
Number Systems

Palash Dey

Department of Computer Science & Engg.

Indian Institute of Technology

Kharagpur

Slides credit: Prof. Indranil Sen Gupta

1

2

Number Representation

Binary

Hexadecimal

Decimal

3

Topics to be Discussed

• How are numeric data items actually stored in
computer memory?

• How much space (memory locations) is allocated
for each type of data?
– int, float, char, double, etc.

• How are characters and strings stored in memory?
– Already discussed.

4

Number System :: The Basics

• We are accustomed to using the so-called decimal
number system.
– Ten digits :: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

– Every digit position has a weight which is a power of 10.

– Base or radix is 10.

• Example:

234 = 2 x 102 + 3 x 101 + 4 x 100

250.67 = 2 x 102 + 5 x 101 + 0 x 100 + 6 x 10-1 + 7 x 10-2

5

Binary Number System

• Two digits:
– 0 and 1.

– Every digit position has a weight which is a power of 2.

– Base or radix is 2.

• Example:

110 = 1 x 22 + 1 x 21 + 0 x 20

101.01 = 1 x 22 + 0 x 21 + 1 x 20 + 0 x 2-1 + 1 x 2-2

6

Binary-to-Decimal Conversion

• Each digit position of a binary number has a
weight.
– Some power of 2.

• A binary number:

 B = bn-1 bn-2 …..b1 b0 . b-1 b-2 ….. b-m

 Corresponding value in decimal:

 D =  bi 2
i

i = -m

n-1

7

Examples

1. 101011  1x25 + 0x24 + 1x23 + 0x22 + 1x21 + 1x20

= 43

(101011)2 = (43)10

1. .0101  0x2-1 + 1x2-2 + 0x2-3 + 1x2-4

= .3125

(.0101)2 = (.3125)10

1. 101.11  1x22 + 0x21 + 1x20 + 1x2-1 + 1x2-2

5.75

(101.11)2 = (5.75)10

8

Decimal-to-Binary Conversion

• Consider the integer and fractional parts separately.

• For the integer part,
– Repeatedly divide the given number by 2, go on

accumulating the remainders, until the number becomes

zero.

– Arrange the remainders in reverse order.

• For the fractional part,
– Repeatedly multiply the given fraction by 2.

• Accumulate the integer part (0 or 1).

• If the integer part is 1, chop it off.

– Arrange the integer parts in the order they are obtained.

9

Example 1 :: 239

2 239

2 119 --- 1

2 59 --- 1

2 29 --- 1

2 14 --- 1

2 7 --- 0

2 3 --- 1

2 1 --- 1

2 0 --- 1

(239)10 = (11101111)2

2 64

2 32 --- 0

2 16 --- 0

2 8 --- 0

2 4 --- 0

2 2 --- 0

2 1 --- 0

2 0 --- 1

10

Example 2 :: 64

(64)10 = (1000000)2

11

Example 3 :: .634

.634 x 2 = 1.268

.268 x 2 = 0.536

.536 x 2 = 1.072

.072 x 2 = 0.144

.144 x 2 = 0.288

:

:

(.634)10 = (.10100……)2

12

Example 4 :: 37.0625

(37)10 = (100101)2

(.0625)10 = (.0001)2

 (37.0625)10 = (100101 . 0001)2

13

Hexadecimal Number System

• A compact way of representing binary numbers.

• 16 different symbols (radix = 16).

 0  0000 8  1000

 1  0001 9  1001

 2  0010 A  1010

 3  0011 B  1011

 4  0100 C  1100

 5  0101 D  1101

 6  0110 E  1110

 7  0111 F  1111

14

Binary-to-Hexadecimal Conversion

• For the integer part,
– Scan the binary number from right to left.

– Translate each group of four bits into the corresponding

hexadecimal digit.

• Add leading zeros if necessary.

• For the fractional part,
– Scan the binary number from left to right.

– Translate each group of four bits into the corresponding

hexadecimal digit.

• Add trailing zeros if necessary.

15

Examples

1. (1011 0100 0011)2 = (B43)16

2. (10 1010 0001)2 = (2A1)16

3. (.1000 010)2 = (.84)16

4. (101 . 0101 111)2 = (5.5E)16

16

Hexadecimal-to-Binary Conversion

• Translate every hexadecimal digit into its 4-bit
binary equivalent.

– Discard leading and trailing zeros if desired.

• Examples:

 (3A5)16 = (0011 1010 0101)2

 (12.3D)16 = (0001 0010 . 0011 1101)2

 (1.8)16 = (0001 . 1000)2

17

Number Representation

Unsigned and Signed numbers

18

Unsigned Binary Numbers

• An n-bit binary number

 B = bn-1bn-2 …. B2b1b0

(2n distinct combinations are possible, 0 to 2n1)

• For n = 3, there are 8 distinct combinations.
– 000, 001, 010, 011, 100, 101, 110, 111

• Range of numbers that can be represented

 n=8  0 to 281 (255)

 n=16  0 to 2161 (65535)

 n=32  0 to 2321 (4294967295)

19

Signed Integer Representation

• Many of the numerical data items that are used

in a program are signed (positive or negative).
– Question:: How to represent sign?

