Assignment 1: Randomized Algorithm Design

Palash Dey Indian Institute of Technology, Kharagpur

January 18, 2019

Assume that the random variables are either continuous or discrete if not explicitly mentioned.

1. Let $\mathfrak{X}_i, i \in [n]$ be n random variables each with finite support. Then prove the following.

$$\operatorname{var}\left(\sum_{i=1}^{n} \mathfrak{X}_{i}\right) = \sum_{i=1}^{n} \operatorname{var}\left(\mathfrak{X}_{i}\right) + 2\sum_{1 \leq i < j \leq n} \operatorname{cov}(\mathfrak{X}_{i}, \mathfrak{X}_{j})$$

where for any two random variables \mathfrak{X} and \mathfrak{Y} , we define $\operatorname{cov}(\mathfrak{X}, \mathfrak{Y}) = \mathbb{E}[\mathfrak{X}\mathfrak{Y}] - \mathbb{E}[\mathfrak{X}]\mathbb{E}[\mathfrak{Y}]$.

2. Let \mathcal{X} and \mathcal{Y} be two independent random variables. Then prove that $\mathbb{E}[\mathcal{X}\mathcal{Y}] = \mathbb{E}[\mathcal{X}]\mathbb{E}[\mathcal{Y}]$. From this conclude that, for n pairwise random variables $\mathcal{X}_i, i \in [n]$, we have the following.

$$\operatorname{var}\left(\sum_{i=1}^{n} \mathfrak{X}_{i}\right) = \sum_{i=1}^{n} \operatorname{var}(\mathfrak{X}_{i})$$

- Fix any input sequence of n integers to the quick sort algorithm. Let X be the random variable denoting the number of comparisons the the quick sort algorithm makes on the input sequence. Then prove that var(X) = O(n²).
- 4. Let A_i, i ∈ [n] be n objects each having two attributes A^x_i and A^y_i. The attribute y is 0 for every A_i. Suppose we have a deterministic quick sort algorithm that can sort A_i, i ∈ [n] on the attribute x or on the attribute y. Can you use this deterministic quick sort algorithm to design a randomized algorithm to sort A_i, i ∈ [n] on the attribute x which makes an expected O(n log n) comparisons? Please prove that your algorithm indeed makes O(n log n) comparisons on expectation.
- 5. Let $\mathcal{X}_i, i \in [n]$ be n pairwise independent random variables each taking values in $\{0, 1\}$ with expectation μ and $S = \sum_{i=1}^{n} \mathcal{X}_i$. Then for any positive real number δ we have the following.

$$\Pr\left[\$ \leqslant (1-\delta) \mu \right] \leqslant \left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}} \right)^{\mu}$$

- 6. Show that the expected number of balls one needs to through randomly into m bins to have every bin at least one ball is $O(m \log m)$.
- 7. Give an example of a random variable whose expectation exists but variance does not exist.
- 8. Find the expectation and variance of the number of swaps that the bubble sort algorithm performs on a uniformly random permutation of n distinct integers.

9. Prove the weak law of large numbers using Chebyshev inequality. The weak law of large number states that, for random variables X_i , $i \in \mathbb{N}$ which are distributes independently and identically with mean μ and variance σ^2 , we have the following for any constant $\varepsilon > 0$

$$\lim_{n\to\infty} \Pr\left[\left|\frac{X_1+X_2+\cdots+X_n}{n}-\mu\right|>\varepsilon\right]=0$$

- 10. Let $\mathcal{X}_i, i \in [n]$ be n pairwise independent random variables each taking values in $\{0, 2\}$ with expectation μ and $S = \sum_{i=1}^{n} \mathcal{X}_i$. Use standard Chernoff bound proved in class to upper bound the probability that S takes value more than $(1 + \delta)\mu$.
- 11. Let \mathfrak{X} be a random variable with expectation μ and variance σ^2 . Then for any $t \in \mathbb{R}_{\geq 0}$, prove the following.

$$\Pr\left[\mathfrak{X}-\mu \geqslant t\sigma\right] \leqslant \frac{1}{1+t^2} \text{ and } \Pr\left[|\mathfrak{X}-\mu| \geqslant t\sigma\right] \leqslant \frac{2}{1+t^2}$$

12. Let \mathcal{X} be a non-negative integer valued random variable with positive expectation. Then prove the following.

$$\Pr\left[\mathfrak{X}=0\right] \leqslant \frac{\mathbb{E}[\mathfrak{X}^2] - \mathbb{E}[\mathfrak{X}]^2}{\mathbb{E}[\mathfrak{X}]^2} \text{ and } \frac{\mathbb{E}[\mathfrak{X}]^2}{\mathbb{E}[\mathfrak{X}^2]} \leqslant \Pr[\mathfrak{X}\neq 0] \leqslant \mathbb{E}[\mathfrak{X}]$$