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Self-referential Structures
 and     

Linked List



Linked List :: Basic Concepts

• A list refers to a set of items organized sequentially.
– An array is an example of a list.

• The array index is used for accessing and manipulating array 

elements.

– Problems with array:

• The array size has to be specified at the beginning.

• Deleting an element or inserting an element may require shifting 

of elements in the array.
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Contd.

• A completely different way to represent a list:
– Make each item in the list part of a structure.

– The structure also contains a pointer or link to the 

structure containing the next item.

– This type of list is called a linked list.

Structure 1 Structure 2 Structure 3

item item item
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Contd.

• Each structure of the list is called a node, and consists of 

two fields:

– One containing the data item(s).

– The other containing the address of the next item in 

the list (that is, a pointer).

• The data items comprising a linked list need not be 

contiguous in memory.

– They are ordered by logical links that are stored as 

part of the data in the structure itself.

– The link is a pointer to another structure of the same 

type.
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Contd.

• Such a structure can be represented as:

   struct node

  {

     int item;

     struct node  *next;

  } 

• Such structures that contain a member field 

pointing to the same structure type are called 

self-referential structures.

item

node

next
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Contd.

• In general, a node may be represented as follows:

   

 struct node_name
      {
         type  member1;
         type  member2;
          ………
         struct node_name *next;
      }
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Illustration

• Consider the structure:

    struct stud
      {

         int  roll;

         char name[30];

         int  age;

         struct stud *next;

      }

• Also assume that the list consists of three nodes n1, n2 
and n3.

      struct stud n1, n2, n3;
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Contd.

• To create the links between nodes, we can write:

   n1.next = &n2;

 n2.next = &n3;

 n3.next = NULL;   /* No more nodes follow */

• Now the list looks like:

n1 n2 n3

roll

name

age

next



• Some important observations:
– The NULL pointer is used to indicate that no more 

nodes follow, that is, it is the end of the list.

– To use a linked list, we only need a pointer to the first 

element of the list.

– Following the chain of pointers, the successive 

elements of the list can be accessed by traversing the 

list.
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Example: without using function

#include <stdio.h>
struct  stud
  {
      int   roll;
      char  name[30];
      int   age;
      struct  stud  *next;
  }

main()
{
    struct  stud  n1, n2, n3;
    struct  stud  *p;

    scanf (”%d %s %d”, &n1.roll, n1.name, &n1.age);
    scanf (”%d %s %d”, &n2.roll, n2.name, &n2.age);
    scanf (”%d %s %d”, &n3.roll, n3.name, &n3.age);
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         n1.next  =  &n2;
    n2.next  =  &n3;
    n3.next  =  NULL;

   /* Now traverse the list and print the elements */

    p = &n1;   /* point to 1st element */
    while (p != NULL)
    {
      printf (”\n %d %s %d”, p->roll, p->name, p->age);
      p = p->next;
    }
}



A function to carry out traversal
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#include<stdio.h>
struct  stud
  {
      int   roll;
      char  name[30];
      int   age;
      struct  stud  *next;
  }

void  traverse (struct stud *head)
{
   while (head != NULL)
   {
     printf (”\n %d %s %d”, head->roll, head->name, 
                            head->age);
     head = head->next;
   }
}



The corresponding main() function
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main()
{
    struct  stud  n1, n2, n3, *p;

    scanf (”%d %s %d”, &n1.roll, n1.name, &n1.age);
    scanf (”%d %s %d”, &n2.roll, n2.name, &n2.age);
    scanf (”%d %s %d”, &n3.roll, n3.name, &n3.age);

    n1.next  =  &n2;  
    n2.next  =  &n3;  
    n3.next  =  NULL;

    p = &n1;
    traverse (p);
}



Alternative and More General Way

• Dynamically allocate space for the nodes.
– Use malloc() or calloc() for allocating space for 

every individual nodes.

– No need for allocating additional space unnecessarily 

like in an array.
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Linked List in more detail
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Introduction

• A linked list is a data structure which can change 

during execution.
– Successive elements are connected by pointers.

– Last element points to NULL.

– It can grow or shrink in size during execution of a 

program.

– It can be made just as long as required.

– It does not waste memory space.

A B C

head
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• Keeping track of a linked list:
– Must know the pointer to the first element of the list 

(called start, head, etc.).

• Linked lists provide flexibility in allowing the 

items to be rearranged efficiently.
– Insert an element.

– Delete an element.
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Illustration: Insertion

Item to be 
inserted

A

X

B

A B C

C

X
head

head
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Illustration: Deletion

CA B

A B C

Item to be deleted
head

head
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In essence ...

• For insertion:
– A record is created holding the new item.

– The next pointer of the new record is set to link it to 

the item which is to follow it in the list.

