
Indian Institute of Technology Kharagpur

CS29003: Algorithms Laboratory, Spring 2021

Assignment 0

2PM – 5PM 5th January, 2021

Submit a single C source file. Do not use global variables.

Let a1, a2, . . . , an be a permutation of the set {1, 2, . . . , n}. Defined below are some notions about
permutations.

• An inversion of the permutation is a pair (ai, aj) such that i < j and ai > aj .

• The inversion table b1, b2, . . . , bn of the permutation is defined by setting bj as the number of inversions
whose second component is j.

• The index of the permutation is the sum of all subscripts j such that aj > aj+1.

For example, the permutation 2, 5, 4, 1, 3 has 6 inversions: (2, 1), (5, 4), (5, 1), (5, 3), (4, 1) and (4, 3). The
inversion table is given by 3, 0, 2, 1, 0. And the index is 2 + 3 = 5.

Given a positive integer n, your task is to print all permutations of 1, 2, . . . , n along with the number of
inversions and the index for each permutation. Described below is an algorithm for the same.

(a) Write a function init to store 1, 2, . . . , n in an array A[1, . . . , n]. Define a direction (+1,−1 or 0) for
each element of A and store them in a separate array D[1, . . . , n]. Initialise D as follows: D[1] = 0 and
D[i] = −1 for all 2 ≤ i ≤ n. Note that +1,−1 indicate right and left respectively. Define a variable
invCount that stores the number of inversions for the current permutation stored in A, initialised to 0.
Use dynamic memory allocation to create A and D

(b) Write a function index that computes and returns the index for the permutation stored in A. The index
can be computed by making one pass over A.

(c) Define a function genNext that updates A to contain the next permutation as follows: find the largest
number with non-zero direction (say, k = A[j]); swap k with its neighbour in the indicated direction
(i.e., D[j]). If after the swap, the larger of the two numbers swapped precedes the other in A, then
increment invCount; otherwise decrement it.

Update D as follows: if the chosen element (k) has reached position 1 or n, or if the next element in
the same direction is greater than k, then set the direction of k as 0. Also, modify the direction of all
the elements greater than k with 0 direction so that they point towards k.

Return invCount.

(d) In the main() function, read n from the user, call init and then repeatedly do the following until all
numbers in A have direction 0: call genNext ; call index ; print the permutation stored in A, followed by
the number of inversions (returned by genNext) and its index in one line (appropriately spaced). (You
should create pointers for A and D in main() and pass them to the functions appropriately.)

1



Sample Output 1

n = 3

Permutation Inversions Index

1 2 3 0 0

1 3 2 1 2

3 1 2 2 1

3 2 1 3 3

2 3 1 2 2

2 1 3 1 1

2