• Three possible approaches:

a)Sign-magnitude representation

b)One’s complement representation

c) Two’s complement representation

20

Sign-magnitude Representation

• For an n-bit number representation
– The most significant bit (MSB) indicates sign

 0  positive

 1  negative

– The remaining n-1 bits represent magnitude.

b0b1bn-2bn-1

Magnitude Sign

21

Example :: n=4

0000  +0

0001  +1

0010  +2

0011  +3

0100  +4

0101  +5

0110  +6

0111  +7

1000  -0

1001  -1

1010  -2

1011  -3

1100  -4

1101  -5

1110  -6

1111  -7

15 distinct numbers can be represented

22

Contd.

• Range of numbers that can be represented:

 Maximum :: + (2n-1 – 1)

 Minimum :: – (2n-1 – 1)

• A problem:

 Two different representations of zero.

 +0  0 000….0

 –0  1 000….0

23

One’s Complement Representation

• Basic idea:
– Positive numbers are represented exactly as in sign-

magnitude form.

– Negative numbers are represented in 1’s complement form.

• How to compute the 1’s complement of a number?
– Complement every bit of the number (10 and 01).

– MSB will indicate the sign of the number.

 0  positive

 1  negative

24

Example :: n=4

0000  +0

0001  +1

0010  +2

0011  +3

0100  +4

0101  +5

0110  +6

0111  +7

1000  -7

1001  -6

1010  -5

1011  -4

1100  -3

1101  -2

1110  -1

1111  -0

To find the representation of, say, -4, first note that

 +4 = 0100

 4 = 1’s complement of 0100 = 1011

25

Contd.

• Range of numbers that can be represented:
 Maximum :: + (2n-1 – 1)

 Minimum :: – (2n-1 – 1)

• A problem:
 Two different representations of zero.

 +0  0 000….0

 0  1 111….1

• Advantage of 1’s complement representation
– Subtraction can be done using addition.

– Leads to substantial saving in circuitry.

– Sign extension is possible to increase number of bits to represent.

 -3 = 1100 (in 4 bits) = 1111 1100 (in 8 bits)

 +3 = 0011 (in 4 bits) = 0000 0011 (in 8 bits)

26

Two’s Complement Representation

• Basic idea:
– Positive numbers are represented exactly as in sign-

magnitude form.

– Negative numbers are represented in 2’s complement form.

• How to compute the 2’s complement of a number?
– Complement every bit of the number (10 and 01), and

then add 1 to the resulting number.

– MSB will indicate the sign of the number.

 0  positive

 1  negative

27

Example :: n=4

0000  +0

0001  +1

0010  +2

0011  +3

0100  +4

0101  +5

0110  +6

0111  +7

1000  -8

1001  -7

1010  -6

1011  -5

1100  -4

1101  -3

1110  -2

1111  -1

To find the representation of, say, -4, first note that

 +4 = 0100

 4 = 2’s complement of 0100 = 1011 + 1 = 1100

28

Contd.

• Range of numbers that can be represented:

 Maximum :: + (2n-1 – 1)

 Minimum :: – 2n-1

• Advantage:
– Unique representation of zero.

– Subtraction can be done using addition.

– Leads to substantial saving in circuitry.

– Sign extension is possible to increase number of bits to represent.

 -3 = 1101 (in 4 bits) = 1111 1101 (in 8 bits)

 +3 = 0011 (in 4 bits) = 0000 0011 (in 8 bits)

• Almost all computers today use the 2’s complement
representation for storing negative numbers.

29

Contd.

• In C (typical values):
– short int

• 16 bits  + (215–1) to –215

– int
• 32 bits  + (231–1) to –231

– long int
• 64 bits  + (263–1) to –263

30

Binary operations

Addition
Subtraction using addition

Binary addition

• Rules for adding two bits:
0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 10, i.e., 0 with carry of 1

• Addition examples for unsigned numbers:
 0 1 0 1 0 1 1 1 1 0 0 1

 0 0 0 1 0 0 1 1 1 0 1 0

 ======= ======= =========

0 1 1 0 1 0 1 0 1 0 0 1 1

31

Carry

32

Subtraction Using Addition :: 1’s Complement

• How to compute A – B ?
– Compute the 1’s complement of B (say, B1).

– Compute R = A + B1

– If the carry obtained after addition is ‘1’

• Add the carry back to R (called end-around carry).

• That is, R = R + 1.

• The result is a positive number.

 Else

• The result is negative, and is in 1’s complement form.

33

Example 1 :: 6 – 2

1’s complement of 2 = 1101

 6 :: 0 1 1 0

-2 :: 1 1 0 1

 1 0 0 1 1

 1

 0 1 0 0  +4

End-around
carry

Assume 4-bit representations.

