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Topics

• Solving Integer Programs

• Basic Combinatorial Optimization Problems

– Bipartite Matching, Minimum s-t Cut,
Shortest Paths, Minimum Spanning Trees

• Bipartite Matching

– Combinatorial Analysis of Extreme Points

– Total Unimodularity



Mathematical Programs We’ve Seen
• Linear Program (LP)

• Convex Program

• Semidefinite Program (SDP)

• Integer Program (IP)

(where f is convex)

(where X is symmetric matrix
corresponding to x )

Can be efficiently solved
e.g., by Ellipsoid Method

Cannot be efficiently solved
assuming P  NP



Computational Complexity

• If you could efficiently (i.e., in polynomial time) decide if 
every integer program is feasible, then P = NP

• And all of modern cryptography is broken

• And you win $1,000,000

• …

P

NP coNP

Sorting, string matching, 
breadth-first search, …

NPÅcoNP

Is LP feasible?

Is integer program
feasible?

Can graph be colored
with · k colors?

Does every coloring
of graph use ¸ k colors?

Is integer program
infeasible?



Combinatorial IPs are often nice
• Maximum Bipartite Matching (from Lecture 2)

• Given bipartite graph G=(V, E)

• Find a maximum size matching

– A set Mµ E s.t. every vertex has at most one incident edge in M



Combinatorial IPs are often nice
• Maximum Bipartite Matching (from Lecture 2)

• Given bipartite graph G=(V, E)

• Find a maximum size matching

– A set Mµ E s.t. every vertex has at most one incident edge in M

The blue
edges are a 
matching M



Combinatorial IPs are often nice

• The natural integer program

• This IP can be efficiently solved, in many different ways

• Maximum Bipartite Matching (from Lecture 2)

• Given bipartite graph G=(V, E)

• Find a maximum size matching

– A set Mµ E s.t. every vertex has at most one incident edge in M



Combinatorial IPs are often nice
• Max-Weight Perfect Matching

• Given bipartite graph G=(V, E). Every edge e has a weight we.

• Find a maximum-weight perfect matching

– A set Mµ E s.t. every vertex has exactly one incident edge in M
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Combinatorial IPs are often nice
• Max-Weight Perfect Matching

• Given bipartite graph G=(V, E). Every edge e has a weight we.

• Find a maximum-weight perfect matching

– A set Mµ E s.t. every vertex has exactly one incident edge in M
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The blue edges are 
a max-weight 
perfect matching M



Combinatorial IPs are often nice

• The natural integer program

• This IP can be efficiently solved, in many different ways

• Max-Weight Perfect Matching

• Given bipartite graph G=(V, E). Every edge e has a weight we.

• Find a maximum-weight perfect matching

– A set Mµ E s.t. every vertex has exactly one incident edge in M



Combinatorial IPs are often nice
• Minimum s-t Cut in a Graph (from Lecture 12)

• Let G=(V,E) be a graph. Fix two vertices s,t2V.

• An s-t cut is a set FµE such that, if you delete F, then s 
and t are disconnected
i.e., there is no s-t path in G\F = (V,E\F).

s t



Combinatorial IPs are often nice
• Minimum s-t Cut in a Graph (from Lecture 12)

• Let G=(V,E) be a graph. Fix two vertices s,t2V.

• An s-t cut is a set FµE such that, if you delete F, then s 
and t are disconnected
i.e., there is no s-t path in G\F = (V,E\F).

s t

These edges are a minimum s-t cut



Combinatorial IPs are often nice
• Minimum s-t Cut in a Graph (from Lecture 12)

• Let G=(V,E) be a graph. Fix two vertices s,t2V.

• An s-t cut is a set FµE such that, if you delete F, then s 
and t are disconnected.

• Want to find an s-t cut of minimum cardinality

• Write a (very big!) integer program. Make variable xe

for every e 2 E. Let P be set of all s-t paths.

• This IP can be efficiently solved, in many different ways



Combinatorial IPs are often nice
• Shortest Paths in a Digraph

• Let G=(V,A) be a directed graph. Every arc a has a 
“length” wa¸0.

• Given two vertices s and t, find a path from s to t of 
minimum total length.

3

1

8
7

1

5 1

2

2

2
3

2

4

1

2

s t



Combinatorial IPs are often nice
• Shortest Paths in a Digraph

• Let G=(V,A) be a directed graph. Every arc a has a 
“length” wa¸0.

• Given two vertices s and t, find a path from s to t of 
minimum total length.
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These edges form a shortest s-t path



Combinatorial IPs are often nice
• Shortest Paths in a Digraph

• Let G=(V,A) be a directed graph. Every arc a has a 
“length” wa¸0.

• Given two vertices s and t, find a path from s to t of 
minimum total length.

