Parameterized Algorithms via Set Systems,
Polynomials etc.

Some slides from Dr. Pranabendu Misra

Inclusion-Exclusion Principle

Inclusion-Exclusion

Theorem

Let Ay, Ao, ..., AL be subsets of a universe U, and let

Unweighted Steiner Tree

Unweighted STEINER TREE: Given a graph GG in n vertices, a
subset K of k terminals, find a subgraph(tree) on at most /¢
edges that connects all the terminals.!

Theorem

Unweighted STEINER TREE can be solved in 2% - poly(n) time.

Using Inclusion-Exclusion

10 > k, and we can always guess the smallest value of ¢ for which a
Steiner Tree exists.

Unweighted Steiner Tree

Intuition:

@ We solve the Counting Problem.

If the number of /-edge subtrees of G containing K is non-zero,
then a STEINER TREE on ¢ edges exists.

@ Counting trees is hard, so we count an easier object called
Branching Walks.

@ We count Branching Walks via Inclusion-Exclusion.

Unweighted Steiner Tree

Ordered Rooted Tree : A tree H where vertices have been labeled
by {0,2,3...,|V(H)| — 1} via a DFS. Alternatively, every internal

node of A has an ordering among it’s children.
Let » € V(H) denote the root of H.

Branching Walk : A Homomorphic Image of an ordered rooted tree
in G. It is a pair B = (H, h) where H is an ordered rooted tree, and
h:V(H)— V(G) is a map such that if (x,y) € E(H) then
(h(z), h(y) € E(G).

Let V(B)={h(z) |z € V(H)}, and s = h(r) be the root of B.

0
1 5
2
/3 7 9
4 5

Unweighted Steiner Tree

Ordered Rooted Tree : A tree H where vertices have been labeled
by {0,2,3...,|V(H)| — 1} via a DFS. Alternatively, every internal

node of A has an ordering among it’s children.
Let » € V(H) denote the root of H.

Branching Walk : A Homomorphic Image of an ordered rooted tree
in G. It is a pair B = (H, h) where H is an ordered rooted tree, and
h:V(H)— V(G) is a map such that if (x,y) € E(H) then
(h(z), h(y))€ E(G).

Let V(B) ={h(z) |z € V(H)}, and s = h(r) be the root of B.

Lemma

Fix a terminal s € K as the root. G contains a Steiner Tree on< edges
if and only if there is a Branching Walk B = (H, h) from s such that
K CV(B), and |[E(H)| = /.

Call ¢ = |E(H)| the length of the Branching Walk.

Unweighted Steiner Tree
Counting Branching Walks from s.

@ Universe U = all Branching walks of length ¢ from s

@ Foreachve K, A, ={BeU |veV(B)}
@ Clearly |(),cx Av| # 0 if and only if there is a Steiner Tree.
o Sufficient: Given X C K compute |(, .y By| where B, = U \ A,,.
(\,cx Bv is the set of all Branching Walks that avoid X
@ They lie in the graph G — X,
so enough to count all Branching Walks from s in the graph

G — X of length /.

Lemma

| ﬂveX B, | can be computed in polynomial time.

Unweighted Steiner Tree

Computing | (), x Bol:
@ Let G' = G — X. It contains all Branching Walks avoiding X .

@ For u e V(G') and j </ let b;(u) denote the number of
Branching Walks from u of length j in G’.

@ We want the value by(s) = |(),c x Bv|, assuming that s € V/(G").

@ Dynamic Programming:

bj(u):{1 if j =0

ZwENG, (a) Z]& +jo=j5—1 bjl (u)ij (w) otherwise

*Importance of the ordering of the leaves in the branching walk
definition

Unweighted Steiner Tree

COUNTING STEINER TREES

e Once we have the numbers | (), . x By| for every X C K, we
can compute the number of Steiner Trees via the
Inclusion-Exclusion formula

() Aol = D ()P Nuex Byl

veK XCK

o Running Time: 2" - poly(n).

This approach can be applied to many other problems such as
HAMILTONIAN PATH, CHROMATIC NUMBER etc.

CHROMATIC NUMBER

A k-colouring of a graph G is a function ¢ : V(G) — [k], such
that c(u) # c(v) if uv € E(G).

