CS29003 Algorithms Laboratory
Assignment 1: Logarithmic vs Linear vs Exponential Growth of Functions

General instruction to be followed strictly
1. Do not use any global variable unless you are explicitly instructed so.
2. Do not use Standard Template Library (STL) of C++.
3. Use proper indentation in your code and comment.

4. Name your file as <roll_no>_<assignment_no>. For example, if your roll number is 14CS10001
and you are submitting assignment 3, then name your file as 14CS10001_3.c or 14CS10001_3.cpp
as applicable.

5. Write your name, roll number, and assignment number at the beginning of your program.

Consider the situation of a spread of a viral disease. In the 0-th month, there was no infected person.
The disease begins with one infected person in the first month. Once a person gets infected, he/she
remains infected for two months. Every infected person infects two healthy person in the first month
and one healthy person in the second month. Let J,, denote the number of infected person in the n-th
month. Then we have the following.

0 ifn=0
Jhn=+1 ifn=1
20h 1+ Jqp ifn>2
In this assignment, we will compute the number J,, of infected people in the n-th month in various

ways. For this assignment, you can assume that n is at most 40. You do not need to verify this. Simply
take the value of n as input from the user (using keyboard) and output J,,.

Method I: Compute J, iteratively

You define 3 variables called current, previous, and next of data type double. Although J,, is always
an integer, its value grows so quickly that you will overflow the capacity of int or long even for small
values of n. You initialize and update these 3 variables appropriately in a loop which runs for at most
n iterations to find the value of J,. So the running time of your algorithm is O(n). Implement this
algorithm in a function whose prototype is given below. You need to follow the prototype strictly.

double compute_iterative(int);

Method II: Compute J,, recursively

Another approach to compute J,, would be to write a recursion whose pseudocode is as follows.



compute_recursive(n){
if n=0, then return O
else if n=1, then return 1

else if n>1, then return 2*compute_recursive(n-1)+compute_recursive(n-2);

What is the running time of this algorithm? Implement this algorithm in a function whose prototype
is given below. You need to follow the prototype strictly.

double compute_recursive(int);

Method III: Compute J,, using formula
One can easily verify that the following formula for J,, satisfies the recurrence relation.
(1+v2) - (1-v2)

2v2

Write a function for computing x™ for a double x and int n which should take O(logn) time. You

In =

should not use pow function. Use the following prototype.
double power(double, int);
Now you compute J,, using the above formula. Use the following function prototype.

double compute_formula(int);

Method IV: Compute J,, using matrix multiplication

Method III takes O(logn) time to compute J,, but it requires computing square root and division which
are comparatively slow. Another problem of method III is that, although mathematically correct, C
program based on this method fails to compute correct value of J,, for large enough value of n since
it involves division by double type variables. Method IV avoids these operations with compromising
running time. This method uses the following formula.

n
Init Jn ) (21
Jn Ina) \1 O
Now you compute J,, using the above formula. Your algorithm should run in O(logn) time. Use the

following function prototype.

double compute_matrix(int);

main()

1. Read n from the user.

2. Compute J,, by all the four methods by calling appropriate functions. Also output the amount of
time (in seconds) taken by each method.



One possible way to compute execution time of some piece of code is the following. You are allowed
to use any other method.

#include <stdio.h>
#include <time.h> // for clock_t, clock(), CLOCKS_PER_SEC

int main()
{
// to store execution time of code

double time_spent = 0.0;

clock_t begin = clock();

// do some stuff here

clock_t end = clock();

// calculate elapsed time by finding difference (end - begin) and
// dividing the difference by CLOCKS_PER_SEC to convert to seconds
time_spent += (double) (end - begin) / CLOCKS_PER_SEC;

printf ("Time elpased is %f seconds", time_spent);

return O;

}

Submit a single .c or .cpp file. Your code should get compiled properly by gcc or g+ + compiler.

Sample Output

Write n: 10
I_10 (computed using iterative method) = 2378.000000
Time taken in iterative method = 0.000076 seconds

I_10 (computed using recursive method) = 2378.000000
Time taken in recursive method = 0.000027 seconds

I_10 (computed using formula) = 2378.000000

Time taken in formula = 0.000022 seconds

I_10 (computed using matrix multiplication) = 2378.000000
Time taken in matrix = 0.000026 seconds

Write n: 40
I_40 (computed using iterative method) = 723573111879672.000000
Time taken in iterative method = 0.000062 seconds



I_40 (computed using recursive method) = 723573111879672.000000

Time taken in recursive method = 0.777038 seconds

I_40 (computed using formula) = 723573111879670.750000

Time taken in formula = 0.000003 seconds

I_40 (computed using matrix multiplication) = 723573111879672.000000

Time taken in matrix = 0.000002 seconds




