Functions

Palash Dey

Departiment of Computer Scrence & Engg,
[ndian nstitute of Techunology
Kharag{)ur

Slides credit: Prof. lndramil Sen Gupta

Introduction
 Function

— A self-contained program segment that carries out
some specific, well-defined task.

* Some properties:

— Every C program consists of one or more functions.

« One of these functions must be called “main”.

- Execution of the program always begins by carrying out
the instructions in “main”.

— A function wall carry out its intended action
whenever it 1s called or invoked.

Programming and Data Structure 2

— In general, a function will process information that
1s passed to it from the calling portion of the

program, and return a single value.
* Information is passed to the function via special
identifiers called arguments or parameters.

« The value is returned by the “return” statement.

— Some function may not return anything.

- Return data type specified as “void".

Programming and Data Structure 3

#include <stdio.h>
Output:
int factorial (int m) 11 = 1
{ 21=2
int i, temp=1; 3!'=6
_ _ _ 41 = 24
for (i=1; i<=m; i++) 51 = 120
temp = temp * i; 6! = 720
return (temp) 71 =5040
} 8! =40320
9! = 362880
e s () 10! = 3628800

{
int n;
for (n=1; n<=10; n++)
printf ("$d! = %d \n’,
n, factorial (n));

Programming and Data Structure

#include <stdio.h>

int factorial (int m)
{
int i, temp=1;
for (i=1l; i<=m,; i++)
temp = temp * i;
return (temp);

}

int main()
{
int n;
for (n=11; n<=20; n++)
printf ("%d! = %d \n’,

n, factorial (n));

Output:
111 = 39916800

121 = 479001600

13!' = 1932053504
141 = 1278945280
15!1'=2004310016
16! = 2004189184
171 =-288522240
18! = -898433024
19! = 109641728

20! =-2102132736

Programming and Data Structure

#include <stdio.h>

Output:
long int factorial (int m) 111'= 39916800
(121 = 479001600

13!'=6227020800
141 = 87178291200
15!'=1307674368000

int i; long int temp=1;

for (i=1l; i<=m; i++)

SED = RN s 16! = 20922789888000
return (temp); 17! = 355687428096000
} 18! = 6402373705728000
19! = 121645100408832000
int main () 20! = 2432902008176640000
{
int n;

for (n=11; n<=20; n++)
printf ("$d! = %1d \n’,
n, factorial (n));

Programming and Data Structure 6

Why Functions?

 Functions

— Allows one to develop a program in a modular fashion.
+ Divide-and-conquer approach.

— All variables declared inside functions are local variables.

« Known only in function defined.
* There are exceptions (to be discussed later).

— Parameters
« Communicate information between functions.
« They also become local variables.

Programming and Data Structure

 Benefits

— Divide and conquer

« Manageable program development.
 Construct a program from small pieces or components.

— Software reusability

* Use existing functions as building blocks for new
programs.
+ Abstraction: hide internal details (library functions).

Programming and Data Structure

Defining a Function

* A function definition has two parts:

— The first hne.
— The body of the function.

return-value-type function-name (parameter-
list)
{

declarations and statements

}

Programming and Data Structure

The first line contains the return-value-type, the function name,
and optionally a set of comma-separated arguments enclosed in
parentheses.

— Each argument has an associated type declaration.
— The arguments are called formal arguments or formal

parameters.
Example:

int gcd (int A, int B)

The argument data types can also be declared on the next line:

int gcd (A, B)
int A, B;

Programming and Data Structure 10

The body of the function 1s actually a compound
statement that defines the action to be taken by the

function.

int gecd (int A, int B)

{ TN
int temp;
while ((B % A) '= 0) {
temp = B $ A;
B = A;
A = temp;
} >~ BODY

return (A);

—

Programming and Data Structure

- When a function is called from some other function,
the corresponding arguments in the function call are
called actual arguments or actual parameters.

— The formal and actual arguments must match in
their data types.

« Point to note:

— The 1dentifiers used as formal arguments are
“local”.

* Not recognized outside the function.
* Names of formal and actual arguments may differ.