CHROMATIC NUMBER
Input: A graph G and an integer k
Question: Is there a k-colouring of G?

O*(2") time algorithm by applying Inclusion-Exclusion.

Properties of k-colourings

Given a k-colouring:
@ Each colour class must be an independent set.
@ Every subset of an independent set is also an independent set.

@ G has a k-colouring if and only if there is a cover of V(G) by
k independent sets, i. e there are k independent sets
li,..., Iy such that U . i = V(G).

k-colouring and Counting

Enough to find a cover of V/(G) by k independent sets.

Enough to compute the number of covers of V(G) by k
independent sets.

If the number is non-zero then G has a k-colouring.

Try to design an Inclusion-Exclusion algorithm.

Setting up Inclusion-Exclusion

@ Universe U: set of tuples (/1,..., /) where each /; is an
independent set (need not be disjoint).

@ For each v € V(G), define
Ay ={(h,....I) € Uv e U, }.

® Number of covers of size k: |(,c\(g) Avl-

Computing |(,cy(g) Avl

veV(G

o Need to compute ~xcy(g)(—1)XI[N,cx Byl where
=U\A,.
@ Need to compute for each X C V/(G), |(,cx B/
={(h,.... Ik) € Ulh,...,Ix T V(G)\ X}|.
e for Y C V(G), s(Y) is the number of independent sets in
GlY].
o [{(h,...., 1) € Ull,....Ix € V(G)\ X}| = s(V(G)\ X)k.

Computing s(V(G) \ X)k, X C V(G)

e Compute s(Y) for all Y C V(G) through dynamic
programming with an algorithm using O*(2") time and space.

@ Recursion: s(Y) =s(Y \{y})+s(Y\ N[y]).

e Finally, s(V(G) \ X)* can be computed from s(V/(G) \ X) by
log k multiplications of O(nk)-bit numbers.

Inclusion-Exclusion algorithm

e O*(2") time algorithm for Chromatic Number. Space
complexity is also O*(2").

@ Can be decrease space complexity even if time complexity
goes up a little?

e If s(Y) is computed recursively instead of storing values in a
table, then for each Y time taken is O*(2‘Y|), but space
complexity becomes polynomial!

@ Total time complexity for Chromatic Number using
polynomial space:
(ngv(c)z\V(G)\X\)nO(l) _ (ZZ:O(Z)zn—k)nO(l) _ O*(3n)
Note: Best time complexity for Chromatic Number using
polynomial space = 2.238"n9(1).

Multivariate Polynomials: FPT Algorithms

Multivariate Polynomials

Finite Field: A tuple (I, +,) capturing arithmetic in a finite
set. Subtraction, division well defined; Field axioms: Associativity, Commutativity,
additive and multiplicative identity and inverse, Distributivity.

Characteristic 2: For any a € IFICL +a =0,
Note that |F| >> 2 is possible.

Polynomials over [F: coefficients a € F

_ C1 C2 C
P(zi,x9,...,2,) = E Qcycnon T T oo T

(c1,¢c2,...,cn)E(NU{O})™

degree of P =max(c, cy.....co)lac, oy.....c 0 > ¢; where

Identically Zero Polynomial: P = 0 means
P(xy =by,29 = bo,...,x, =b,) =0 for all choices in F"

Lemma (Schwartz-Zippel)

Let P be a polynomaial over a field F of degree d, and let S C F. Pick
bi,ba, ..., b, randomly from S. If P # 0, then P(by,bs,...,b,) =0
with probability at most d/|S|.

k-Path

k-PATH: Given a graph G and an integer k, decide if G contains
a path of length k.

Theorem
There is a randomized FPT algorithm for k-PATH running in
time 2% - poly(n).

* Schwartz-Zippel lemma used as a subroutine

k-Path

k-PATH: Given a graph G and an integer k, decide if G contains
a path of length k.

Theorem

There is a randomized FPT algorithm for k-PATH running in
time 2% - poly(n).

Intuition
@ Encode k-walks as monomials of a polynomial

@ Ensure the walks “cancel out” (using characteristic 2), hence the
polynomial encodes only k-paths

@ The polynomial is non-zero means there is a k-path. Test using
Schwartz-Zippel Lemma.

