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Topics to be Discussed

• How are numeric data items actually stored in 
computer memory?

• How much space (memory locations) is allocated 
for each type of data?
– int, float, char, double, etc.

• How are characters and strings stored in memory?
– Already discussed.
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Number System :: The Basics

• We are accustomed to using the so-called decimal 
number system.
– Ten digits ::  0, 1, 2, 3, 4, 5, 6, 7, 8, 9

– Every digit position has a weight which is a power of 10.

– Base or radix is 10.

• Example:

234      =  2 x 102  +  3 x 101  +  4 x 100

250.67 =  2 x 102  +  5 x 101  +  0 x 100  +  6 x 10-1  +  7 x 10-2
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Binary Number System

• Two digits:
– 0 and 1.

– Every digit position has a weight which is a power of 2.

– Base or radix is 2.

• Example:

110      =  1 x 22  +  1 x 21  +  0 x 20

101.01 =  1 x 22  +  0 x 21  +  1 x 20  +  0 x 2-1  +  1 x 2-2
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Binary-to-Decimal Conversion

• Each digit position of a binary number has a 
weight.
– Some power of 2.

• A binary number:

       B = bn-1 bn-2 …..b1 b0 . b-1 b-2 ….. b-m

    Corresponding value in decimal:

       D =     bi 2
i

i = -m

n-1
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Examples

1. 101011    1x25 + 0x24 + 1x23 + 0x22 + 1x21 + 1x20

= 43

(101011)2 = (43)10

1. .0101        0x2-1 + 1x2-2 + 0x2-3 + 1x2-4

= .3125

(.0101)2 = (.3125)10

1. 101.11      1x22 + 0x21 + 1x20 + 1x2-1 + 1x2-2

5.75

(101.11)2 = (5.75)10
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Decimal-to-Binary Conversion

• Consider the integer and fractional parts separately.

• For the integer part,
– Repeatedly divide the given number by 2, go on 

accumulating the remainders, until the number becomes 

zero.

– Arrange the remainders in reverse order.

• For the fractional part,
– Repeatedly multiply the given fraction by 2.

• Accumulate the integer part (0 or 1).

• If the integer part is 1, chop it off.

– Arrange the integer parts in the order they are obtained.
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Example 1  ::  239

2 239

2     119   --- 1

2  59    --- 1

2      29    --- 1

2  14     --- 1

2       7     --- 0

2   3     --- 1

2       1     --- 1

2       0     --- 1

(239)10 = (11101111)2



2  64

2      32    --- 0

2  16    --- 0

2        8    --- 0

2    4    --- 0

2        2    --- 0

2    1    ---  0

2        0    --- 1
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Example 2  ::  64

(64)10 = (1000000)2
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Example 3  ::  .634

.634  x  2   =   1.268

.268  x  2   =   0.536

.536  x  2   =   1.072

.072  x  2   =   0.144

.144  x  2   =   0.288

:

:

(.634)10 = (.10100……)2
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Example 4  ::  37.0625

(37)10  =  (100101)2

(.0625)10  =  (.0001)2

 (37.0625)10  =  (100101 . 0001)2
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Hexadecimal Number System

• A compact way of representing binary numbers.

• 16 different symbols (radix = 16).

    0    0000 8    1000

    1    0001 9    1001

    2    0010 A    1010

    3    0011 B    1011

    4    0100 C    1100

    5    0101 D    1101

    6    0110 E    1110

    7    0111 F    1111
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Binary-to-Hexadecimal Conversion

• For the integer part,
– Scan the binary number from right to left.

– Translate each group of four bits into the corresponding 

hexadecimal digit.

• Add leading zeros if necessary.

• For the fractional part,
– Scan the binary number from left to right.

– Translate each group of four bits into the corresponding 

hexadecimal digit.

• Add trailing zeros if necessary.
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Examples

1. (1011 0100 0011)2   =   (B43)16

2. (10 1010 0001)2       =   (2A1)16

3. (.1000 010)2             =   (.84)16

4. (101 . 0101 111)2     =   (5.5E)16
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Hexadecimal-to-Binary Conversion

• Translate every hexadecimal digit into its 4-bit 
binary equivalent.

– Discard leading and trailing zeros if desired.

• Examples:

    (3A5)16      =   (0011 1010 0101)2

    (12.3D)16   =   (0001 0010 . 0011 1101)2

    (1.8)16        =   (0001 . 1000)2
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Number Representation

Unsigned and Signed numbers
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Unsigned Binary Numbers

• An n-bit binary number

   B  =  bn-1bn-2 …. B2b1b0

(2n distinct combinations are possible, 0 to 2n1)

• For n = 3, there are 8 distinct combinations.
– 000, 001, 010, 011, 100, 101, 110, 111

• Range of numbers that can be represented

    n=8   0  to  281  (255)

    n=16  0  to  2161 (65535)

    n=32  0  to  2321 (4294967295)



19

Signed Integer Representation

• Many of the numerical data items that are used 

in a program are signed (positive or negative).
– Question:: How to represent sign?

