
Parameterized Algorithms via Set Systems,
Polynomials etc.

Some slides from Dr. Pranabendu Misra

Inclusion-Exclusion Principle

Inclusion-Exclusion

Theorem

Let A1, A2, . . . , Ak be subsets of a universe U , and let
Bi = U \Ai. Then

|
�

i∈[k]
Ai| =

�

X⊆[k]

(−1)|X|| ∩j∈X Bj |

Unweighted Steiner Tree

Unweighted Steiner Tree: Given a graph G in n vertices, a
subset K of k terminals, find a subgraph(tree) on at most �
edges that connects all the terminals.1

Theorem

Unweighted Steiner Tree can be solved in 2k · poly(n) time.

Using Inclusion-Exclusion

1� ≥ k, and we can always guess the smallest value of � for which a
Steiner Tree exists.

Unweighted Steiner Tree

Intuition:

We solve the Counting Problem.

If the number of �-edge subtrees of G containing K is non-zero,
then a Steiner Tree on � edges exists.

Counting trees is hard, so we count an easier object called
Branching Walks.

We count Branching Walks via Inclusion-Exclusion.

Unweighted Steiner Tree

Ordered Rooted Tree : A tree H where vertices have been labeled
by {0, 2, 3 . . . , |V (H)|− 1} via a DFS. Alternatively, every internal
node of H has an ordering among it’s children.

Let r ∈ V (H) denote the root of H.

Branching Walk : A Homomorphic Image of an ordered rooted tree
in G. It is a pair B = (H,h) where H is an ordered rooted tree, and
h : V (H) → V (G) is a map such that if (x, y) ∈ E(H) then
(h(x), h(y) ∈ E(G).

Let V (B) = {h(x) | x ∈ V (H)}, and s = h(r) be the root of B.

Unweighted Steiner Tree

Ordered Rooted Tree : A tree H where vertices have been labeled
by {0, 2, 3 . . . , |V (H)|− 1} via a DFS. Alternatively, every internal
node of H has an ordering among it’s children.

Let r ∈ V (H) denote the root of H.

Branching Walk : A Homomorphic Image of an ordered rooted tree
in G. It is a pair B = (H,h) where H is an ordered rooted tree, and
h : V (H) → V (G) is a map such that if (x, y) ∈ E(H) then
(h(x), h(y) ∈ E(G).

Let V (B) = {h(x) | x ∈ V (H)}, and s = h(r) be the root of B.

Lemma
Fix a terminal s ∈ K as the root. G contains a Steiner Tree on � edges
if and only if there is a Branching Walk B = (H,h) from s such that
K ⊆ V (B), and |E(H)| ≤ �.

Call � = |E(H)| the length of the Branching Walk.

Unweighted Steiner Tree

Counting Branching Walks from s.

Universe U = all Branching walks of length � from s

For each v ∈ K, Av = {B ∈ U | v ∈ V (B)}
Clearly |�v∈K Av| �= 0 if and only if there is a Steiner Tree.

Sufficient: Given X ⊆ K compute |�v∈X Bv| where Bv = U \Av.

�
v∈X Bv is the set of all Branching Walks that avoid X

They lie in the graph G−X,

so enough to count all Branching Walks from s in the graph
G−X of length �.

Lemma

|�v∈X Bv| can be computed in polynomial time.

Unweighted Steiner Tree

Computing |�v∈X Bv|:
Let G� = G−X. It contains all Branching Walks avoiding X.

For u ∈ V (G�) and j ≤ � let bj(u) denote the number of
Branching Walks from u of length j in G�.

We want the value b�(s) = |�v∈X Bv|, assuming that s ∈ V (G�).

Dynamic Programming:

bj(u) =

�
1 if j = 0�

w∈NG� (a)

�
j1+j2=j−1 bj1(u)bj2(w) otherwise

*Importance of the ordering of the leaves in the branching walk
definition

Unweighted Steiner Tree

Counting Steiner Trees

Once we have the numbers |�v∈X Bv| for every X ⊆ K, we
can compute the number of Steiner Trees via the
Inclusion-Exclusion formula

|
�

v∈K
Av| =

�

X⊆K

(−1)|X|| ∩u∈X Bu|

Running Time: 2k · poly(n).

This approach can be applied to many other problems such as
Hamiltonian Path, Chromatic Number etc.

Chromatic Number

A k-colouring of a graph G is a function c : V (G)→ [k], such
that c(u) 6= c(v) if uv ∈ E (G).