Path to Polynomials

@ variables r =< z1,...,x,, > for edges,
y=<1yi,...,Y, > for vertices.

@ Path polynomial (hard to eval)

P(ZC,y) — Z (H 'Uzyvz—l—l H yvz

k-Path ReG (v;,v;41)ER viER

@ Walk polynomial (easy to eval, but not very useful)

P(z,y) = Z (H Tui vig1) H Yo;)

k-Walk WeG (vi,v¢+1)€W vieEW

@ Labeled Walk Polynomial.

o vertex variable set y = {y,; | v € V(G),i € |k|}
o For a bijective function ¢ : [k] — [k| and a k-Walk W we
have the monomial

mon(W, E) — (H(Ui,UH-l)EW x’vi,vi-u) . (HUiEW yvi,ﬁ(i))

Z Z mon(W, /)

Walks W bijection ¢

Path to polynomials

Lemma

Over a field of characteristic 2,

ajyzz Z mon(R,{)

Paths R bijection £

@ Any k-Walk W corresponds to a number of labeled walks,
one for each bijection ¢ : |k| — [K].

e For a k-Path R, every bijection ¢ gives a distinct monomial.
e However for a walk W, for every bijection ¢ there is another
bijection ¢’ that produces the same monomial, and they
cancel out.
e For a walk IV where a vertex v repeats at pos a and b

o Given / : [k] — |k] define
(Ub) i=ua
0'(i) = ¢ l(a) i =D

| £(%) otherwise

Path to polynomials

Lemma

Over a field of characteristic 2,

P(xz,y) = Z Z mon (R, ¢)

Paths R byection ¢

Corollary

The polynomial P(x,y) is non-zero over fields of characteristic 2
if and only if G contains a k-path.

@ We test if P = 0 using the Schwartz-Zippel Lemma

@ We randomly pick an assignment of the variables from [
and then evaluate P.

e Evaluating P will require an algorithm based on
Inclusion-Exclusion.

Evaluating P(x,y)

Theorem (Weighted Inclusion Exclusion)

Let Ay, Ao, ..., AL be subsets of a universe U, and let
B, =U\A;. Let w : U — R be a weight function Then

w(() 4)= > (DM w(njexB;)

i€ K] XC[K]

Evaluating P(x,y)

Fix a walk W
@ Universe U = all functions |[k] — |k
o for / € U, define w(¥) = mon(W, /)
o Foreachic [k], A, ={0cU |{71(i) # 0}
o Then w(M;ekAi) = Zbijection ¢ mon(W. 1)
° w(ﬂie[k] A;) = ng[k] w(Njex Bj),

o and)y w(NjexBj) = 2oxcm 2em—p\x mon(W, 0),
Therefore,

Z Z mon(W, /)

Walks W bijection ¢

Z Z Z mon(W, 0)

Walks W XC[k] £:[k]—[k]\X

Evaluating P(x,y)

x,Yy) = Z Z Z mon(W, {)
X C[K]

Walks W £:[k]—[k]\ X

o fixing X C [k] and let Y = [k] \ X we obtain a polynomial

Py (z,y) = Z e HZ mon (W, 0)
k| —Y

Walks W

@ To evaluate Py (x,y) we use Dynamic Programming.

@ For d < k, and vertex v

Tlv,d] = 3 > (1 = [€ Wiy, i)

Walk W:v=v1v3...v4 £:[d]>Y ecW

We want the value T'[v, k] for all vertices v € V(G).

Evaluating P(z,y)

Z' Y Yv,i
Tlv,d| = 1e !
{ZiEY Yuv,i Z(v,w)EE(G) Ly,w * T[w, d — 1]

Once we have computed this table,

Py (z,y) = Z T|v, k|

veV(G)
Then over all Y C k]

P(xay) — Z Py(Q?,y)
Y Clk]

d=1

otherwise

Summary: k-Path via Polynomials

Theorem

There is a randomized FPT algorithm for k-PATH running in
time 2 - poly(n).

Mainly time for evaluating the polynomial P(x,y).

