
1

Self-referential Structures
 and

Linked List

Linked List :: Basic Concepts

• A list refers to a set of items organized sequentially.
– An array is an example of a list.

• The array index is used for accessing and manipulating array

elements.

– Problems with array:

• The array size has to be specified at the beginning.

• Deleting an element or inserting an element may require shifting

of elements in the array.

2

Contd.

• A completely different way to represent a list:
– Make each item in the list part of a structure.

– The structure also contains a pointer or link to the

structure containing the next item.

– This type of list is called a linked list.

Structure 1 Structure 2 Structure 3

item item item

3

Contd.

• Each structure of the list is called a node, and consists of

two fields:

– One containing the data item(s).

– The other containing the address of the next item in

the list (that is, a pointer).

• The data items comprising a linked list need not be

contiguous in memory.

– They are ordered by logical links that are stored as

part of the data in the structure itself.

– The link is a pointer to another structure of the same

type.
4

Contd.

• Such a structure can be represented as:

 struct node

 {

 int item;

 struct node *next;

 }

• Such structures that contain a member field

pointing to the same structure type are called

self-referential structures.

item

node

next

5

6

Contd.

• In general, a node may be represented as follows:

 struct node_name
 {
 type member1;
 type member2;
 ………
 struct node_name *next;
 }

7

Illustration

• Consider the structure:

 struct stud
 {

 int roll;

 char name[30];

 int age;

 struct stud *next;

 }

• Also assume that the list consists of three nodes n1, n2
and n3.

 struct stud n1, n2, n3;

8

Contd.

• To create the links between nodes, we can write:

 n1.next = &n2;

 n2.next = &n3;

 n3.next = NULL; /* No more nodes follow */

• Now the list looks like:

n1 n2 n3

roll

name

age

next

• Some important observations:
– The NULL pointer is used to indicate that no more

nodes follow, that is, it is the end of the list.

– To use a linked list, we only need a pointer to the first

element of the list.

– Following the chain of pointers, the successive

elements of the list can be accessed by traversing the

list.

9

Example: without using function

#include <stdio.h>
struct stud
 {
 int roll;
 char name[30];
 int age;
 struct stud *next;
 }

main()
{
 struct stud n1, n2, n3;
 struct stud *p;

 scanf (”%d %s %d”, &n1.roll, n1.name, &n1.age);
 scanf (”%d %s %d”, &n2.roll, n2.name, &n2.age);
 scanf (”%d %s %d”, &n3.roll, n3.name, &n3.age);

10

11

 n1.next = &n2;
 n2.next = &n3;
 n3.next = NULL;

 /* Now traverse the list and print the elements */

 p = &n1; /* point to 1st element */
 while (p != NULL)
 {
 printf (”\n %d %s %d”, p->roll, p->name, p->age);
 p = p->next;
 }
}

A function to carry out traversal

12

#include<stdio.h>
struct stud
 {
 int roll;
 char name[30];
 int age;
 struct stud *next;
 }

void traverse (struct stud *head)
{
 while (head != NULL)
 {
 printf (”\n %d %s %d”, head->roll, head->name,
 head->age);
 head = head->next;
 }
}

The corresponding main() function

13

main()
{
 struct stud n1, n2, n3, *p;

 scanf (”%d %s %d”, &n1.roll, n1.name, &n1.age);
 scanf (”%d %s %d”, &n2.roll, n2.name, &n2.age);
 scanf (”%d %s %d”, &n3.roll, n3.name, &n3.age);

 n1.next = &n2;
 n2.next = &n3;
 n3.next = NULL;

 p = &n1;
 traverse (p);
}

Alternative and More General Way

• Dynamically allocate space for the nodes.
– Use malloc() or calloc() for allocating space for

every individual nodes.

– No need for allocating additional space unnecessarily

like in an array.

14

Linked List in more detail

15

Introduction

• A linked list is a data structure which can change

during execution.
– Successive elements are connected by pointers.

– Last element points to NULL.

– It can grow or shrink in size during execution of a

program.

– It can be made just as long as required.

– It does not waste memory space.

A B C

head

16

• Keeping track of a linked list:
– Must know the pointer to the first element of the list

(called start, head, etc.).

• Linked lists provide flexibility in allowing the

items to be rearranged efficiently.
– Insert an element.

– Delete an element.

17

Illustration: Insertion

Item to be
inserted

A

X

B

A B C

C

X
head

head

18

Illustration: Deletion

CA B

A B C

Item to be deleted
head

head

19

In essence ...

• For insertion:
– A record is created holding the new item.