Chromatic Number
Input: A graph G and an integer k
Question: Is there a k-colouring of G?

O∗(2n) time algorithm by applying Inclusion-Exclusion.

Properties of k-colourings

Given a k-colouring:

Each colour class must be an independent set.

Every subset of an independent set is also an independent set.

G has a k-colouring if and only if there is a cover of V (G) by
k independent sets, i.e., there are k independent sets
I1, . . . , Ik such that

⋃k
j=1 Ij = V (G).

k-colouring and Counting

Enough to find a cover of V (G) by k independent sets.

Enough to compute the number of covers of V (G) by k
independent sets.

If the number is non-zero then G has a k-colouring.

Try to design an Inclusion-Exclusion algorithm.

Setting up Inclusion-Exclusion

Universe U: set of tuples (I1, . . . , Ik) where each Ij is an
independent set (need not be disjoint).

For each v ∈ V (G), define
Av = {(I1, . . . , Ik) ∈ U|v ∈

⋃k
j=1 Ij}.

Number of covers of size k: |
⋂

v∈V (G) Av |.

Computing |
⋂

v∈V (G) Av |

Need to compute ΣX⊆V (G)(−1)|X ||
⋂

v∈X Bv |, where
Bv = U \ Av .

Need to compute for each X ⊆ V (G), |
⋂

v∈X Bv |
= |{(I1, . . . , Ik) ∈ U|I1, . . . , Ik ⊆ V (G) \ X}|.
for Y ⊆ V (G), s(Y) is the number of independent sets in
G [Y].

|{(I1, . . . , Ik) ∈ U|I1, . . . , Ik ⊆ V (G) \ X}| = s(V (G) \ X)k .

Computing s(V (G) \ X)k , X ⊆ V (G)

Compute s(Y) for all Y ⊆ V (G) through dynamic
programming with an algorithm using O∗(2n) time and space.

Recursion: s(Y) = s(Y \ {y}) + s(Y \ N[y]).

Finally, s(V (G) \ X)k can be computed from s(V (G) \ X) by
log k multiplications of O(nk)-bit numbers.

Inclusion-Exclusion algorithm

O∗(2n) time algorithm for Chromatic Number. Space
complexity is also O∗(2n).

Can be decrease space complexity even if time complexity
goes up a little?

If s(Y) is computed recursively instead of storing values in a
table, then for each Y time taken is O∗(2|Y |), but space
complexity becomes polynomial!

Total time complexity for Chromatic Number using
polynomial space:
(ΣX⊆V (G)2

|V (G)\X |)nO(1) = (Σn
k=0

(n
k

)
2n−k)nO(1) = O∗(3n).

Note: Best time complexity for Chromatic Number using
polynomial space = 2.238nnO(1).

Multivariate Polynomials: FPT Algorithms

Multivariate Polynomials

Finite Field: A tuple (F,+, �) capturing arithmetic in a finite
set.

Characteristic 2: For any a ∈ F a+ a = 0.
Note that |F| >> 2 is possible.

Polynomials over F: coefficients a... ∈ F

P (x1, x2, . . . , xn) =
�

(c1,c2,...,cn)∈(N∪{0})n
ac1,c2,...,cnx

c1
1 xc2

2 . . . xcn
n

degree of P = max(c1,c2,...,cn)|ac1,c2,...,cn �=0

�
ci where

Identically Zero Polynomial: P ≡ 0 means
P (x1 = b1, x2 = b2, . . . , xn = bn) = 0 for all choices in Fn

Lemma (Schwartz-Zippel)

Let P be a polynomial over a field F of degree d, and let S ⊆ F. Pick
b1, b2, . . . , bn randomly from S. If P �≡ 0, then P (b1, b2, . . . , bn) = 0
with probability at most d/|S|.

Subtraction, division well defined; Field axioms: Associativity, Commutativity,
additive and multiplicative identity and inverse, Distributivity.

k-Path

k-Path: Given a graph G and an integer k, decide if G contains
a path of length k.

Theorem

There is a randomized FPT algorithm for k-Path running in
time 2k · poly(n).

* Schwartz-Zippel lemma used as a subroutine

k-Path

k-Path: Given a graph G and an integer k, decide if G contains
a path of length k.

Theorem

There is a randomized FPT algorithm for k-Path running in
time 2k · poly(n).

