Assignment 3: CS21003 Algorithms 1

Prof. Partha Pratim Chakrabarti and Palash Dey Indian Institute of Technology, Kharagpur

Submit by 11:59 PM of March 22

- 1. Design an efficient data structure where the key elements are lower-case alphabetic strings and the ordering is lexicographic. Each string can be of maximum size m. The operations are insert, delete, find, max, and min. Clearly explain how you will
 - (a) implement this data structure,
 - (b) provide an example representation,
 - (c) present algorithms for each operations,
 - (d) analyze the time complexity of each operation,
 - (e) space complexity for storing n elements to efficiently manage the structure.

Do NOT assume that m is a constant.

[10 Marks]

2. Suppose you are given a black box access to a sorting algorithm which takes an array containing distinct integers as input and outputs the sorted array. Use this algorithm in a black box fashion to design an algorithm to remove all duplicates from an integer array. You are allowed to perform $\mathcal{O}(\mathfrak{n})$ comparisons other than the comparisons done inside the black box of the sorting algorithm. You are free to perform all other kind of computations of any time complexity.

[10 Marks]

3. Suppose you are given a gray box access to a comparison-based algorithm for removing all duplicates from an integer array — you can observe the sequence of comparisons that the algorithm performs on any input and nothing else. Use this gray box to design a comparison-based algorithm to sort an integer array. You are allowed to perform $\mathcal{O}(\mathfrak{n})$ comparisons other than the comparisons made by the gray box algorithm. You are free to perform all other kind of computations of any time complexity. Can you now see that $\Omega(\mathfrak{n}\log\mathfrak{n})$ is also a lower bound on the number of comparisons that any comparison-based algorithm must perform to remove all duplicates? (You do not need to write in your answer script that yes I see! The last sentence is for your own understanding.)

[10 Marks]