Practice Problem Set I

Gaussian Mixture Models, Expectation Maximization, Variational Bayes, Sampling

(From the text books by Kevin Murphy, and David Barber)

Exercise 11.2 EM for mixtures of Gaussians

Show that the M step for ML estimation of a mixture of Gaussians is given by
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Exercise 11.3 EM for mixtures of Bernoullis
* Show that the M step for ML estimation of a mixture of Bernoullis is given by
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¢ Show that the M step for MAP estimation of a mixture of Bernoullis with a 3(«, ) prior is given by
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Exercise 11.7 Manual calculation of the M step for a GMM

(1L.117)

(Source: de Freitas.) In this question we consider clustering 1D data with a mixture of 2 Gaussians using
the EM algorithm. You are given the 1-D data points =z = [1 10 20]. Suppose the output of the E
step is the following matrix:
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where entry r; . is the probability of obervation x; belonging to cluster c (the responsibility of cluster ¢ for
data point 7). You just have to compute the M step. You may state the equations for maximum likelihood
estimates of these quantities (which you should know) without proof; you just have to apply the equations
to this data set. You may leave your answer in fractional form. Show your work.

a. Write down the likelihood function you are trying to optimize.
b. After performing the M step for the mixing weights 71, 72, what are the new values?

c. After performing the M step for the means g1 and p2, what are the new values?

Exercise 201. Derive the optimal EM update for fitting a mizture of Gaussians under the constraint that

the covariances are diagonal.

Exercise 202. Consider a mizrture of K isotropic Gaussians, each with the same covariance, S; = o°1.
In the limit 0® — 0 show that the EM algorithm tends to the K-means clustering algorithm.



Exercise 21.7 Forwards vs reverse KL divergence

(Source: Exercise 33.7 of (MacKay 2003).) Consider a factored approximation g(z,y) = g(x)q(y) to a joint
distribution p(z,y). Show that to minimize the forwards KL KL (p||q) we should set g(z) = p(z) and
q(y) = p(y), i.e,, the optimal approximation is a product of marginals

Now consider the following joint distribution, where the rows represent y and the columns z.

X
1 2 3 4
Ly 18 0 0
2|18 18 0 0
310 0 V4 0
410 0 0 1/4

Show that the reverse KL. KL (g||p) for this p has three distinct minima. Identify those minima and
evaluate KL (g||p) at each of them. What is the value of KL (g||p) if we set ¢(z,y) = p(z)p(y)?

Exercise 265. We wish to find a Gaussian approximation q(x) = N(:[:\m, 52) to a distribution p(x).
Show that

KL(plg) = — (log q(x)) ) + const. (28.11.29)

Write the KL divergence explicitly as a function of m and s* and confirm the general result that the optimal
m and s% that minimise KL(p|q) are given by setting the mean and variance of q to those of p.

The angles denote expectation.

Exercise 21.8 Derive the mean field Variational Bayes (VB) for Linear Regression models with suitable assumption
about the true posterior.

Exercise 21.9 Derive the mean field VB for Gaussian Mixture Models. Derive the expression for ELBO.

1.6 (x+) [0k In this exercise, we show more carefully that rejection sampling does
indeed draw samples from the desired distribution p(z). Suppose the proposal dis-
tribution is g(z) and show that the probability of a sample value z being accepted is
given by p(z) /kg(z) where p is any unnormalized distribution that is proportional to
plz), and the constant k is set to the smallest value that ensures kqg(z) = p(z) for all
values of z. Note that the probability of drawing a value z is given by the probability
of drawing that value from g(z) times the probability of accepting that value given
that it has been drawn. Make use of this, along with the sum and product rules of
probability, to write down the normalized form for the distribution over z, and show
that it equals p(=z).

Exercise 24.1 Gibbs sampling from a 2D Gaussian

Suppose X ~ N (p,X), where p = (1,1) and ¥ = (1,-0.5; —0.5,1). Derive the full condition-
als p(x1|x2) and p(z2|z1). Implement the algorithm and plot the 1d marginals p(z1) and p(xz2) as
histograms. Superimpose a plot of the exact marginals.

Exercise 24.2 Derive Gibbs sampling steps for a Gaussian Mixture Model with k components.