– The next pointer of the item which is to precede it 

must be modified to point to the new item.

• For deletion:
– The next pointer of the item immediately preceding 

the one to be deleted is altered, and made to point to 

the item following the deleted item.
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Array versus Linked Lists

• Arrays are suitable for:
– Inserting/deleting an element at the end.

– Randomly accessing any element.

– Searching the list for a particular value.

• Linked lists are suitable for:
– Inserting an element.

– Deleting an element.

– Applications where sequential access is required.

– In situations where the number of elements cannot 

be predicted beforehand.
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Types of Lists

• Depending on the way in which the links are 

used to maintain adjacency, several different 

types of linked lists are possible.
– Linear singly-linked list (or simply linear list)

• One we have discussed so far.

A B C

head
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– Circular linked list

• The pointer from the last element in the list points back to 

the first element.

A B C

head
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– Doubly linked list

• Pointers exist between adjacent nodes in both directions.

• The list can be traversed either forward or backward.

• Usually two pointers are maintained to keep track of the list, 

head and tail.

A B C

head tail
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Basic Operations on a List

• Creating a list

• Traversing the list

• Inserting an item in the list

• Deleting an item from the list

• Concatenating two lists into one
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List is an Abstract Data Type

• What is an abstract data type?
– It is a data type defined by the user.

– Typically more complex than simple data types like 

int, float, etc.

• Why abstract?
– Because details of the implementation are hidden.

– When you do some operation on the list, say insert an 

element, you just call a function.

– Details of how the list is implemented or how the 

insert function is written is no longer required.
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Conceptual Idea

List 
implementation

and the
related functions

Insert

Delete

Traverse
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Example: Working with linked list

• Consider the structure of a node as follows:

struct stud {  

              int   roll;

              char  name[25];

              int   age;

              struct stud *next;

            };

   /* A user-defined data type called “node” */

typedef struct stud node;

node *head;



Creating a List
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How to begin?

• To start with, we have to create a node (the first 

node), and make head point to it.
    

head = (node *) malloc(sizeof(node));

head

next

age

name

roll



Contd.

• If there are n number of nodes in the initial 

linked list:
– Allocate n records, one by one.

– Read in the fields of the records.

– Modify the links of the records so that the chain is 

formed.

A B C

head
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node *create_list() 
{ 
    int  k, n; 
    node *p, *head; 

    printf ("\n How many elements to enter?"); 
    scanf ("%d", &n); 

    for  (k=0; k<n; k++) 
    { 
        if (k == 0) {
          head = (node *) malloc (sizeof(node)); 
          p = head; 

     }
     else {

               p->next = (node *) malloc (sizeof(node)); 
               p = p->next;      

          }
  

        scanf ("%d %s %d", &p->roll, p->name, &p->age); 
    } 

    p->next = NULL; 
    return (head);
} 



• To be called from main() function as:

    node *head;

      ………

      head = create_list();
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Traversing the List
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What is to be done?

• Once the linked list has been constructed and 

head points to the first node of the list,
– Follow the pointers.

– Display the contents of the nodes as they are 

traversed.

– Stop when the next pointer points to NULL.
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void display (node *head)
{
  int  count = 1;
  node  *p;
    
  p = head;
  while (p != NULL)
  {
    printf ("\nNode %d: %d %s %d", count, 
                   p->roll, p->name, p->age);
    count++;
    p = p->next;      
  }
  printf ("\n");
}
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• To be called from main() function as:

    node *head;

      ………

      display (head);



Inserting a Node in a List
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How to do?

• The problem is to insert a node before a specified node.

– Specified means some value is given for the node (called 

key).

– In this example, we consider it to be roll.

• Convention followed:

– If the value of roll is given as negative, the node will 

be inserted at the end of the list.



Contd.

a) When a node is added at the beginning
– Only one next pointer needs to be modified.

• head is made to point to the new node.

• New node points to the previously first element.

b) When a node is added at the end
– Two next pointers need to be modified.

• Last node now points to the new node.

• New node points to NULL.
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c) When a node is added in the middle
– Two next pointers need to be modified.

• Previous node now points to the new node.