Programming and Data Structure 12

#include <stdio.h>
/* Compute the GCD of four numbers */

main ()
{
int nl, n2, n3, n4d, result;
scanf ("%d %d %d %d”", &nl, &n2, &n3, &n4);
result = gcd (ged (nl, n2), gecd (n3, n4d));
printf ("The GCD of %d, %d, %d and %d is %d \n’,

nl, n2, n3, nd4, result);

Programming and Data Structure 13

Function Not Returning Any Value

- Example: A function which printsif a

number 1f divisible by 7 or not.

void div7 (int n)
{
if ((n % 7) == 0)
printf ("$d is divisible by 7", n);
else
printf ("$d is not divisible by 7", n);

return;

} < OPTIONAL

Programming and Data Structure 14

* Returning control

— If nothing returned

* return;
- or, until reaches right brace

— If something returned

e return expression;

Programming and Data Structure

15

Some Points

« A function cannot be defined within another function.

— All function definitions must be disjoint.

« Nested function calls are allowed.

— A calls B, B calls C, C calls D, etc.
— The function called last will be the first to return.

A function can also call itself, either directly or in a
cycle.

— AcallsA
— A calls B, B calls C, C calls back A.

— Called recursive call or recursion.

Programming and Data Structure 16

Example: main calls ncr, ncr calls fact

#include <stdio.h>

int ncr (int n, int r);
int fact (int n);

main ()

{
int i, m, n, sum=0;
scanf ("%d %d", &m, &n);

for (i=1l; i<=m; i+=2)
sum = sum + ncr(n,i);

printf ("Result: %d \n’,
sum) ;

int ncr (int n, int r)
{
return (fact(n) /
fact(r) / fact(n-r));

int fact (int n)
{
int i, temp=1;
for (1=1; i<=n; i++)
temp *= i;
return (temp) ;

Programming and Data Structure 17

#include <stdio.h>
e mmin) Variable Scope
{ —A=1;
myProc () ;
N printf ("A = %d\n", A);
=}
void myProc () Output:
{ int A = 2; A= 3
while (A == 2) A= 2
{
int A = 3; A=1
printf ("A = %d\n", A);
B break;
}
printf ("A = %d\n", A);
_

Programming and Data Structure 18

Math Library Functions

- Math hbrary functions

— perform common mathematical calculations
#include <math.h>

- Format for calling functions

FunctionName (argument) ;
» If multiple arguments, use comma-separated list

printf ("$f", sqrt(900.0));
- Calls function sgrt, which returns the square root of its

argument.
- All math functions return data type double.

— Arguments may be constants, variables, or expressions.

Programming and Data Structure

19

Math Library Functions

double acos(double x) — Compute arc cosine of x.

double asin(double x) — Compute arc sine of x.

double atan(double x) — Compute arc tangent of x.

double atan2(double y, double x) — Compute arc tangent of y/x.

double ceil(double x) — Get smallest integer that exceeds x.
double floor(double x) — Get largest integral value less than x.
double cos(double x) — Compute cosine of angle in radians.
double cosh(double x) — Compute the hyperbolic cosine of x.
double sin(double x) — Compute sine of angle in radians.
double sinh(double x) — Compute the hyperbolic sine of x.
double tan(double x) — Compute tangent of angle in radians.
double tanh(double x) — Compute the hyperbolic tangent of x.
double exp(double x) — Compute exponential of x.

double fabs (double x) — Compute absolute value of x.

double log(double x) — Compute log to the base e of x.
double logl0 (double x) — Compute log to the base 10 of x.
double pow (double x, double y) — Compute x raised to the power y.
double sqrt(double x) — Compute the square root of x.

Programming and Data Structure 20

An example

#include <stdio.h>
#include <math.h>

int main ()

{

double wvalue, result;
float a, b;

value = 2345.6; a = 23.5;
result = sqgrt(value) ;
b = pow(23.5,4);

printf ("\nresult = %f, b = %$£f", result, b);

Must be compiled as:

gcc examp.c -1lm

i

Programming and Data Structure

Link math
library

21

Function Prototypes

* Usually, a function is defined before 1t 1s called.

