Bayesian Deep Learning

Borrowed from ICML 2020 Tutorial by Andrew Gordon Wilson, NYU

Deep Neural Networks

* Train a network for certain task, e.g., image recognition

* Find out the optimal weights using gradient descent on some error
function

e Using the optimal weights predict the output for a new input

* For a given input — only one output

* Only a single set of weights obtained by optimization — point
estimates

Deep Neural Networks

* Very successful for several tasks like face recognition, speech
recognition, text classification

* Some questions yet to be answered for safety critical applications like
autonomous driving, medical diagnosis
 How confident are the predictions?
* Are there gaps in learning?
* Do we need more training data?

* Why can we train a large network with a small data set?
(overparametrization)

Limitations of DNN

* No quantification of uncertainty in the predictions - what is the
confidence in prediction?

* Point estimate of weights by optimization of training error — might
not be good for small training data

Bayesian Learning

e Qutput is not a single prediction but a distribution over predictions
* Parameter distributions are estimated instead of point estimates

* Priors are incorporated to smooth small data estimates

aussian process regresslon, 85% confidence region Gaussian process regression, 85% confidence rgion

o 1 2 3 4 5] 7 B g 10 0 1 2 3 4 5 6 7 3 3 0 [1 2 3 4 H 3 T8 9 om

Bayesian Deep Neural Network

e Uses Bayesian approach to handle limitations of deep neural
networks

* Provides quantification of uncertainty in predicted output
* Takes into account distribution of weights rather than point estimates
* Helps better training of DNN with less training data

| LY)
AN A
//”_;" N pd \"\
05 o 97 .3 yd ,/ ™~
= ’/ . .-". .\. - ™ — — < e \\ = \\\ =
X (H N (HY (H) (Ha) Ui
_q__l_é\\ |\q_ 2{' I}-_ i/.l \ y \ 1{‘ |\h3‘< \ 3 i/.l \ _.,/J
" A T N . /> i
0.4, M\I 0N 913 14 s I 7
\\ \‘\ ,/ \‘\ \/ |
\ \y N N
g\ D) " N
\] \)
L L, R N A

Bayesian Regression

* Regression Model

» v(x) = f(x,w)+ €(x), where €(x) is a noise function.
One commonly takes e(x) = N (0, o%) for i.i.d. additive Gaussian noise
* Likelihood
pOy(x)|x, w,0%) = N(y(x); f(x, W), 07)
(y|lx.w, o HN f(xi,w),07)

Bayesian Regression

 Posterior (distribution over parameter w)

p(y|X.w.o°)p(w)
p(ylX,o?)

p(Wy.X,0°%) =
 Posterior Predictive Distribution (marginalisation over w)

p(y[xs,y,X) = /f}'(\}“.‘lﬁ*.‘W),;'}(W"}".X){'{'W'

Bayesian Model Averaging

e Posterior Predictive Distribution

p(yx.,y,X) = /p(}‘\.t‘*.W);}(W\}’.X)dw

* Average over infinitely many models weighted by their posterior
probabilities

* On the other hand MAP finds w by maximizing posterior — point
estimate (optimization approach)

Quantification of Model Uncertainty

> v(x) =f(x,w)+ €(x), where €(x) is a noise function.

g, ~ -
One commonly takes e(x) = N (0, o7) for i.i.d. additive Gaussian noise

* First Term: Uncertainty in estimate of w — epistemic uncertainty

e Second Term: Noise — aleatoric uncertainty

* Epistemic uncertainty reduces as data increases

Function Space: Gaussian Process

» Prior: f(x) ~ GP(m(x),k(x,x")), meaning (f(x1),.... flxw)) ~ N{(
with g, = m(x;) and Kij = cov(f(xi),f(xj)) = k(xi,xj).