• There is a natural IP for this problem that can be 
efficiently solved, in many different ways.



Combinatorial IPs are often nice
• Minimum Spanning Tree in a Graph

• Let G=(V,E) be a graph. Every edge e has a weight we.

• An spanning tree is a set FµE with no cycles, such that 
F contains a path between every pair of vertices.
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Combinatorial IPs are often nice
• Minimum Spanning Tree in a Graph

• Let G=(V,E) be a graph. Every edge e has a weight we.

• An spanning tree is a set FµE with no cycles, such that 
F contains a path between every pair of vertices.

s t
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These edges are a minimum spanning tree
There is an s-t path in the tree



Combinatorial IPs are often nice
• Minimum Spanning Tree in a Graph

• Let G=(V,E) be a graph. Every edge e has a weight we.

• An spanning tree is a set FµE with no cycles, such that 
F contains a path between every pair of vertices.

• There is a natural IP for this problem that can be 
efficiently solved, in many different ways.



How to solve combinatorial IPs?

• Two common approaches

1. Design combinatorial algorithm that directly solves IP

• Often such algorithms have a nice LP interpretation

2. Relax IP to an LP; prove that they give same solution; 
solve LP by the ellipsoid method

• Need to show special structure of the LP’s extreme points

• Sometimes we can analyze the extreme points combinatorially

• Sometimes we can use algebraic structure of the constraints.
For example, if constraint matrix is Totally Unimodular
then IP and LP are equivalent

• We’ll see examples of these approaches



Perfect Matching Problem

c

• Relax integrality constraints, obtain an LP

(LP)

• Theorem: Every BFS of (LP) is actually an (IP) solution!

• Write an integer program

(IP)

• Let G=(V, E) be a bipartite graph. Every edge e has a weight we.

• Find a maximum-weight, perfect matching

– A set MµE s.t. every vertex has exactly one incident edge in M

(xe·1 is implicit)



Combinatorial Analysis of BFSs
• Lemma:

Every BFS of perfect matching (LP) is an (IP) solution.

• Proof: Let x be BFS, suppose x not integral.

• Pick any edge e1={v0,v1} with 0 < xe1 < 1.

• The LP requires
) there is another edge e2={v1,v2} with 0 < xe2 < 1.

• The LP requires
) there is another edge e3={v2,v3} with 0 < xe3 < 1.

• Continue finding distinct edges until eventually vi=vk, i<k

• We have ei+1={vi,vi+1}, ei+2={vi+1,vi+2}, …, ek={vk-1,vk}.
(all edges and vertices distinct, except vi=vk)



Combinatorial Analysis of BFSs
• Let x be BFS of matching (LP). Suppose x not integral.

• WLOG, e1={v0,v1}, e2={v1,v2}, …, ek={vk-1,vk} and v0=vk.

• These edges form a simple cycle, of even length.
(Even length since G is bipartite.)

• Define the vector:

• Claim: If |²| is sufficiently small, then x+²d is feasible

• So x is convex combination of x+²d and x-²d, both feasible

• This contradicts x being a BFS. ¥



How to solve combinatorial IPs?

• Two common approaches

1. Design combinatorial algorithm that directly solves IP

• Often such algorithms have a nice LP interpretation

2. Relax IP to an LP; prove that they give same solution; 
solve LP by the ellipsoid method

• Need to show special structure of the LP’s extreme points

• Sometimes we can analyze the extreme points combinatorially

• Sometimes we can use algebraic structure of the constraints.
For example, if constraint matrix is Totally Unimodular
then IP and LP are equivalent



c

LP Approach for Bipartite Matching

• Relax integrality constraints, obtain an LP

(LP)

• Theorem: Every BFS of (LP) is actually an (IP) solution!

• Write an integer program

(IP)

• Let G=(V, E) be a bipartite graph. Every edge e has a weight we.

• Find a maximum weight matching

– A set Mµ E s.t. every vertex has at most one incident edge in M

(xe·1 is implicit)



Total Unimodularity
• Let A be a real mxn matrix

• Definition: Suppose that every square submatrix of A has 
determinant in {0, +1, -1}. Then A is totally unimodular (TUM).

– In particular, every entry of A must be in {0, +1, -1}

• Lemma: Suppose A is TUM. Let b be any integer vector. Then 
every basic feasible solution of P = { x : Ax·b } is integral.

• Proof: Let x be a basic feasible solution.

Then the constraints that are tight at x have rank n.

Let A’ be a submatrix of A and b’ a subvector of b corresponding 
to n linearly independent constraints that are tight at x.

Then x is the unique solution to A’ x = b’, i.e., x = (A’)-1 b’.

Cramer’s Rule: If M is a square, non-singular matrix then
(M-1)i,j = (-1)i+j det Mdel(j,i) / det M.