• Three possible approaches:

a)Sign-magnitude representation

b)One’s complement representation

c) Two’s complement representation
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Sign-magnitude Representation

• For an n-bit number representation
– The most significant bit (MSB) indicates sign

   0    positive

   1    negative

– The remaining n-1 bits represent magnitude.

b0b1bn-2bn-1

Magnitude Sign
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Example  ::  n=4

0000    +0

0001    +1

0010    +2

0011    +3

0100    +4

0101    +5

0110    +6

0111    +7

1000    -0

1001    -1

1010    -2

1011    -3

1100    -4

1101    -5

1110    -6

1111    -7

15 distinct numbers can be represented
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Contd.

• Range of numbers that can be represented:

     Maximum  ::  + (2n-1 – 1)

     Minimum   ::  – (2n-1 – 1)

• A problem:

     Two different representations of zero.

      +0      0 000….0

  –0      1 000….0
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One’s Complement Representation

• Basic idea:
– Positive numbers are represented exactly as in sign-

magnitude form.

– Negative numbers are represented in 1’s complement form.

• How to compute the 1’s complement of a number?
– Complement every bit of the number (10 and 01).

– MSB will indicate the sign of the number.

   0    positive

   1    negative
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Example  ::  n=4

0000    +0

0001    +1

0010    +2

0011    +3

0100    +4

0101    +5

0110    +6

0111    +7

1000    -7

1001    -6

1010    -5

1011    -4

1100    -3

1101    -2

1110    -1

1111    -0

To find the representation of, say, -4, first note that

        +4  =  0100

        4   =  1’s complement of 0100  =  1011
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Contd.

• Range of numbers that can be represented:
     Maximum  ::  + (2n-1 – 1)

     Minimum   ::  – (2n-1 – 1)

• A problem:
     Two different representations of zero.

    +0      0 000….0

    0      1 111….1

• Advantage of 1’s complement representation
– Subtraction can be done using addition.

– Leads to substantial saving in circuitry.

– Sign extension is possible to increase number of bits to represent.

          -3  =  1100 (in 4 bits)  =  1111 1100 (in 8 bits)

          +3 =  0011 (in 4 bits)  =  0000 0011 (in 8 bits)
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Two’s Complement Representation

• Basic idea:
– Positive numbers are represented exactly as in sign-

magnitude form.

– Negative numbers are represented in 2’s complement form.

• How to compute the 2’s complement of a number?
– Complement every bit of the number (10 and 01), and 

then add 1 to the resulting number.

– MSB will indicate the sign of the number.

   0    positive

   1    negative
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Example  ::  n=4

0000    +0

0001    +1

0010    +2

0011    +3

0100    +4

0101    +5

0110    +6

0111    +7

1000    -8

1001    -7

1010    -6

1011    -5

1100    -4

1101    -3

1110    -2

1111    -1

To find the representation of, say, -4, first note that

        +4  =  0100

        4   =  2’s complement of 0100  =  1011 + 1  =  1100
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Contd.

• Range of numbers that can be represented:

     Maximum  ::  + (2n-1 – 1)

     Minimum   ::  – 2n-1

• Advantage:
–  Unique representation of zero.

–  Subtraction can be done using addition.

–  Leads to substantial saving in circuitry.

– Sign extension is possible to increase number of bits to represent.

          -3  =  1101 (in 4 bits)  =  1111 1101 (in 8 bits)

          +3 =  0011 (in 4 bits)  =  0000 0011 (in 8 bits)

• Almost all computers today use the 2’s complement 
representation for storing negative numbers.
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Contd.

• In C (typical values):
– short int

• 16 bits      + (215–1)  to  –215

– int
• 32 bits      + (231–1)  to  –231

– long int
• 64 bits      + (263–1)  to  –263
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Binary operations

Addition
Subtraction using addition



Binary addition

• Rules for adding two bits:
0 + 0  =  0

0 + 1  =  1

1 + 0  =  1

1 + 1  =  10,  i.e., 0 with carry of 1

• Addition examples for unsigned numbers:
  0 1 0 1 0 1 1 1 1 0 0 1

   0 0 0 1 0 0 1 1 1 0 1 0

   ======= =======     =========

0 1 1 0 1 0 1 0     1 0 0 1 1

31

Carry
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Subtraction Using Addition :: 1’s Complement

• How to compute A – B ?
– Compute the 1’s complement of B (say, B1).

– Compute R = A + B1 

– If the carry obtained after addition is ‘1’

• Add the carry back to R  (called end-around carry).

• That is, R = R + 1.

• The result is a positive number.

    Else

• The result is negative, and is in 1’s complement form.
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Example 1  ::  6 – 2

1’s complement of 2  =  1101

  6 :: 0 1 1 0

-2 :: 1 1 0 1

    1 0 0 1 1

            1

      0 1 0 0   +4

End-around 
carry

Assume 4-bit representations.

Since there is a carry, it is 
added back to the result.