GP posterior Likelihood GP prior

p(f(x)|D) o< p(DIf (x)) p(f(x))

Sample Prior Functions Sample Posterior Functions

3
2 -~ ~

X N /’ // =<

=1/ |\ : \ =

) o) R \ — o\

- / "\.._ ;:—-' ! Ve, s -

3 e\ / =

1 RN b

> >

O O
-3 - - - | s s - |
10 -5 0 5 10 10 5 0 5 10

Inputs, x Inputs, X

Neural Network Kernel

J
flo) =b+) vih(xw) .
i—=1

> Leth(x;u) = erf(up + Z;.D:l u;jxj), where erf(z) = ﬁ IN e~ di
» Choose u ~ N (0, X)
Then we obtain

"-_TT' ~/
k?\m ('Y? ']'"J) — % Sill(mite))
™ /(14 23T8%) (1 4+ 23TEY)

where x € R” and ¥ = (1,x")".

Deep Kernel Learning

Deep kernel learning combines the inductive biases of deep learning architectures
with the non-parametric flexibility of Gaussian processes.

Wi 1)
—_— N W (2) . .' .
[nput layer L\h‘l N Wi 7\
A . — - . (..)th})‘llt layer
/ I|I /}_:-\ M I-'I - \ ’
7 VN A~ - AN
T - | |I — "'\, 4 .I_’ | (!
|.II |'I -,_\ / ___ II| . i
\ I| \ { !
. II|I |II " \\\ II.-'I.l
W \
: ||I:'I : -'"';\.
[Y
P I Y
'I | ."l. \'\. \
. II| |II I.". \ . \ y.”
o | [ram ;; ___(_,..4' h
N | AT
l’/h:;\’l
N

Hidden lavers -
| - |

oo layer

Base kernel hyperparameters € and deep network hyperparameters w are
jointly trained through the marginal likelihood objective.

Deep Model Construction

p(DIM) A

Well-Specified Model
Calibrated Inductive Biases

Example: CNN

Complex Model
Poor Inductive Biases

Example: MLP

Simple Model
Poor Inductive Biases
Example: Linear Function

* é
Corrupted CIFAR-10 MNIST
CIFAR-10 ---

Structured Image Datasets

-

Dataset

Deep Model Construction

» The ability for a system to learn is determined by its support (which solutions
are a priori possible) and inductive biases (which solutions are a priori likely).

» We should not conflate flexibility and complexity.

» An influx of new massive datasets provide great opportunities to automatically
learn rich statistical structure, leading to new scientific discoveries.

pIDIM)

Prior Hypothesis Space

\ /

Posterior
-._.___‘_‘___‘_- "

Prior Hypothesis Space

Well-Specified Model

Calibrated Inductive Biases Prior Hypothesis Space
Erample: CNN

Posterior

.

True Model

'y
Corrupted CIFAR-10 MNIST Dataset
CIFAR-1D

Structured Image Dataseds

Bayesian Deep Learning and a Probabilistic Perspective of Generalization
Wilson and Izmailov, 2020
arXiv 2002.08791

Bayesian Model Construction (Averaging)

» The key distinguishing property of a Bayesian approach i1s marginalization
instead of optimization.

» Rather than use a single setting of parameters w, use all settings weighted by
their posterior probabilities in a Bayesian model average.

Bayesian Model Averaging (BMA) in DNN

* Gradient Descent Weight Optimization

Training Function

' Testing Function

Flat Minimum Sharp Minimum

Keskar et. al, ICLR 2017.
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima.

Understanding Loss Surfaces for BMA

Recall the Bayesian model average (BMA):

pyvx., D) = /p(}‘L‘C*. w)p(w|D)dw .

» The posterior p(w|D) (or loss £ = — log p(w|D)) for neural networks is
extraordinarily complex, containing many complementary solutions, which 1is
why BMA 1s especially significant in deep learning.

» Understanding the structure of neural network loss landscapes is crucial for
better estimating the BMA.

Mode Connectivity

MODE CONNECTIVITY
JPTIMA OF COMPLEX LOSS FL NNECTED BY SIMPLE CURVES OVER
WHICH TRAINING AND TES]

Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs.
T. Garipov, P. Izmailov, D. Podoprikhin, D. Vetrov, A.G. Wilson. NeurIPS 2018.