— main () is the last function in the program.
— Easy for the compiler to identify function definitions in a

single scan through the file.

- However, many programmers prefer a top-down
approach, where the functions follow main () .

— Must be some way to tell the compiler.
— Function prototypes are used for this purpose.
* Only needed if function definition comes after use.

Programming and Data Structure

22

— Function prototypes are usually written at the
beginning of a program, ahead of any functions
(including main()).

— Examples:

int gcd (int A, int B);
void div7 (int number) ;

* Note the semicolon at the end of the line.

- The argument names can be different; but it is a good
practice to use the same names as in the function
definition.

Programming and Data Structure

23

Example:: function prototypes

#include <stdio.h>

int ncr (int n, int r);
int fact (int n);

main ()

{

int i, m, n, sum=0;

scanf ("%d %d", &m, &n);

for (i=1l; i<=m,; 1i+=2)
sum = sum + ncr(n,i);

printf ("Result: %d \n’,
sum) ;

int ncr (int n, int r)
{
return (fact(n) /
fact(r) / fact(n-r));

int fact (int n)
{
int i, temp=1;
for (i=1l; i<=n; i++)
temp *= i;
return (temp) ;

Programming and Data Structure 24

Header Files
Header files

— Contain function prototypes for library functions.

— <stdlib.h>, <math.h>, etc.
— Load with: #include <filename>

— Example:

#include <math.h>

Custom header files

— Create file(s) with function definitions.
— Save as filename.h (say).

— Load 1n other files with #include "filename.h’

— Reuse functions.

Programming and Data Structure

25

Calling Functions; Call by Value and Call by
Reference

Used when invoking functions.
Call by value

— Copy of argument passed to function.

— Changes in function do not affect original.

— Use when function does not need to modify argument.
- Avoids accidental changes.

Call by reference.

— Passes the reference to the original argument.
— Execution of the function may affect the original.
— Not directly supported in C — can be effected using pointers.

C supports only “call by value”

Programming and Data Structure 26

Example: Random Number Generation

e rand function
— Prototype defined in <stdlib.h>

— Returns "random” number between 0 and RAND MAX

i = rand()
— Pseudorandom
* Preset sequence of "random"” numbers
+ Same sequence for every function call

* Scaling

— To get a random number between 1 and n

1 + (rand() % n)
— To simulate the roll of a dice:

1 + (rand() % 6)

Programming and Data Structure

27

Random Number Generation: Contd.

e srand function
— Prototype defined in <stdlib.h>

— Takes an integer seed, and randomizes the random number
generator.

srand (seed);

Programming and Data Structure 28

#include <stdio.h>
#include <stdlib.h>

int main/() A programming example.
{ Randomizing die rolling
int i; program.

unsigned seed;

printf ("Enter seed: ");
scanf ("%u”, &seed);
srand (seed) ;

for (1 = 1; i <= 10; i++)

{
printf ("$10d ", 1 + (rand() % 6));
if (1 $ 5 == 0)
printf ("\n");
}

return 0O;

Programming and Data Structure

Program Output

Enter seed: 67
6 1 6 2
1 6 6 4
Enter seed: 867
2 4 1 6
1 1 6 2
Enter seed: 67
6 1 6 2
1 6 6 4

30

#*define: Macro definition

» Preprocessor directive in the following form:

#define stringl string2

— Replaces stringl by string2 wherever it occurs
before compilation.

— For example,

#define PI 3.1415926
#define discr b*b-4*a*c

Programming and Data Structure 31

#define: Macro definition

#include <stdio.h>

#define PI 3.1415926

main ()

{
float r=4.0, area;

area = PI*r*r;

#include <stdio.h>
main ()

{

float r=4.0, area;

area = 3.1415926*r*r;

Programming and Data Structure

32

#define with arguments

e #define statement may be used with
arguments.

—Example: #define sqgr(x) x*x

— How macro substitution will be carried out?

r = sgr(a) + sqr(30); > r = a*a + 30%*30;
r = sqgr (atb) ; - r = a+b*'a\+b;
WRONG?