– The next pointer of the new record is set to link it to

the item which is to follow it in the list.

– The next pointer of the item which is to precede it

must be modified to point to the new item.

• For deletion:
– The next pointer of the item immediately preceding

the one to be deleted is altered, and made to point to

the item following the deleted item.

20

Array versus Linked Lists

• Arrays are suitable for:
– Inserting/deleting an element at the end.

– Randomly accessing any element.

– Searching the list for a particular value.

• Linked lists are suitable for:
– Inserting an element.

– Deleting an element.

– Applications where sequential access is required.

– In situations where the number of elements cannot

be predicted beforehand.
21

Types of Lists

• Depending on the way in which the links are

used to maintain adjacency, several different

types of linked lists are possible.
– Linear singly-linked list (or simply linear list)

• One we have discussed so far.

A B C

head

22

– Circular linked list

• The pointer from the last element in the list points back to

the first element.

A B C

head

23

– Doubly linked list

• Pointers exist between adjacent nodes in both directions.

• The list can be traversed either forward or backward.

• Usually two pointers are maintained to keep track of the list,

head and tail.

A B C

head tail

24

Basic Operations on a List

• Creating a list

• Traversing the list

• Inserting an item in the list

• Deleting an item from the list

• Concatenating two lists into one

25

List is an Abstract Data Type

• What is an abstract data type?
– It is a data type defined by the user.

– Typically more complex than simple data types like

int, float, etc.

• Why abstract?
– Because details of the implementation are hidden.

– When you do some operation on the list, say insert an

element, you just call a function.

– Details of how the list is implemented or how the

insert function is written is no longer required.

26

Conceptual Idea

List
implementation

and the
related functions

Insert

Delete

Traverse

27

28

Example: Working with linked list

• Consider the structure of a node as follows:

struct stud {

 int roll;

 char name[25];

 int age;

 struct stud *next;

 };

 /* A user-defined data type called “node” */

typedef struct stud node;

node *head;

Creating a List

29

30

How to begin?

• To start with, we have to create a node (the first

node), and make head point to it.

head = (node *) malloc(sizeof(node));

head

next

age

name

roll

Contd.

• If there are n number of nodes in the initial

linked list:
– Allocate n records, one by one.

– Read in the fields of the records.

– Modify the links of the records so that the chain is

formed.

A B C

head

31

32

node *create_list()
{
 int k, n;
 node *p, *head;

 printf ("\n How many elements to enter?");
 scanf ("%d", &n);

 for (k=0; k<n; k++)
 {
 if (k == 0) {
 head = (node *) malloc (sizeof(node));
 p = head;

 }
 else {

 p->next = (node *) malloc (sizeof(node));
 p = p->next;

 }

 scanf ("%d %s %d", &p->roll, p->name, &p->age);
 }

 p->next = NULL;
 return (head);
}

• To be called from main() function as:

 node *head;

 ………

 head = create_list();

33

Traversing the List

34

What is to be done?

• Once the linked list has been constructed and

head points to the first node of the list,
– Follow the pointers.

– Display the contents of the nodes as they are

traversed.

– Stop when the next pointer points to NULL.

35

36

void display (node *head)
{
 int count = 1;
 node *p;

 p = head;
 while (p != NULL)
 {
 printf ("\nNode %d: %d %s %d", count,
 p->roll, p->name, p->age);
 count++;
 p = p->next;
 }
 printf ("\n");
}

37

• To be called from main() function as:

 node *head;

 ………

 display (head);

Inserting a Node in a List

38

39

How to do?

• The problem is to insert a node before a specified node.

– Specified means some value is given for the node (called

key).

– In this example, we consider it to be roll.

• Convention followed:

– If the value of roll is given as negative, the node will

be inserted at the end of the list.

Contd.

a) When a node is added at the beginning
– Only one next pointer needs to be modified.

• head is made to point to the new node.

• New node points to the previously first element.

b) When a node is added at the end
– Two next pointers need to be modified.

• Last node now points to the new node.

• New node points to NULL.

40

c) When a node is added in the middle
– Two next pointers need to be modified.

• Previous node now points to the new node.

• New node points to the next node.

41

42

void insert (node **head)
{
 int k = 0, rno;
 node *p, *q, *new;

 new = (node *) malloc (sizeof(node));

 printf ("\nEnter data to be inserted: ");
 scanf ("%d %s %d", &new->roll, new->name, &new->age);
 printf ("\nInsert before roll (-ve for end):");
 scanf ("%d", &rno);

 p = *head;

 if (p->roll == rno) /* At the beginning */
 {
 new->next = p;
 *head = new;
 }

Why is the argument
a pointer to pointer?