Mode Connectivity

,ﬁt‘ ")"'.mwlri “‘.' 7 / "
")H' g A ’34,

)

Stochastic Gradient Descent Trajectories

* Consider every point along the SGD trajectory as a candidate DNN
model randomly sampled from a posterior distribution over the
possible models

* Points on the trajectory in a flat region of the error landscape can be
averaged (SWA)

* Bayesian marginalization might replace simple averaging assuming a
Gaussian prior over the weights (SWAG)

1. Leverage theory that shows SGD with a

SW AG constant learning rate 1s approximately

sampling from a Gaussian distribution.

2. Compute first rwo moments of SGD
trajectory (SWA computes just the first).

Learning Rate

3. Use these moments to construct a Gaussian
approximation in weight space. Pretraining

Approximate
with Gaussian

4. Sample from this Gaussian distribution, pass Training Epoch
samples through predictive distribution, and
form a Bayesian model average.
J
1 _
p[D) & 5 3" p(rlwy) . w~q(w|D). q(w[D) = N (%K)

j=1
W= l Z W K = l L Z(W — w)(w; — ﬁ-‘)T + L de{f (wi — ﬁf)z
Tt 2\ 714 ‘° T—lr'gf

SWAG: A Simple Baseline for Bayesian Uncertainty in Deep Learning. Maddox et. al, NeurIPS 2019,
SWA: Averaging Weights Leads to Wider Optima and Better Generalization. 1zmailov et. al, UAI 2018.

Trajectory in PCA Subspace

5 & 8 8

—80
-80 -60 —40 -20 0 20 40 60 B0 —40 —20 0 20 40
v v3

* SWA Trajectory (proj) * SWA —— Trajectory (proj)
— — SWAG 3o region — — SWAG 3o region

Markov Chain Dropout

» Run drop-out during train and test
(randomly drop out each hidden unit
with probability r at each input).

» In regression, each network can be
trained to output a mean ¢ and
variance o by maximizing a
Gaussian likelihood.

» Create an equally weighted
ensemble of the corresponding

subnetworks: f(x) = 7 3. fi(x, wy).
» Note that the ensemble doesn’t

collapse as we get more data (unlike
a standard Bayesian model average).

Dropout as a Bayesian approximation: representing model uncertainty in deep learning.
Gal, Y, Ghahramani, Z. ICML 2016

Neural Network Priors

A parameter prior p(w) = N (0, a*) with a neural network architecture 1 (x, w)
induces a structured distribution over functions p(f(x)).

Deep Image Prior

» Randomly initialized CNNs without training provide excellent performance for
image denoising, super-resolution. and inpainting: a sample function from
p(f(x)) captures low-level image statistics, before any training.

Random Network Features

» Pre-processing CIFAR-10 with a randomly initialized untrained CNN
dramatically improves the test performance of a Gaussian kernel on pixels from
54% accuracy to 71%, with an additional 2% from ¢, regularization.

[1] Deep Image Prior. Ulyanov, D., Vedaldi, A., Lempitsky, V. CVPR 2018.
[2] Understanding Deep Learning Requires Rethinking Generalzation. Zhang et. al, ICLR 2016.
[3] Bayesian Deep Learning and a Probabilistic Perspective of Generalization. Wilson & Izmailov, 2020.

Ssummary

» The key defining feature of Bayesian methods 1s marginalization, aka Bayesian
model averaging.

» Bayesian model averaging 1s especially relevant in deep learning, because the
loss landscapes contain a rich variety of high performing solutions.

» Bayesian methods are now often providing better results than classical training,
in accuracy and uncertainty representation, without significant overhead.

» We can resolve several mysterious results in deep learning by thinking about
model construction and generalization from a probabilistic perspective.

Programming Bayesian Learning

* PyMC3 is a Python package for Bayesian statistical modeling and
Probabilistic Machine Learning focusing on advanced MCMC and VI.

* ArviZ is a Python package for exploratory analysis of Bayesian models.
Includes functions for posterior analysis, data storage, model checking,
comparison and diagnostics.

e TensorFlow Probability is a library for probabilistic reasoning and statistical
analysis. As part of the TensorFlow ecosystem, TensorFlow Probability
provides integration of probabilistic methods with deep networks,
gradient-based inference using automatic differentiation, and scalability to
large datasets and models with hardware acceleration (GPUs).