— The macro definitionshould have been written as:
#define sqgr(x) (x)*(x)

r = (atb)*(atb);

Programming and Data Structure 33

Recursion: Function calling itself

Programming and Data Structure

34

Recursion

A process by which a function calls itself repeatedly.

— Either directly.
« X calls X.

— Or cyclically in a chain.
« XcallsY, and Y calls X.

» Used for repetitive computations in which each action
1s stated 1n terms of a previous result.

fact(n) = n * fact (n-1)

Programming and Data Structure 35

Contd.

 For a problem to be written in recursive form,
two conditions are to be satisfied:

— It should be possible to express the problem in
recursive form.

— The problem statement must include a stopping
condition.

fact (n) 1, if

n =
n * fact(n-1), if n >

Programming and Data Structure 36

Examples:

— Factonal:

fact (0)
fact (n)

— GCD:

ged (O,
gced (m,
gced (m,
gcd (m,
gced (m,

— Fibonacaci series (0, 1, 1, 2, 3,

£ib (0)
£ib (1)
£ib (n)

1
n * fact(n-1), if n > 0

n
m

m, if m = n
gced (m%n, n),
gcd (m, n%m),

if
if

0
1
fib (n-1) + fib (n-2),

Programming and Data Structure

n
n

m >
m <
5,8,13, :--.)

ifn>1

37

Example 1 :: Factorial

long int fact (n)
int n;
{
if (n == 0)
return (1) ;
else

return (n * fact(n-1));

Programming and Data Structure

38

Example 2 : GCD

int ged (m, n)
int m, n;

{

if (m == 0) return n;
if (n == 0) return m;
if (m == n) return (m);

if (m > n)

return gcd (m%n, n);
else

return gcd (m, n%m);

Programming and Data Structure 39

Mechanism of execution

— When a recursive program is executed, the
recursive function calls are not executed

immediately.

 They are kept aside (on a stack) until the stopping
condition 1s encountered.
 The function calls are then executed i1n reverse order.

Programming and Data Structure 40

Example :: Calculating fact (4)

— First, the function calls will be processed:

fact(4) = 4 * fact(3)
fact(3) = 3 * fact(2)
fact(2) = 2 * fact(1l)
fact(l) =1 * fact(0)

— The actual values return i1n the reverse order:

fact(0) =1

fact(l) =1 * 1 =1
fact(2) =2 * 1 = 2
fact(3) =3 * 2 = 6
fact(4) = 4 * 6 = 24

Programming and Data Structure

Example 3 :: Fibonacci number

« Fibonacci number f(n) can be defined as:

£(0) = 0
£(1) = 1
f(n) = £(n-1) + £(n-2), if n > 1
— The successive Fibonacci numbers are:
0,1,1,2,3,5,8,13, 21, ---..

 Function definition:

int £ (int n)
{
if (n < 2) return (n);

else return (£(n-1) + £(n-2));

Programming and Data Structure

42

Tracing Execution

: A7 f(4)
- How many times the function is / \
called when evaluating f(4) ? f3) f(2)

~ /\ I\

f(z) (1) f(1) £(0)

/N

f(1) f(0)

» Inefficiency:

ing i lled 9 ti
— Same thing is computed several e

times.

Programming and Data Structure 43

Performance Tip

 Avoid Fibonacci-style recursive programs
which result in an exponential “explosion” of

calls.

» Avoid using recursion in performance
situations.

 Recursive calls take time and consume
additional memory.

Programming and Data Structure 44

Fibonacci number: iterative version

#include <stdio.h>
int £ (int x);

int main()

{
printf (“\n %d %d %d %47, £(2), £(3), £(4), £(5));
}

int £ (int n)
{

inta=0, b=1, temp, i;

for (i=2; i<=n; i++) Output:
{
temp = a + b; IS
a = b;
b = temp;

}

return (b);

Programming and Data Structure 45

Example 4 :: Towers of Hanoi Problem

gld|lw|N—

LEFT CENTER RIGHT

Programming and Data Structure

46

* The problem statement:

— Inmitially all the disks are stacked on the LEFT pole.
— Required to transfer all the disks to the RIGHT

pole.