43

 else
 {

while ((p != NULL) && (p->roll != rno))
 {
 q = p;
 p = p->next;
 }

 if (p == NULL) /* At the end */
 {
 q->next = new;
 new->next = NULL;
 }

 else if (p->roll == rno)
 /* In the middle */
 {
 q->next = new;
 new->next = p;
 }
 }
}

The pointers
q and p
always point
to consecutive
nodes.

44

• To be called from main() function as:

 node *head;
 ………

 insert (&head);

Deleting a node from the list

45

What is to be done?

• Here also we are required to delete a specified

node.
– Say, the node whose roll field is given.

• Here also three conditions arise:
– Deleting the first node.

– Deleting the last node.

– Deleting an intermediate node.

46

47

void delete (node **head)
{
 int rno;
 node *p, *q;

 printf ("\nDelete for roll: ");
 scanf ("%d", &rno);

 p = *head;
 if (p->roll == rno)
 /* Delete the first element */
 {
 *head = p->next;
 free (p);
 }

48

 else
 {
 while ((p != NULL) && (p->roll != rno))
 {
 q = p;
 p = p->next;
 }

 if (p == NULL) /* Element not found */
 printf ("\nNo match :: deletion failed");

 else if (p->roll == rno)
 /* Delete any other element */
 {
 q->next = p->next;
 free (p);
 }
 }
}

49

A sample main() function

int main()
{
 node *head;

 head = create_list();
 display(head);

 insert(&head);
 display(head);

 delete(&head);
 display(head);
}

Few Exercises to Try Out

• Write functions to:

1. Concatenate two given lists into one big list.
• node *concatenate (node *head1, node *head2);

2. Insert an element in a linked list in sorted order. The

function will be called for every element to be inserted.
• void insert_sorted (node **head, node *element);

3. Always insert elements at one end, and delete

elements from the other end (first-in first-out QUEUE).
• void insert_q (node **head, node*element)

• node *delete_q (node **head) /* Return the deleted node */

50

More Exercises

4. Implement a circular linked list, and write functions

to insert, delete, and traverse nodes in the list.

5. Represent a polynomial as a linked list, where every

node will represent a term of the polynomial (anx
n),

and will contain the values of ‘n’ and ‘an’. Write a

function to add two given polynomials.

51

Abstract Data Types

52

Definition

• An abstract data type (ADT) is a specification of a set of

data and the set of operations that can be performed on

the data.

• Such data type is abstract in the sense that it is

independent of various concrete implementations.

• Some examples follow.

53

54

Example 1 :: Complex numbers

Structure
definition

Function
prototypes

 struct cplx {

 float re;

 float im;

 }

 typedef struct cplx complex;

 complex *add (complex a, complex b);

 complex *sub (complex a, complex b);

 complex *mul (complex a, complex b);

 complex *div (complex a, complex b);

 complex *read();

 void print (complex a);

55

Complex
Number

add

print

mul

sub

read

div

56

Example 2 :: Set manipulation

Structure
definition

Function
prototypes

 struct node {

 int element;

 struct node *next;

 }

 typedef struct node set;

 set *union (set a, set b);

 set *intersect (set a, set b);

 set *minus (set a, set b);

 void insert (set a, int x);

 void delete (set a, int x);

 int size (set a);

57

Set

union

size

minus

intersect

delete

insert

58

Example 3 :: Last-In-First-Out STACK

Assume:: stack contains integer elements

 void push (stack s, int element);

 /* Insert an element in the stack */

 int pop (stack s);

 /* Remove and return the top element */

 void create (stack s);

 /* Create a new stack */

 int isempty (stack s);

 /* Check if stack is empty */

 int isfull (stack s);

 /* Check if stack is full */

59

STACK

push

create

pop

isfull

isempty

60

Visualization of a Stack

In Out

ABC CB

Contd.

• We shall later look into two different ways of

implementing stack:
– Using arrays

– Using linked list

61

62

Example 4 :: First-In-First-Out QUEUE

Assume:: queue contains integer elements

 void enqueue (queue q, int element);

 /* Insert an element in the queue */

 int dequeue (queue q);

 /* Remove an element from the queue */

 queue *createq();

 /* Create a new queue */

 int isempty (queue q);

 /* Check if queue is empty */

 int size (queue q);

 /* Return the no. of elements in queue */

63

QUEUE

enqueue

create

dequeue

size

isempty

64

Visualization of a Queue

In Out

AC B AB

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