Intuition

Encode k-walks as monomials of a polynomial

Ensure the walks “cancel out” (using characteristic 2), hence the
polynomial encodes only k-paths

The polynomial is non-zero means there is a k-path. Test using
Schwartz-Zippel Lemma.

Path to Polynomials

variables x =< x1, . . . , xm > for edges,
y =< y1, . . . , yn > for vertices.

Path polynomial (hard to eval)

P (x, y) =
�

k-Path R∈G

(
�

(vi,vi+1)∈R

xvi,vi+1
) · (

�

vi∈R

yvi)

Walk polynomial (easy to eval, but not very useful)

P (x, y) =
�

k-Walk W∈G

(
�

(vi,vi+1)∈W

xvi,vi+1) · (
�

vi∈W

yvi)

Labeled Walk Polynomial.

vertex variable set y = {yv,i | v ∈ V (G), i ∈ [k]}
For a bijective function � : [k] → [k] and a k-Walk W we
have the monomial
mon(W, �) = (

�
(vi,vi+1)∈W xvi,vi+1

) · (�vi∈W yvi,�(i))

P (x, y) =
�

Walks W

�

bijection �

mon(W, �)

Path to polynomials

Lemma

Over a field of characteristic 2,

P (x, y) ≡
�

Paths R

�

bijection �

mon(R, �)

Any k-Walk W corresponds to a number of labeled walks,
one for each bijection � : [k] → [k].

For a k-Path R, every bijection � gives a distinct monomial.
However for a walk W , for every bijection � there is another
bijection �� that produces the same monomial, and they
cancel out.

For a walk W where a vertex v repeats at pos a and b
Given � : [k] → [k] define

��(i) =





�(b) i = a

�(a) i = b

�(i) otherwise

Path to polynomials

Lemma

Over a field of characteristic 2,

P (x, y) ≡
�

Paths R

�

bijection �

mon(R, �)

Corollary

The polynomial P (x, y) is non-zero over fields of characteristic 2
if and only if G contains a k-path.

We test if P ≡ 0 using the Schwartz-Zippel Lemma

We randomly pick an assignment of the variables from F
and then evaluate P .

Evaluating P will require an algorithm based on
Inclusion-Exclusion.

Evaluating P (x, y)

Theorem (Weighted Inclusion Exclusion)

Let A1, A2, . . . , Ak be subsets of a universe U , and let
Bi = U \Ai. Let w : U → R be a weight function Then

w(
�

i∈[k]
Ai) =

�

X⊆[k]

(−1)|X|w(∩j∈XBj)

Evaluating P (x, y)

Fix a walk W

Universe U = all functions [k] → [k]

for � ∈ U , define w(�) = mon(W, �)

For each i ∈ [k], Ai = {� ∈ U | �−1(i) �= ∅}
Then w(∩i∈[k]Ai) =

�
bijection � mon(W, �)

w(
�

i∈[k]Ai) =
�

X⊆[k]w(∩j∈XBj),

and
�

X⊆[k]w(∩j∈XBj) =
�

X⊆[k]

�
�:[k]→[k]\X mon(W, �),

Therefore,

P (x, y) =
�

Walks W

�

bijection �

mon(W, �)

=
�

Walks W

�

X⊆[k]

�

�:[k]→[k]\X
mon(W, �)

Evaluating P (x, y)

P (x, y) =
�

X⊆[k]

�

Walks W

�

�:[k]→[k]\X
mon(W, �)

fixing X ⊆ [k] and let Y = [k] \X we obtain a polynomial

PY (x, y) =
�

Walks W

�

�:[k]→Y

mon(W, �)

To evaluate PY (x, y) we use Dynamic Programming.

For d ≤ k, and vertex v

T [v, d] =
�

Walk W :v=v1v2...vd

�

�:[d]→Y

(
�

e∈W

xe)(
�

vi ∈ Wyvi,�(i))

We want the value T [v, k] for all vertices v ∈ V (G).

[]

Evaluating P (x, y)

T [v, d] =

��
i∈Y yv,i d = 1�
i∈Y yv,i

�
(v,w)∈E(G) xv,w · T [w, d− 1] otherwise

Once we have computed this table,

PY (x, y) =
�

v∈V (G)

T [v, k]

Then over all Y ⊆ [k]

P (x, y) =
�

Y⊆[k]

PY (x, y)

Summary: k-Path via Polynomials

Theorem

There is a randomized FPT algorithm for k-Path running in
time 2k · poly(n).

Mainly time for evaluating the polynomial P(x,y).