* Only one disk can be moved at a time.
- A larger disk cannot be placed on a smaller disk.

— CENTER pole is used for temporary storage of
disks.

Programming and Data Structure 47

- Recursive statement of the general problem of
n disks.

— Step 1:

+ Move the top (n-1) disks from LEFT to CENTER.
— Step 2:

* Move the largest disk from LEFT to RIGHT.
— Step 3:

- Move the (n-1) disks from CENTER to RIGHT.

Programming and Data Structure 48

#include <stdio.h>

void transfer (int n, char from, char to, char temp);

main ()

{
int n; /* Number of disks */
scanf ("%d", &n);
transfer (n, 'L’, 'R’", 'C");

void transfer (int n, char from, char to, char temp)

{
if (n > 0) {
transfer (n-1, from, temp, to);

printf ("Move disk %d from %c to %c \n", n, from, to);

transfer (n-1, temp, to, from);

}

return;

Programming and Data Structure

49

Move

Move
Move
Move
Move
Move
Move
Move

disk
disk
disk
disk
disk
disk
disk

RFNFR WRNR

from
from
from
from
from
from
from

oo B B

to
to
to
to
to
to
to

Move
Move
Move
Move
Move
Move
Move
Move
Move

Ao owmaoaQwx

Move
Move
Move
Move
Move

disk
disk
disk
disk
disk
disk
disk
disk
disk
disk
disk
disk
disk
disk
disk

PFNFEF WRENMRPRARERNRERWRNR

from
from
from
from
from
from
from
from
from
from
from
from
from
from
from

oo™ ™®BE QB B

to
to
to
to
to
to
to
to
to
to
to
to
to
to
to

A D QonpBP B ®dxQOQBHEOQ0XTAQ

Programming and Data Structure

50

Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move

disk
disk
disk
disk
disk
disk
disk
disk
disk
disk
disk
disk
disk
disk
disk

R NRF WRFEFNMNRPAMRNMNREWRNER

from
from
from
from
from
from
from
from
from
from
from
from
from
from
from

to
to
to
to
to
to
to
to
to
to
to
to
to
to
to

v B o D@ I I« B B = B @ I = B VB o o

oot QQ©»»xB QO™

Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move
Move

disk
disk
disk
disk
disk
disk
disk
disk
disk
disk
disk
disk
disk
disk
disk
disk

F NP WRENMRPRARBRNEFEFWRNREOWO

from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from

CfEooQop BB QQQ®®mOQB Qe

to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to

AP moQq»ndxEBEQP®OB ™

Programming and Data Structure

51

Recursion vs. lteration
Repetition

— Iteration: explicit loop
— Recursion: repeated function calls

Termination

— Iteration: loop condition fails
— Recursion: base case recognized

Both can have infinite loops

Balance

— Choice between performance (iteration) and good
software engineering (recursion).

Programming and Data Structure 52

How are function calls implemented?

» The following applies in general, with minor
variations that are implementation dependent.

— The system maintains a stack in memory.
- Stack is a last-in first-out structure.

- Two operations on stack, push and pop.

— Whenever there i1s a function call, the activation

record gets pushed into the stack.

« Activation record consists of:
— the return address in the calling program,
— the return value from the function, and

— the local variables inside the function.

Programming and Data Structure

53

STACK

main ()

x = gcd (a, b); -

P

int ged (int x, int y)
{

-—
} —
}
4 M Local
Activation Variables
record

Before call

return (result);

Return Value

_ | Return Addr

After call

Programming and Data Structure

After return

54

int ncr (int n,int r)

return (fact(n)/
fact(r)/fact(n-r));

3 times

4

LV2, RV2, RA2

LV1, RV1, RA1

ﬂ-___-‘

A_Jint fact (int n)

__ return(result) ;

}

3 times

LV1, RV1, RA1

main ()
{
;;ncr(a,b);_,—f" {
...... <«
}
}
LV1, RV1, RA1
Before call Call ncr

Call fact

fact
returns

Programming and Data Structure

ncr

returns
55

What happens for recursive calls?