• New node points to the next node.
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void insert (node **head) 
{ 
    int  k = 0, rno; 
    node *p, *q, *new; 
    
    new = (node *) malloc (sizeof(node)); 

    printf ("\nEnter data to be inserted: ");
    scanf ("%d %s %d", &new->roll, new->name, &new->age); 
    printf ("\nInsert before roll (-ve for end):"); 
      scanf ("%d", &rno); 

    p = *head; 

    if (p->roll == rno)      /* At the beginning */ 
    { 
        new->next = p; 
        *head = new; 
    } 

Why is the argument 
a pointer to pointer?
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    else 
    {

while ((p != NULL) && (p->roll != rno))      
        { 
            q = p; 
            p = p->next; 
        }      

        if  (p == NULL)       /* At the end */ 
        { 
            q->next = new;    
            new->next = NULL;     
        } 

  else if  (p->roll  == rno)     
                           /* In the middle */ 
                { 
                    q->next = new; 
                    new->next = p; 
                } 
    }
} 

The pointers 
q and p 
always point 
to consecutive 
nodes.
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• To be called from main() function as:

    node *head;
      ………

      insert (&head);



Deleting a node from the list
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What is to be done?

• Here also we are required to delete a specified 

node.
– Say, the node whose roll field is given.

• Here also three conditions arise:
– Deleting the first node.

– Deleting the last node.

– Deleting an intermediate node.
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void  delete (node **head) 
{ 
    int  rno; 
    node  *p, *q; 
    
    printf ("\nDelete for roll: "); 
      scanf ("%d", &rno); 

    p = *head; 
    if  (p->roll == rno)            
             /* Delete the first element */ 
    { 
        *head = p->next;   
        free (p); 
    } 
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   else
    {
        while  ((p != NULL) && (p->roll != rno))      
        { 
            q = p; 
            p  =  p->next; 
        }      

        if  (p == NULL)      /* Element not found */ 
           printf ("\nNo match :: deletion failed");
       
        else if (p->roll == rno)           
                      /* Delete any other element */ 
             {        
                 q->next  =  p->next; 
                 free (p); 
             } 
    }
} 
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A sample main() function

int main()
{
   node *head;

   head = create_list();
   display(head);

   insert(&head);
   display(head);

   delete(&head);
   display(head);
}



Few Exercises to Try Out

• Write functions to:

1. Concatenate two given lists into one big list.
•     node  *concatenate (node *head1, node *head2);

2. Insert an element in a linked list in sorted order. The 

function will be called for every element to be inserted.
•     void  insert_sorted (node **head,  node *element);

3. Always insert elements at one end, and delete 

elements from the other end (first-in first-out QUEUE).
•  void  insert_q (node **head,  node*element)

•  node  *delete_q (node **head)   /* Return the deleted node */
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More Exercises

4. Implement a circular linked list, and write functions 

to insert, delete, and traverse nodes in the list.

5. Represent a polynomial as a linked list, where every 

node will represent a term of the polynomial (anx
n), 

and will contain the values of ‘n’ and ‘an’. Write a 

function to add two given polynomials.
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Abstract Data Types
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Definition

• An abstract data type (ADT) is a specification of a set of 

data and the set of operations that can be performed on 

the data.

• Such data type is abstract in the sense that it is 

independent of various concrete implementations.

• Some examples follow.
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Example 1 :: Complex numbers

Structure 
definition

Function 
prototypes

 struct cplx {

               float  re;

               float  im;

             }

 typedef struct cplx complex;

 complex *add (complex a, complex b);

 complex *sub (complex a, complex b);

 complex *mul (complex a, complex b);

 complex *div (complex a, complex b);

 complex *read();

 void print (complex a);
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Complex
Number

add

print

mul

sub

read

div
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Example 2 :: Set manipulation

Structure 
definition

Function 
prototypes

 struct node {

               int element;

               struct node *next;

             }

 typedef struct node set;

 set  *union (set a, set b);

 set  *intersect (set a, set b);

 set  *minus (set a, set b);

 void insert (set a, int x);

 void delete (set a, int x);

 int size (set a);
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Set

union

size

minus

intersect

delete

insert
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Example 3 :: Last-In-First-Out STACK

Assume:: stack contains integer elements

 void push (stack s, int element);

                                        /* Insert an element in the stack */

 int pop (stack s);

                                        /* Remove and return the top element */

 void create (stack  s);

                                        /* Create a new stack */

 int isempty (stack s);

                                        /* Check if stack is empty */

 int isfull (stack s);

                                        /* Check if stack is full */
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STACK

push

create

pop

isfull

isempty
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Visualization of a Stack

In Out

ABC CB



Contd.

• We shall later look into two different ways of 

implementing stack:
– Using arrays

– Using linked list
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Example 4 :: First-In-First-Out QUEUE

Assume:: queue contains integer elements

 void enqueue (queue q, int element);

                                       /* Insert an element in the queue */

 int dequeue (queue q);

                                       /* Remove an element from the queue */

 queue *createq();

                                       /* Create a new queue */

 int isempty (queue q);

                                       /* Check if queue is empty */

 int size (queue q);

                                       /* Return the no. of elements in queue */
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QUEUE

enqueue

create

dequeue

size

isempty
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Visualization of a Queue

In Out

AC B AB
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