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Topics

* Solving Integer Programs

e Basic Combinatorial Optimization Problems

— Bipartite Matching, Minimum s-t Cut,
Shortest Paths, Minimum Spanning Trees

* Bipartite Matching
— Combinatorial Analysis of Extreme Points
— Total Unimodularity



Mathematical Programs We’ve Seen
Linear Program (LP) \

min c'x

s.t.  alx <b Vi=1,...m

Convex Program
min f(z) (where fis convex)
st.  alx <b Vi=1,....m >

7

Can be efficiently solved
e.g., by Ellipsoid Method

Semidefinite Program (SDP)

min ¢!z
T .
stoa < bi vi=1,..,m (where X is symmetric matrix
y' Xy >0 Vy € R" corresponding to x )
Integer Program (IP)
: T
mn-— ¢ Cannot be efficiently solved
st. ajz <b Vi=1,...,m assuming P = NP

T c 7"



Computational Complexity

P

Sorting, string matching,
breadth-first search, ...

Is LP feasible?

* If you could efficiently (i.e., in polynomial time) decide if
every integer program is feasible, then P = NP
* And all of modern cryptography is broken
e And you win $1,000,000



Combinatorial IPs are often nice

 Maximum Bipartite Matching
e Given bipartite graph G=(V, E)
* Find a maximum size matching
— Aset M C E s.t. every vertex has at most one incident edge in M

\
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Combinatorial IPs are often nice

 Maximum Bipartite Matching
e Given bipartite graph G=(V, E)
* Find a maximum size matching
— Aset M C E s.t. every vertex has at most one incident edge in M
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Combinatorial IPs are often nice

Maximum Bipartite Matching
Given bipartite graph G=(V, E)
Find a maximum size matching
— Aset M C E s.t. every vertex has at most one incident edge in M

The natural integer program

max ZGEE Le
s.t. Ze incident to v Le S 1 V/U S 4

Te € {0,1} Vee I

This IP can be efficiently solved, in many different ways



Combinatorial IPs are often nice

* Max-Weight Perfect Matching
* Given bipartite graph G=(V, E). Every edge e has a weight w..
* Find a maximum-weight perfect matching

— Aset M C E s.t. every vertex has exactly one incident edge in M




Combinatorial IPs are often nice

* Max-Weight Perfect Matching
* Given bipartite graph G=(V, E). Every edge e has a weight w..
* Find a maximum-weight perfect matching

— Aset M C E s.t. every vertex has exactly one incident edge in M

4 The blue edges are
a max-weight
perfect matching M



Combinatorial IPs are often nice

Max-Weight Perfect Matching
Given bipartite graph G=(V, E). Every edge e has a weight w..
Find a maximum-weight perfect matching

— Aset M C E s.t. every vertex has exactly one incident edge in M

The natural integer program
max ) .cp We " Te
8.t Ze incident to v *e = 1 VweV
Te € {0,1} Vee I

This IP can be efficiently solved, in many different ways



Combinatorial IPs are often nice

Minimum s-t Cut in a Graph
Let G=(V,E) be a graph. Fix two vertices s,teV.
An s-t cut is a set FCE such that, if you delete F, then s

and t are disconnected
i.e., there is no s-t path in G\F = (V,E\F).




Combinatorial IPs are often nice

Minimum s-t Cut in a Graph
Let G=(V,E) be a graph. Fix two vertices s,teV.
An s-t cut is a set FCE such that, if you delete F, then s

and t are disconnected
i.e., there is no s-t path in G\F = (V,E\F).

These edges are a minimum s-t cut



Combinatorial IPs are often nice

Minimum s-t Cut in a Graph
Let G=(V,E) be a graph. Fix two vertices s,teV.

An s-t cut is a set FCE such that, if you delete F, then s
and t are disconnected.

Want to find an s-t cut of minimum cardinality
Write a (very big!) integer program. Make variable x,

for every e € E. Let P be set of all s-t paths.

min E Te

eck
st Y ze >1 Vpe P

ecp
Te € {0,1} Vee E

This IP can be efficiently solved, in many different ways



Combinatorial IPs are often nice

Shortest Paths in a Digraph
Let G=(V,A) be a directed graph. Every arc a has a
“length” w_>0.

Given two vertices s and t, find a path from s to t of
minimum total length.




Combinatorial IPs are often nice

Shortest Paths in a Digraph
Let G=(V,A) be a directed graph. Every arc a has a
“length” w,>0.

Given two vertices s and t, find a path from s to t of
minimum total length.

These edges form a shortest s-t path



Combinatorial IPs are often nice

Shortest Paths in a Digraph
Let G=(V,A) be a directed graph. Every arc a has a
“length” w_>0.

Given two vertices s and t, find a path from s to t of
minimum total length.

There is a natural IP for this problem that can be
efficiently solved, in many different ways.



Combinatorial IPs are often nice
* Minimum Spanning Tree in a Graph
* Let G=(V,E) be a graph. Every edge e has a weight w..