« What we have seen .

— Activation record gets pushed into the stack when
a function call 1s made.

— Activation record is popped off the stack when the
function returns.

 In recursion, a function calls itself.

— Several function calls going on, with none of the

function calls returning back.
 Activation records are pushed onto the stack continuously.
- Large stack space required.
- Activation records keep popping off, when the
termination condition of recursion is reached.

Programming and Data Structure 56

» We shall 1llustrate the process by an example
of computing factonal.

— Activation record looks like:

Local
Variables

Return Value
Return Addr

Programming and Data Structure 57

Example: main() calls fact(3)

main ()
{
int
n =

printf (”%d \n”, fact(n));

n,
By

int fact (n)

int n;
{
if (n == 0)
return (1) ;
else

return (n * fact(n-1));

Programming and Data Structure 58

TRACE OF THE STACK DURING EXECUTION

>
n=0
1
RA .. fact
n=1 n = n= fact
:] _ 1*1 = 1 returns to
main calls main
fact RA .. fact||RA.. fact| |RA .. fact
n=2 n=2 n=2 n=2 n=2 A
- - - - 2*1 =2
v RA .. fact||RA.. fact| |RA .. fact| |RA.. fact||[RA .. fact
n=3 n=3 n=3 n=3 n=3 n=3 n=3
- s = - - - 3*2=6
RA .. main| [RA .. main| [RA .. main| [RA .. main| [RA .. main| [RA .. main| [RA .. main

Programming and Data Structure

59

Do Yourself

Trace the activation records for the following version of

Fi

#include <stdio.h>
int f (int n)
{

int a, b;

if (n < 2) return (n);
else {
a = £f(n-1);
X b = £f(n-2);
- return (a+b) ;
Y — }'
}
main () {
printf ("Fib(4) is: %d \n", £(4));

}

e

Local
Variables
(n, a, b)

Return Value

Return Addr
(either main,
or X, orY)

Programming and Data Structure

- main
60

Storage Class of Variables

61

What is Storage Class?

- It refers to the permanence of a vanable, and
its scope within a program.

 Four storage class specifications in C:

— Automatic: auto
— External: extern
— Static: static

— Regaster: register

Programming and Data Structure 62

Automatic Variables

* These are always declared within a function

and are local to the function in which they are
declared.

— Scope 1s confined to that function.

 This 1s the default storage class specification.

— All vaniables are considered as auto unless

explicitly specified otherwise.
— The keyword auto 1s optional.

— An automatic variable does not retain its value once

control is transferred out of its defining function.

Programming and Data Structure 63

#include <stdio.h>

int factorial (int m)

{

auto int i;

auto int temp=1;

for (i=1; i<=m; i++)
temp = temp * 1i;

return (temp);

main ()
{
auto int n;
for (n=1; n<=10; n++)
printf ("%d! = %d \n’,
n, factorial (n));

Programming and Data Structure 64

Static Variables

Static variables are defined within individual functions
and have the same scope as automatic variables.

Unlhike automatic variables, static variables retain their
values throughout the life of the program.

— If a function is exited and re-entered at a later time, the static
variables defined within that function will retain their
previous values.

— Initial values can be included in the static variable
declaration.

« Will be initialized only once.

An example of using static variable:

— Count number of times a function is called.

Programming and Data Structure 65

EXAMPLE 1

#include <stdio.h>

int factorial (int n)
{
static int count=0;
count++;
printf ("'n=%d, count=%d \n", n, count);
if (n == 0) return 1;
else return (n * factorial(n-1));

main ()

{
int i1i=6;

printf ("Value is: %d \n", factorial(i)):;

Programming and Data Structure

66

* Program output:

n=6, count=l
n=5, count=2

n=4, count=3
n=3, count=4
n=2, count=5
n=1, count=6
n=0, count=7

Value is: 720

Programming and Data Structure

67

EXAMPLE 2

#include <stdio.h>

int fib (int n)
{
static int count=0;
count++;
printf ("'n=%d, count=%d \n", n, count);
if (n < 2) return n;
else return (fib(n-1) + fib(n-2));

main ()

{
int 1=4;
printf ("Value is: %d \n", fib(i));

Programming and Data Structure

68

f(4)
* Program output: / \\

|
n=4, count=1 f(3) f(2)

n=3, count=2 / \ v/ \4

n=2, count=3 f(2) f(1) f(1) £(0)
n=1, count=4 f/

n=0, count=5

n=1l, count=6 f(1) f(0)

n=2, count=7

n=1, count=8

n=0, count=9

Value is: 3 [0,1,1,2,3,5,8,...]

