is a loop at v , then delete v and decrease k by one.
(R2) If there is an edge of multiplicity larger than 2, then reduce its multiplicity to 2.
(R3) If there is a vertex v of degree at most 1, then delete v .
(R4) If there is a vertex v of degree 2, then delete v and add an edge between the

neighbors of v .

29

Reduction rules

(R1) If there is a loop at v , then delete v and decrease k by one.
(R2) If there is an edge of multiplicity larger than 2, then reduce its multiplicity to 2.
(R3) If there is a vertex v of degree at most 1, then delete v .
(R4) If there is a vertex v of degree 2, then delete v and add an edge between the

neighbors of v .

29

Reduction rules

(R1) If there is a loop at v , then delete v and decrease k by one.
(R2) If there is an edge of multiplicity larger than 2, then reduce its multiplicity to 2.
(R3) If there is a vertex v of degree at most 1, then delete v .
(R4) If there is a vertex v of degree 2, then delete v and add an edge between the

neighbors of v .

29

Reduction rules

(R1) If there is a loop at v , then delete v and decrease k by one.
(R2) If there is an edge of multiplicity larger than 2, then reduce its multiplicity to 2.
(R3) If there is a vertex v of degree at most 1, then delete v .
(R4) If there is a vertex v of degree 2, then delete v and add an edge between the

neighbors of v .

29

Reduction rules

(R1) If there is a loop at v , then delete v and decrease k by one.
(R2) If there is an edge of multiplicity larger than 2, then reduce its multiplicity to 2.
(R3) If there is a vertex v of degree at most 1, then delete v .
(R4) If there is a vertex v of degree 2, then delete v and add an edge between the

neighbors of v .

29

Reduction rules

(R1) If there is a loop at v , then delete v and decrease k by one.
(R2) If there is an edge of multiplicity larger than 2, then reduce its multiplicity to 2.
(R3) If there is a vertex v of degree at most 1, then delete v .
(R4) If there is a vertex v of degree 2, then delete v and add an edge between the

neighbors of v .

29

Reduction rules

(R1) If there is a loop at v , then delete v and decrease k by one.
(R2) If there is an edge of multiplicity larger than 2, then reduce its multiplicity to 2.
(R3) If there is a vertex v of degree at most 1, then delete v .
(R4) If there is a vertex v of degree 2, then delete v and add an edge between the

neighbors of v .

29

Reduction rules

(R1) If there is a loop at v , then delete v and decrease k by one.
(R2) If there is an edge of multiplicity larger than 2, then reduce its multiplicity to 2.
(R3) If there is a vertex v of degree at most 1, then delete v .
(R4) If there is a vertex v of degree 2, then delete v and add an edge between the

neighbors of v .

29

Reduction rules

(R1) If there is a loop at v , then delete v and decrease k by one.
(R2) If there is an edge of multiplicity larger than 2, then reduce its multiplicity to 2.
(R3) If there is a vertex v of degree at most 1, then delete v .
(R4) If there is a vertex v of degree 2, then delete v and add an edge between the

neighbors of v .

If the reduction rules cannot be applied, then every vertex has degree at least 3.

29

Branching

Let G be a graph whose vertices have degree at least 3.
Order the vertices as v1, v2, . . ., vn by decreasing degree
(breaking ties arbitrarily).
Let V3k = {v1, . . . , v3k} be the 3k largest-degree vertices.

Lemma
If G has minimum degree at least 3, then every feedback vertex set S of size at most k
contains a vertex from V3k .

30

Branching

Let G be a graph whose vertices have degree at least 3.
Order the vertices as v1, v2, . . ., vn by decreasing degree
(breaking ties arbitrarily).
Let V3k = {v1, . . . , v3k} be the 3k largest-degree vertices.

Lemma
If G has minimum degree at least 3, then every feedback vertex set S of size at most k
contains a vertex from V3k .

Algorithm:
Apply the reduction rules (poly time) ⇒ graph has minimum degree 3.
For each vertex v ∈ V3k , recurse on the instance (G − v , k − 1).
Running time (3k)k · nO(1) = 2O(k log k) · nO(1).

30

Proof of the lemma

Lemma
If G has minimum degree at least 3, then every feedback vertex set S of size at most k
contains a vertex from V3k .

d := minimum degree in V3k ,
X = V (G)− (S ∪ V3k).
Total degree of V3k ∪ X : ≥ 3kd + 3|X |
Edges of G [V3k ∪ X]: ≤ 3k + |X |− 1
Total degree of these edges: ≤ 6k + 2|X |− 2

S

V3k

X

31

Proof of the lemma

Lemma
If G has minimum degree at least 3, then every feedback vertex set S of size at most k
contains a vertex from V3k .

d := minimum degree in V3k ,
X = V (G)− (S ∪ V3k).
Total degree of V3k ∪ X : ≥ 3kd + 3|X |
Edges of G [V3k ∪ X]: ≤ 3k + |X |− 1
Total degree of these edges: ≤ 6k + 2|X |− 2
Edges between S and V3k ∪ X :

≤ dk
≥ 3kd + 3|X |− (6k + 2|X |− 2) > 3(d − 2)k

As d ≥ 3, we have 3(d − 2) ≥ d , contradiction.

S

V3k

X

31

Branching: wrap up

Branching into c directions: O∗(ck) algorithms.
Branching into k directions: O∗(kk) algorithms.
Branching vectors and analysis of recurrences of the form

T (k) = T (k − 1) + 2T (k − 2) + T (k − 3)

Graph modification problems where the graph property can be characterized by a
finite set of forbidden induced subgraphs is FPT.

32

Reading assignment: Section 3.5 of the Parameterized Algorithms books - CLOSEST STRING