* An spanning tree is a set FCE with no cycles, such that
F contains a path between every pair of vertices.




Combinatorial IPs are often nice

* Minimum Spanning Tree in a Graph

* Let G=(V,E) be a graph. Every edge e has a weight w..

* An spanning tree is a set FCE with no cycles, such that
F contains a path between every pair of vertices.

These edges are a minimum spanning tree
There is an s-t path in the tree



Combinatorial IPs are often nice
Minimum Spanning Tree in a Graph
Let G=(V,E) be a graph. Every edge e has a weight w..
An spanning tree is a set FCE with no cycles, such that
F contains a path between every pair of vertices.

There is a natural IP for this problem that can be
efficiently solved, in many different ways.



How to solve combinatorial IPs?

 Two common approaches

1. Desigh combinatorial algorithm that directly solves IP
* Often such algorithms have a nice LP interpretation

2. Relax IP to an LP; prove that they give same solution;
solve LP by the ellipsoid method
* Need to show special structure of the LP’s extreme points
* Sometimes we can analyze the extreme points combinatorially

 Sometimes we can use algebraic structure of the constraints.
For example, if constraint matrix is Totally Unimodular
then IP and LP are equivalent

 We'll see examples of these approaches



Perfect Matching Problem

* Let G=(V, E) be a bipartite graph. Every edge e has a weight w..
* Find a maximum-weight, perfect matching
— A set MCE s.t. every vertex has exactly one incident edge in M

* Write an integer program

(IP) s.t. Ze incident to v Le =1 V/U S 4
Te € {0,1} Ve e E

e Relax integrality constraints, obtain an LP
max ) ..p We - Te
8.t ze incident to v e = 1 VoeV
Te > () Vee . (x.<lisimplicit)

(LP)

 Theorem: Every BFS of (LP) is actually an (IP) solution!




Combinatorial Analysis of BFSs

Lemma:
Every BFS of perfect matching (LP) is an (IP) solution.

Proof: Let x be BFS, suppose x not integral.
Pick any edge e;={v,,v,} with 0 <x_, < 1.

The LP requires Y. incident on v; Te = 1
= there is another edge e,={v,,v,} with 0 < x_, < 1.

The LP requires 2 incident on vo LTe = 1
= there is another edge e;={v,,v;} with 0 < x_; < 1.

Continue finding distinct edges until eventually vi=v,, i<k

We have e, ;={V,Vi,1}, €.5=1Vii 1, Viea by s €3V 1 Vi)
(all edges and vertices distinct, except vi=vy)



Combinatorial Analysis of BFSs

Let x be BFS of matching (LP). Suppose x not integral.
WLOG, e,={v,,V,}, €,={v,Vs} ..., €51V, 1,V } and vo=vy.
O<xe, <1 Vi=1,..,k
Ze incident on w; Le — 1 \V/’L = ]_, N ]f
These edges form a simple cycle, of even length.
(Even length since G is bipartite.)

(

Define the vector: (o0 if e # e; for any j
de = <1 if e=¢; and j odd
-1 if e=e¢; and j even

Claim: If | €| is sufficiently small, then x+ed is feasible
So x is convex combination of x+ed and x-ed, both feasible
This contradicts x being a BFS. H



How to solve combinatorial IPs?

 Two common approaches

1. Desigh combinatorial algorithm that directly solves IP
* Often such algorithms have a nice LP interpretation

2. Relax IP to an LP; prove that they give same solution;
solve LP by the ellipsoid method

* Meed to show special structure of the LP’s extreme points

: i

' Y ometimes we can analyze the extreme points combinatorially

““_ometimes we can use algebraic structure of the constraints.
For example, if constraint matrix is Totally Unimodular
then IP and LP are equivalent



LP Approach for Bipartite Matching
* Let G=(V, E) be a bipartite graph. Every edge e has a weight w..
* Find a maximum weight matching
— Aset M C E s.t. every vertex has at most one incident edge in M

* Write an integer program

Ze incident to v e S 1 YvoeV
Le € 40,1} Ve € E

* Relax integrality constraints, obtain an LP
max ) ..p We* Te
LP
( ) s.t. Ze incident to v Ye S 1 VoeV
Te >0 Vee E  (X.<1isimplicit)

 Theorem: Every BFS of (LP) is actually an (IP) solution!




Total Unimodularity

Let A be a real mxn matrix

Definition: Suppose that every square submatrix of A has
determinantin {0, +1, -1}. Then A is totally unimodular (TUM).

— In particular, every entry of A must be in {0, +1, -1}
Lemma: Suppose A is TUM. Let b be any integer vector. Then
every basic feasible solution of P = { x : Ax<b } is integral.
Proof: Let x be a basic feasible solution.

Then the constraints that are tight at x have rank n.

Let A’ be a submatrix of A and b’ a subvector of b corresponding
to n linearly independent constraints that are tight at x.

Then x is the unique solutionto A’ x =b’, i.e., x = (A’)1 b".
Cramer’s Rule: If M is a square, non-singular matrix then
(M-l)i’j = (-1)i+j det Mdel(j,i) / det M.

