INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
Final-Autumn Semester 2018-19

Date of Examination: 20 November 2018

Session (FN/AN): AN

Duration: 3 hours

Full Marks: 100

Subject No: CS60007

Subject: ALGORITHM DESIGN AND ANALYSIS
Department/Center/School: COMPUTER SCIENCE AND ENGINEERING
Specific charts, graph paper, log book, calculator, etc., required: NO
Special instruction (if any): NA

Answer question 8 and any four of the first seven questions. Prove
correctness and derive runtime of all your algorithms unless specified

5.

otherwise.

. An independent set of an undirected graph § = (V, &) is a subset W C 'V such that there

does not exist any edge e = {u,v} € & with both end points in W (that is, [e "'W| < 1). An
undirected graph § = (V, €) is called an interval graph if every vertex v € V can be associated
with some interval J,, = [a, b) in R such that there is an edge e between u and v if and only
if J, NJ, # 0. Design an algorithm which, given an interval graph § with corresponding
interval I, for every vertex v € V, computes the size of a maximum independent set of §.
Prove correctness of your algorithm and derive its runtime.

[20 Marks]

. Suppose we have a stick of length n for some positive integer n. Let p¢, { € {1, 2, ..., n} denote

the utility of a stick of length £. Design a dynamic programming based algorithm which, given
n and ps,...,pn as inputs, finds a way to break a stick of length n into pieces such that the
total utility (the sum of utilities of the pieces) is maximized.

[20 Marks]

. Describe an O(n)-time algorithm that, given a set 8§ of n distinct numbers and a positive

integer k < n, determines the k numbers in 8 that are closest to the median of 8. You may
assume that there exists an O(n)-time algorithm which, given a set of n numbers and an
integer i € {1, 2, ...,n}, finds the i-th smallest number.

[20 Marks]

Let § be a connected weighted undirected graph with distinct edge weights. Prove that the
following algorithm finds an MST of §. “Initially all the edges are unmarked. Let e be an
unmarked edge with highest weight. If removing e does not disconnect the graph, remove it;
otherwise mark it. Repeat this process until the graph consists of marked edges only. Then
output the current graph as an MST of the original graph.”

[20 Marks]

(i) Construct directed graphs on n vertices with non-negative capacities on the edges and
special vertices s and t which have:



(a) Exponentially (as function of n) many minimum s-t cuts and a unique maximum

s-t flow.
[4 Marks]
(b) More than one maximum s-t flows and a unique minimum s-t cut.
[3 Marks]
(¢) More than one maximum s-t flows and more than one minimum s-t cuts.
[3 Marks]

(ii) Konig’s Theorem states that the size of a maximum matching in a bipartite graph is
the same as the size of a minimum vertex cover. Prove Konig’s Theorem using flow
arguments.

[10 Marks]

6. In the PARTITION problem, the input is a set 8 of positive integers and we need to compute
if there exists a subset A C S such that } .4 x =) 5\ 4 Y- In the KNAPSACK problem,
the input is a set O = {o; : i € {1, 2,...,n}} of n objects; the weight and value of the object
o; are wy and v; respectively (w; and v; both are positive integers). The input also consists
of two integers W and V. We need to compute if there exists a subset ] C {1, 2,...,n} such
that Z].e]wj < W and Zje]")’ > V. Prove that the PARTITION problem reduces to the
KNAPSACK problem in polynomial time.

[20 Marks]

7. In the MAX-CUT problem, the input is an unweighted and undirected graph and we need to
find a cut of maximum size. The size of a cut is the number of edges crossing the cut. Design
a % factor deterministic polynomial time approximation algorithm for the MAX-CUT problem.

[20 Marks]

8. Let G be an undirected, weighted graph, and s and t be any two vertices. Suppose all the edge
weights are positive real numbers except one edge (u,v) € G; the weight of the edge (u, V) is
some negative real number. Design a O(m + nlogn) time algorithm to find the distance of t
from s where n and m denote the number of vertices and edges in G respectively. Feel free
to use any algorithm covered in the class to design your algorithm. For this question, you do
not need to prove correctness and running time of any algorithm covered in the class.

[20 Marks]