Since there is a carry, it is
added back to the result.

The result is positive.

R

B1

A

34

Example 2 :: 3 – 5

1’s complement of 5 = 1010

 3 :: 0 0 1 1

-5 :: 1 0 1 0

 1 1 0 1

Assume 4-bit representations.

Since there is no carry, the result is
negative.

1101 is the 1’s complement of
0010, that is, it represents –2.

A

B1

R

 -2

35

Subtraction Using Addition :: 2’s Complement

• How to compute A – B ?

– Compute the 2’s complement of B (say, B2).

– Compute R = A + B2

– If the carry obtained after addition is ‘1’

• Ignore the carry.

• The result is a positive number.

 Else

• The result is negative, and is in 2’s complement form.

36

Example 1 :: 6 – 2

2’s complement of 2 = 1101 + 1 = 1110

 6 :: 0 1 1 0

-2 :: 1 1 1 0

 1 0 1 0 0

Assume 4-bit representations.

Presence of carry indicates that
the result is positive.

No need to add the end-around
carry like in 1’s complement.

A

B2

R

Ignore carry +4

37

Example 2 :: 3 – 5

2’s complement of 5 = 1010 + 1 = 1011

 3 :: 0 0 1 1

-5 :: 1 0 1 1

 1 1 1 0

Assume 4-bit representations.

Since there is no carry, the result is
negative.

1110 is the 2’s complement of
0010, that is, it represents –2.

A

B2

R

-2

38

Floating-point number representation

39

Floating-point Numbers

• The representations discussed so far applies only to
integers.
– Cannot represent numbers with fractional parts.

• We can assume a decimal point before a 2’s complement
number.
– In that case, pure fractions (without integer parts) can be

represented.

• We can also assume the decimal point somewhere in
between.
– This lacks flexibility.

– Very large and very small numbers cannot be represented.

40

Representation of Floating-Point Numbers

• A floating-point number F is represented by a doublet <M,E> :

 F = M x BE

• B : exponent base (usually 2)
• M : mantissa
• E : exponent

– M is usually represented in 2’s complement form, with an
implied decimal point before it.

• For example,

 In decimal,
0.235 x 106

 In binary,
 0.101011 x 20110

41

Example :: 32-bit representation

– M represents a 2’s complement fraction
 1 > M > 1

– E represents the exponent (in 2’s complement form)
 127 > E > 128

• Points to note:
– The number of significant digits depends on the number of bits

in M.
• 6 significant digits for 24-bit mantissa.

– The range of the number depends on the number of bits in E.
• 1038 to 1038 for 8-bit exponent.

M E

24 8

42

A Warning

• The representation for floating-point numbers as
shown is just for illustration.

• The actual representation is a little more complex.

• In C:
– float :: 32-bit representation

– double :: 64-bit representation

43

Representation of
Characters and Strings

44

Representation of Characters

• Many applications have to deal with non-numerical data
– Characters and strings.

– There must be a standard mechanism to represent alphanumeric and
other characters in memory.

• Three standards in use:
– Extended Binary Coded Decimal Interchange Code (EBCDIC)

• Used in older IBM machines.

– American Standard Code for Information Interchange (ASCII)
• Most widely used today.

– UNICODE
• Used to represent all international characters.

• Used by Java.

45

ASCII Code

• Each individual character is numerically encoded into a

unique 7-bit binary code.

– A total of 27 or 128 different characters.

– A character is normally encoded in a byte (8 bits), with the MSB not

been used.

• The binary encoding of the characters follow a regular

ordering.

– Digits are ordered consecutively in their proper numerical sequence

(0 to 9).

– Letters (uppercase and lowercase) are arranged consecutively in

their proper alphabetic order.

46

Some Common ASCII Codes

‘A’ :: 41 (H) 65 (D)

‘B’ :: 42 (H) 66 (D)

………..

‘Z’ :: 5A (H) 90 (D)

‘a’ :: 61 (H) 97 (D)

‘b’ :: 62 (H) 98 (D)

………..

‘z’ :: 7A (H) 122 (D)

‘0’ :: 30 (H) 48 (D)

‘1’ :: 31 (H) 49 (D)

………..

‘9’ :: 39 (H) 57 (D)

‘(‘ :: 28 (H) 40 (D)

‘+’ :: 2B (H) 43 (D)

‘?’ :: 3F (H) 63 (D)

‘\n’ :: 0A (H) 10 (D)

‘\0’ :: 00 (H) 00 (D)

47

Character Strings

• Two ways of representing a sequence of
characters in memory.
– The first location contains the number of characters in

the string, followed by the actual characters.

– The characters follow one another, and is terminated
by a special delimiter.

oeH5 ll

leH ol

48

String Representation in C

• In C, the second approach is used.
– The ‘\0’ character is used as the string delimiter.

• Example:

“Hello” 

• A null string “” occupies one byte in memory.
– Only the ‘\0’ character.

‘\0’leH ol

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

