Practice Problem Set |

Bayesian Estimation, Conditional Models, Gaussian Process

(From the text books by Kevin Murphy, and David Barber)

Exercise 3.4 Beta updating from censored likelihood

(Source: Gelman.) Suppose we toss a coin n = 5 times. Let X be the number of heads. We observe that
there are fewer than 3 heads, but we don’'t know exactly how many. Let the prior probability of heads be
p(0) = Beta(f|1,1). Compute the posterior p(f|X < 3) up to normalization constants, i.e., derive an
expression proportional to p(6, X < 3). Hint: the answer is a mixture distribution.

Exercise 3.5 Uninformative prior for log-odds ratio
Let

, B 0
¢ = logit(f) = log T o (3.91)

Show that if p(¢) o 1, then p(f) o Beta(#|0,0). Hint: use the change of variables formula.

Exercise 3.6 MLE for the Poisson distribution

The Poisson pmf is defined as Poi(z|\) = e_)‘g, for z € {0,1,2,...} where A > 0 is the rate
parameter. Derive the MLE.

Exercise 3.8 MLE for the uniform distribution

(Source: Kaelbling.) Consider a uniform distribution centered on 0 with width 2a. The density function is
given by

p(z) = %I(m € [~a,al) (3.92)

a. Given a data set z1, ..., z,, what is the maximum likelihood estimate of a (call it a)?
b. What probability would the model assign to a new data point z,, 11 using a?

c. Do you see any problem with the above approach? Briefly suggest (in words) a better approach.

Exercise 3.14 Posterior predictive for Dirichlet-multinomial

(Source: Koller.).

a. Suppose we compute the empirical distribution over letters of the Roman alphabet plus the space

character (a distribution over 27 values) from 2000 samples. Suppose we see the letter “e” 260 times.
What is p(z2001 = e|D), if we assume @ ~ Dir(au, ..., a27), where ax = 10 for all &?

b. Suppose, in the 2000 samples, we saw “e” 260 times, “a” 100 times, and “p” 87 times. What is
p(x2001 = p,x2002 = a|D), if we assume 6 ~ Dir(aq,...,a27), where aj, = 10 for all k? Show
your work.



Exercise 3.10 Taxicab (tramcar) problem

Suppose you arrive in a new city and see a taxi numbered 100. How many taxis are there in this city? Let
us assume taxis are numbered sequentially as integers starting from 0, up to some unknown upper bound
0. (We number taxis from 0 for simplicity; we can also count from 1 without changing the analysis.) Hence
the likelihood function is p(z) = U(0, @), the uniform distribution. The goal is to estimate 6. We will use
the Bayesian analysis from Exercise 3.9.

a. Suppose we see one taxi numbered 100, so P = {100}, m = 100, N = 1. Using an (improper)
non-informative prior on 6 of the form p(6) = Pa(68]0,0) o 1/6, what is the posterior p(6|D)?

b. Compute the posterior mean, mode and median number of taxis in the city, if such quantities exist.

c. Rather than trying to compute a point estimate of the number of taxis, we can compute the predictive
density over the next taxicab number using

p(D'|D, a) = fp(D'lé’)p(ﬁ’ID, a)dd = p(D'|3) (3.96)

where o = (b, K') are the hyper-parameters, 8 = (¢, N + K) are the updated hyper-parameters. Now
consider the case D = {m}, and D" = {z}. Using Equatlon 3.95, write down an expression for

p(z|D, a) (3.97)
As above, use a non-informative prior b = K = 0.

d. Use the predictive density formula to compute the probability that the next taxi you will see (say,
the next day) has number 100, 50 or 150, i.e., compute p(z = 100|D, «), p(z = 50|D, ), p(xz =
150|D, o).

Exercise 4.14 MAP estimation for 1D Gaussians
(Source: Jaakkola.)
Consider samples z1,...,z, from a Gaussian random variable with known variance o and unknown

mean p. We further assume a prior distribution (also Gaussian) over the mean, g ~ N (m, 32), with fixed
mean m and fixed variance s2. Thus the only unknown is .

a. Calculate the MAP estimate fipsap. You can state the result without proof. Alternatively, with a lot
more work, you can compute derivatives of the log posterior, set to zero and solve.

b. Show that as the number of samples n increase, the MAP estimate converges to the maximum likelihood
estimate.

c. Suppose n is small and fixed. What does the MAP estimator converge to if we increase the prior
variance s2?

d. Suppose n is small and fixed. What does the MAP estimator converge to if we decrease the prior
variance s%?