Submatrix of M obtained by deleting row j and column i



Total Unimodularity
• Let A be a real mxn matrix

• Definition: Suppose that every square submatrix of A has 
determinant in {0, +1, -1}. Then A is totally unimodular (TUM).

• Lemma: Suppose A is TUM. Let b be any integer vector. Then 
every basic feasible solution of P = { x : Ax·b } is integral.

• Proof: Let x be a basic feasible solution.

Then the constraints that are tight at x have rank n.

Let A’ be the submatrix of A and b’ the subvector of b 
containing n linearly independent constraints that are tight at x.

Then x is the unique solution to A’ x = b’, i.e., x = (A’)-1 b’.

Cramer’s Rule: If M is a square, non-singular matrix then
(M-1)i,j = (-1)i+j det Mdel(j,i) / det M.

Thus all entries of (A’)-1 are in {0, +1, -1}.

Since b’ is integral, x is also integral. ¥



Operations Preserving Total Unimodularity
• Let A be a real mxn matrix

• Definition: Suppose that every square submatrix of A has 
determinant in {0, +1, -1}. Then A is totally unimodular (TUM).

• Lemma: Suppose A is TUM. Let b be any integer vector. Then 
every basic feasible solution of P = { x : Ax·b } is integral.

• Claim: Suppose A is TUM. Then            is also TUM.

• Proof: Exercise on Assignment 5. ¤

• Corollary: Suppose A is TUM. Let b be any integer vector. Then 
every basic feasible solution of P = { x : Ax·b, x¸0 } is integral.

• Proof: By the Claim,            is TUM. So apply the Lemma to

. ¥



Bipartite Matching & Total Unimodularity
• Let G=(U[V, E) be a bipartite graph.

– So all edges have one endpoint in U and the other in V.

• Let A be the “incidence matrix” of G.
A has a row for every vertex and a column for every edge.

Note: Every column of A has exactly two non-zero entries.

• Lemma: A is TUM.

• Proof: Let Q be a kxk submatrix of A. Argue by induction on k.

If k=1 then Q is a single entry of A, so det(Q) is either 0 or 1.

Suppose k>1.

If some column of Q has no non-zero entries, then det(Q)=0.

Aw,e = 
1   if vertex w is an endpoint of edge e

0   otherwise



• Let G=(U[V, E) be a bipartite graph. Define A by

• Lemma: A is TUM.

• Proof: Let Q be a kxk submatrix of A. Assume k>1.

If some column of Q has no non-zero entries, then det(Q)=0.

Suppose jth column of Q has exactly one non-zero entry, say Qt,j 0

Use “Column Expansion” of determinant:

,

where t is the unique non-zero entry in column j.

By induction, det Qdel(t,j) in {0,+1,-1}   ) det Q in {0,+1,-1}.

Av,e = 
1   if vertex v is an endpoint of edge e

0   otherwise



• Let G=(U[V, E) be a bipartite graph. Define A by

• Lemma: A is TUM.

• Proof: Let Q be a kxk submatrix of A. Assume k>1.

If some column of Q has no non-zero entries, then det(Q)=0.

If jth column of Q has exactly one non-zero entry, use induction.

Suppose every column of Q has exactly two non-zero entries.
– For each column, one non-zero is in a U-row and the other is in a V-row.

So summing all U-rows in Q gives the vector *1,1,…,1+.

Also summing all V-rows in Q gives the vector *1,1,…,1+.

So (sum of U-rows) – (sum of V-rows) = *0,0,…,0+.

Thus Q is singular, and det Q = 0. ¥

Av,e = 
1   if vertex v is an endpoint of edge e

0   otherwise



• Let G=(U[V, E) be a bipartite graph. Define A by

• Lemma: A is TUM.

• So every BFS of P = { x : Ax·1, x¸0 } is integral.

• We can rewrite the LP max { wTx : x2P } as

• For every objective function w, this LP has an optimal solution 
at a BFS.   (Since P is bounded)

• So for every vector w, the LP has an integral optimal solution x.

– Since 0·xe·1, and x is integral, we actually have xe 2 {0,1}.

• So every optimal LP solution is actually an (optimal) IP solution.
) So we can solve the IP by solving the LP and returning a BFS.

(xe·1 is implicit)

Av,e = 
1   if vertex v is an endpoint of edge e

0   otherwise



How to solve combinatorial IPs?

• Two common approaches

1. Design combinatorial algorithm that directly solves IP

• Often such algorithms have a nice LP interpretation

2. Relax IP to an LP; prove that they give same solution; 
solve LP by the ellipsoid method

• Need to show special structure of the LP’s extreme points

• Sometimes we can analyze the extreme points combinatorially

• Sometimes we can use algebraic structure of the constraints.
For example, if constraint matrix is Totally Unimodular
then IP and LP are equivalent