Submatrix of M obtained by deleting row j and column i



Total Unimodularity
Let A be a real mxn matrix
Definition: Suppose that every square submatrix of A has
determinantin {0, +1, -1}. Then A is totally unimodular (TUM).
Lemma: Suppose A is TUM. Let b be any integer vector. Then
every basic feasible solution of P = { x : Ax<b } is integral.
Proof: Let x be a basic feasible solution.
Then the constraints that are tight at x have rank n.

Let A’ be the submatrix of A and b’ the subvector of b
containing n linearly independent constraints that are tight at x.

Then x is the unique solutionto A’ x = b’, i.e., x = (A’)1 b".

Cramer’s Rule: If M is a square, non-singular matrix then
(M_l)i’j = (-1)i+j det Mdel(j,i) / det M.

Thus all entries of (A’)* are in {0, +1, -1}.
Since b’ is integral, x is also integral. H



Operations Preserving Total Unimodularity

Let A be a real mxn matrix

Definition: Suppose that every square submatrix of A has
determinantin {0, +1, -1}. Then A is totally unimodular (TUM).

Lemma: Suppose A is TUM. Let b be any integer vector. Then
every basic feasible solution of P = { x : Ax<b } is integral.

Claim: Suppose A is TUM. Then (_AI) is also TUM.

Proof: Exercise on Assignment 5. []

Corollary: Suppose A is TUM. Let b be any integer vector. Then
every basic feasible solution of P = { x : Ax<b, x>0 } is integral.

Proof: By the Claim, (_AI is TUM. So apply the Lemma to

re e (B)=0)y "




Bipartite Matching & Total Unimodularity

Let G=(UUV, E) be a bipartite graph.
— So all edges have one endpoint in U and the other in V.

Let A be the “incidence matrix” of G.
A has a row for every vertex and a column for every edge.

1 if vertex w is an endpoint of edge e
Awe = .
O otherwise

Note: Every column of A has exactly two non-zero entries.

Lemma: Ais TUM.

Proof: Let Q be a kxk submatrix of A. Argue by induction on k.
If k=1 then Q is a single entry of A, so det(Q) is either O or 1.
Suppose k>1.

If some column of Q has no non-zero entries, then det(Q)=0.



Let G=(UUV, E) be a bipartite graph. Define A by
B { 1 if vertex v is an endpoint of edge e

v, e .
’ 0O otherwise

Lemma: Ais TUM.

Proof: Let Q be a kxk submatrix of A. Assume k>1.

If some column of Q has no non-zero entries, then det(Q)=0.
Suppose jt" column of Q has exactly one non-zero entry, say Q;; #0

Use “Column Expansion” of determinant:
det ) = Z(_l)i—i_jQz’,j -det Qael(s,j) = (_1)t+th,j‘det Qdel(t,j);

(

where t is the unique non-zero entry in column j.
By induction, det Qqetj in {0,+1,-1} = det Qin {0,+1,-1}.



Let G=(UUV, E) be a bipartite graph. Define A by
B { 1 if vertex v is an endpoint of edge e

v, e .
’ 0O otherwise

Lemma: Ais TUM.

Proof: Let Q be a kxk submatrix of A. Assume k>1.

If some column of Q has no non-zero entries, then det(Q)=0.
If jth column of Q has exactly one non-zero entry, use induction.

Suppose every column of Q has exactly two non-zero entries.
— For each column, one non-zero is in a U-row and the other is in a V-row.

So summing all U-rows in Q gives the vector [1,1,...,1].

Also summing all V-rows in Q gives the vector [1,1,...,1].

So (sum of U-rows) — (sum of V-rows) = [0,0,...,0].

Thus Q is singular, and det Q = 0. H



Let G=(UUV, E) be a bipartite graph. Define A by
B { 1 if vertex v is an endpoint of edge e

v, e .
’ 0O otherwise

Lemma: Ais TUM.
So every BFS of P = { x : Ax<1, x>0 } is integral.
We can rewrite the LP max { w'x : x&P } as

max ) ..p We " Te

S0 D e incident to v Te <1 VweV

T, > () Ve ¢ E (x.<1lisimplicit)

For every objective function w, this LP has an optimal solution
at a BFS. (Since P is bounded)

So for every vector w, the LP has an integral optimal solution x.
— Since 0<x,<1, and x is integral, we actually have x_ € {0,1}.

So every optimal LP solution is actually an (optimal) IP solution.
= So we can solve the IP by solving the LP and returning a BFS.



How to solve combinatorial IPs?

 Two common approaches

1. Desigh combinatorial algorithm that directly solves IP
* Often such algorithms have a nice LP interpretation

2. Relax IP to an LP; prove that they give same solution;
solve LP by the ellipsoid method
* Need to show special structure of the LP’s extreme points
YA ometimes we can analyze the extreme points combinatorially

| { ometimes we can use algebraic structure of the constraints.
( or example, if constraint matrix is Totally Unimodular
then IP and LP are equivalent