Exercise 7.6 MLE for simple linear regression

Simple linear regression refers to the case where the input is scalar, so D = 1. Show that the MLE in
this case is given by the following equations, which may be familiar from basic statistics classes:

A Yol —T)(yi — 7) _ >, ziyi—NTY ~ OV [X,Y] 7.99)
' S (2 — )2 >, 22 — Nz2 var [X] ‘

wo = y—wiz~E [Y] —unE [X] (7.100)




Exercise 8.5 Symmetric version of /5 regularized multinomial logistic regression
(Source: Ex 18.3 of (Hastie et al. 2009).)

Multiclass logistic regression has the form

exp(weo + Wi X)

ply =c|lx,W) =
S 1 exXp(wko + WEx)

(8.128)

where W is a (D + 1) x C weight matrix. We can arbitrarily define w. = 0 for one of the classes, say
c=C,since p(y=C|x,W)=1— Zf:_ll p(y = c|x, w). In this case, the model has the form

exp(weo + Wx)
14+ S0 exp(wro + wI'x)

ply =c|x, W) = (8.129)

If we don't “clamp” one of the vectors to some constant value, the parameters will be unidentifiable.

However, suppose we don't clamp w. = 0, so we are using Equation 8.128, but we add ¢5 regularization
by optimizing

N (o)
> log plyilxi, W) = XY |lwe[3 (8.130)
i=1 c=1

Show that at the optimum we have Zgzl we; = 0 for 7 = 1: D. (For the unregularized .o terms, we
still need to enforce that woc = 0 to ensure identifiability of the offset.)

Exercise 9.2 The MVN is in the exponential family

Show that we can write the MVN in exponential family form.

Exercise 185. The exercise concerns Bayesian regression.

1. Show that for
f=w'x (18.4.1)

and p(w) ~ N (w|0,X), that p(f|x) is Gaussian distributed. Furthermore, find the mean and
covariance of this Gaussian.

2. Consider a target point t = f + €, where e ~ N (E‘O: 02). What is p(f|t,x)?

Exercise 191. Show that the sample covariance matriz with elements S;; = Zle xPa /N — Z;%;, where
T; = Ele x [N, is positive semidefinite.
Exercise 192. Show that

k(z — ') = e~ sin(e—")| (19.8.1)

is a covariance function.



Exercise 186. A Bayesian Linear Parameter regression model is given by

y" = qub(xn) +n" (18.4.2)
In vector notation y = (yl, . ,yN) T this can be written

y=®w+n (18.4.3)
with ®7 = [qb(xl), c qb(xN)] and 1 is a zero mean Gaussian distributed vector with covariance 37 11.

An expression for the marginal likelthood of a dataset is given in equation (18.1.19). A more compact
expression can be obtained by considering

p(yl,...,yN|x1,...,xN7F) (18.4.4)
Since y" is linearly related to x™ through w. Then v is Gaussian distributed with mean
(y)=®(w)=0 (18.4.5)
and covariance matriz
(W)= ) )7 = ((@w+m) (@w+m)T) (18.4.6)
For p(w) = N (w]0,a711):
1. Show that the covariance matriz can be expressed as

L
&

1
C=—-1+—-&d" (18.4.7)
¥

2. Hence show that the log marginal likelihood can we written as

1 1
log p(yt, ..., yN|x1, CxN, I = ~3 log det (27nC) — §chfly (18.4.8)

Exercise 195. For a covariance function

ki(x,x') = f((x — x')T (x — x’)) (19.8.5)
show that
ka(x,x") = f((x — x’)TA (x—x)) (19.8.6)

is also a valid covariance funclion for a posilive definile symmetric matriz A.

Exercise 197 (Vector regression). Consider predicting a vector output y given training data X \J) =
{x",y" n=1,...,n}. To make a GP predictor

p(y x*, X, ) (19.8.8)

we need a Gaussian model

p(yt Ly Ny X xS (19.8.9)

A GP requires then a specification of the covariance c(y”, y;-"“|x”, x™) of the components of the outputs for
two different input vectors. Show that under the dimension independence assumption

ey yp [ x™) = iyl yr X", X))y (19.8.10)

where ¢;(y™, y*|x™, x™) is a covariance function for the ith dimension, that separate GP predictors can be
constructed independently, one for each output dimension i.