Programming and Data Structure 69

Register Variables

- These varniables are stored in high-speed
registers within the CPU.

— Commonly used variables may be declared as
register vaniables.

— Results in increase in execution speed.
— The allocation i1s done by the compiler.

Programming and Data Structure 70

External Variables

» They are not confined to single functions.

 Their scope extends from the point of
definition through the remainder of the
program.

— They may span more than one functions.
— Also called global vanables.

- Alternate way of declaring global varnables.

— Declare them outside the function, at the
beginning.

Programming and Data Structure 71

#include <stdio.h>

int count=0; /** GLOBAIL VARIABLE **/
int factorial (int n)

{

count++;
printf ("'n=%d, count=%d \n", n, count);
if (n == 0) return 1;

else return (n * factorial(n-1));

main () {
int i=6;
printf ("Value is: %d \n", factorial(i)):
printf ("Count is: %d \n”", count);

Programming and Data Structure

72

Some Examples on Recursion

Programming and Data Structure

73

GCD Computation ...

Correct Version

#include <stdio.h>
int gecd (m, n)
int m, n;

{

if (m == 0) return n;
if (n == 0) return m;
if (m == n) return (m);
if (m > n)

return gcd (m%n, n);
else

return gecd (m, n%m);

}

int main()

{

int numl, num2;
scanf ("%d %d", &numl, &num2) ;

GCD
GCD
GCD
GCD
GCD

of
of
of
of
of

12 and 12 is 12
15 and 0 is 15
0 and 25 is 25
156 and 66 is 6
75 and 925 is 25

printf ("\nGCD of %d and %d is %d", numl, num2, gcd(numl,num2));

Autumn Semester 2019 Programming and Data Structure

74

Compute power a?

// Compute a to the power b
#include <stdio.h>

3 to the 4 is 81

long int power (int a, int b) 2 to the power 16 is 65536
{ :
if (b == 0) return (1): 2 to the power 8 is 256
else return (a * power(a,b-1)); 17 to the power 4 is 83521
} 436 to the power 0 is 1

int main ()
{
int x, y;
long int result;
scanf ("%d %d", &x, &y);
result = power (x, Vy);
printf ("\n%d to the power %d is %1d", x, y, result);

Autumn Semester 2019 Programming and Data Structure 75

Sum of digits of a number

// Find sum of the digits of a number
#include <stdio.h>

Sum of digits of 25 is 7
int digitsum (int num) Sum of digits of 23863 is 22
{ . . :
G Ehaiie Sum of digits of 11?11 is 5
if (num == 0) return (0); Sum of dlglts of 0 1is O
else { Sum of digits of 9999 is 36

digit = num % 10;
return (digit + digitsum(num/10));
}
}

int main()
{

int a;

scanf ("%d", &a);

printf ("\nSum of digits of %d is %d", a, digitsum(a)) ;
}

Autumn Semester 2019 Programming and Data Structure 76

Decimal to Binary

// Print a decimal number in binary
#include <stdio.h>

Binary of 25 is 1 1 0 0 1
Binary of 12 is 1 1 0 O

if (n == 0) return; Binary of 128 is 1 0 0 0 0 0 O O
else { Binary of 254 is 1 1111110

void dec2bin (int n)

{

dec2bin (n/2);
printf ("%$2d", n%2);
}
}

int main()
{
int dec;
scanf ("%d", &dec);
printf ("\nBinary of %d is", dec);
dec2bin (dec) ;

Autumn Semester 2019 Programming and Data Structure 77