The result is positive.

R

B1

A
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Example 2  ::  3 – 5

1’s complement of 5  =  1010

   3 :: 0 0 1 1

-5 :: 1 0 1 0

        1 1 0 1                        

                   

Assume 4-bit representations.

Since there is no carry, the result is 
negative.

1101 is the 1’s complement of 
0010, that is, it represents –2.

A

B1

R

 -2
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Subtraction Using Addition :: 2’s Complement

• How to compute A – B ?

– Compute the 2’s complement of B (say, B2).

– Compute R = A + B2 

– If the carry obtained after addition is ‘1’

• Ignore the carry.

• The result is a positive number.

    Else

• The result is negative, and is in 2’s complement form.
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Example 1  ::  6 – 2

2’s complement of 2  =  1101 + 1  =  1110

 6 :: 0 1 1 0

-2 :: 1 1 1 0

   1 0 1 0 0

                   

             

Assume 4-bit representations.

Presence of carry indicates that 
the result is positive.

No need to add the end-around 
carry like in 1’s complement.

A

B2

R

Ignore carry +4
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Example 2  ::  3 – 5

2’s complement of 5  =  1010 + 1  =  1011

 3 :: 0 0 1 1

-5 :: 1 0 1 1

     1 1 1 0                      

                   

Assume 4-bit representations.

Since there is no carry, the result is 
negative.

1110 is the 2’s complement of 
0010, that is, it represents –2.

A

B2

R

-2
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Floating-point number representation
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Floating-point Numbers

• The representations discussed so far applies only to 
integers.
– Cannot represent numbers with fractional parts.

• We can assume a decimal point before a 2’s complement 
number.
– In that case, pure fractions (without integer parts) can be 

represented.

• We can also assume the decimal point somewhere in 
between.
– This lacks flexibility.

– Very large and very small numbers cannot be represented.
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Representation of Floating-Point Numbers

• A floating-point number F is represented by a doublet  <M,E> :

    F  =  M  x  BE

• B  :  exponent base (usually 2)
• M :  mantissa
• E  :  exponent

– M is usually represented in 2’s complement form, with an 
implied decimal point before it.

• For example, 

    In decimal,
0.235 x 106

    In binary,
   0.101011 x 20110
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Example  ::  32-bit representation

– M represents a 2’s complement fraction
    1  >  M  >  1

– E represents the exponent (in 2’s complement form)
   127  >  E  >  128

• Points to note:
– The number of significant digits depends on the number of bits 

in M.
• 6 significant digits for 24-bit mantissa.

– The range of the number depends on the number of bits in E.
• 1038  to  1038  for 8-bit exponent.

M E

24 8
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A Warning

• The representation for floating-point numbers as 
shown is just for illustration.

• The actual representation is a little more complex.

• In C:
– float      ::   32-bit representation

– double  ::   64-bit representation
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Representation of 
Characters and Strings
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Representation of Characters

• Many applications have to deal with non-numerical data
– Characters and strings.

– There must be a standard mechanism to represent alphanumeric and 
other characters in memory.

• Three standards in use:
– Extended Binary Coded Decimal Interchange Code (EBCDIC)

• Used in older IBM machines.

– American Standard Code for Information Interchange (ASCII)
• Most widely used today.

– UNICODE
• Used to represent all international characters.

• Used by Java.
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ASCII Code

• Each individual character is numerically encoded into a 

unique 7-bit binary code.

– A total of 27 or 128 different characters.

– A character is normally encoded in a byte (8 bits), with the MSB not 

been used.

• The binary encoding of the characters follow a regular 

ordering.

– Digits are ordered consecutively in their proper numerical sequence 

(0 to 9).

– Letters (uppercase and lowercase) are arranged consecutively in 

their proper alphabetic order.
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Some Common ASCII Codes

‘A’  ::  41 (H)   65 (D)

‘B’  ::  42 (H)   66 (D)

………..

‘Z’  ::  5A (H)  90 (D)

‘a’  ::  61 (H)   97 (D)

‘b’  ::  62 (H)   98 (D)

………..

‘z’  ::  7A (H)  122 (D)

‘0’  ::  30 (H)   48 (D)

‘1’  ::  31 (H)   49 (D)

………..

‘9’  ::  39 (H)   57 (D)

‘(‘   ::  28 (H)  40 (D)

‘+’  ::  2B (H)  43 (D)

‘?’  ::   3F (H)  63 (D)

‘\n’ ::  0A (H)  10 (D)

‘\0’ ::   00 (H)  00 (D)
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Character Strings

• Two ways of representing a sequence of 
characters in memory.
– The first location contains the number of characters in 

the string, followed by the actual characters.

– The characters follow one another, and is terminated 
by a special delimiter.

oeH5 ll

leH ol



48

String Representation in C

• In C, the second approach is used.
– The ‘\0’ character is used as the string delimiter.

• Example:

“Hello”       

• A null string “” occupies one byte in memory.
– Only the ‘\0’ character.

‘\0’leH ol
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