Probabilistic Graphical
Models



Probabilistic Modelling

© Represent the world as a collection of random variables X;
with joint distribution p(Xi,..., X))

@ Learn the distribution from data

© Perform ‘“inference” (compute conditional distributions



Motivating Example (Credit: Chris Bishop)

A murder mystery

A fiendish murder has been committed
Whodunit?

There are two suspects:
— the Butler
— the Cook

There are three possible murder weapons:

— a butcher’s Knife
— a Pistol N %i \

— a fireplace Poker



Prior distribution

Butler has served family well for many years
Cook hired recently, rumours of dodgy history

P(Culprit = Butler) = 20%

P(Culprit = Cook) =80%

Probabilities add to 100%

This is called a factor graph

P(Culprit) (we'll see why later)

Culprit = {Butler, Cook}



Conditional distribution

Butler is ex-army, keeps a gun in a locked drawer
Cook has access to lots of knives

Butler is older and getting frail

Pistol Knife Poker
Cook 5% 65% 30% = 100%
Butler 80% 10% 10% = 100%

P(Weapon | Culprit)



Factor graph

Prior

/ distribution
P(Culprit)

Culprit = {Butler, Cook} Conditional

distribution

P(Weapon | Culprit)

Weapon = {Pistol, Knife, Poker}



Joint distribution

What is the probability that the Cook committed
the murder using the Pistol?

P(Culprit = Cook) = 80%

P(Weapon = Pistol | Culprit = Cook) = 5%
P(Weapon = Pistol , Culprit = Cook) = 80% x 5% = 4%

Likewise for the other five combinations of
Culprit and Weapon



Joint distribution

Cook

Butler

Pistol Knife Poker
4% 52% 24%
16% 2% 2%

= 100%

P(Weapon, Culprit) = P(Weapon | Culprit) P(Culprit)

[P(x, y) = P(y|x)P(x) ] Product rule




Factor graphs

P(Culprit)
Culprit = {Butler, Cook}
P(Weapon | Culprit)

Generative model Weapon = {Pistol, Knife, Poker}

P(Weapon, Culprit) = P(Weapon | Culprit) P(Culprit)



Generative viewpoint
| Murderer | Weapon

Cook Knife
Butler Knife
Cook Pistol
Cook Poker
Cook Knife
Butler Pistol
Cook Poker
Cook Knife
Butler Pistol

Cook Knife



Marginal distribution of Culprit

Pistol Knife Poker
Cook 4% 52% 24% = 80%
Butler 16% 2% 2% =20%

[ P(x) = ZP(-’C:J’) } Sum rule
y




Marginal distribution of Weapon

Pistol Knife Poker
Cook 4% 52% 24%
Butler 16% 2% 2%
=20% = 54% =26%

[ P(x)=ZP(?C;J’) } Sum rule
y




Posterior distribution ?

We discover a Pistol at the scene of the crime

Pistol Knife Poker

Cook 4% 2% 4%

Butler 16% 2%

This looks bad for the Butler!




Generative viewpoint
| Murderer | Weapon

Butler Pistol
%
%

Butler Pistol
W



Reasoning backwards

Culprit

Weapon



The Rules of Probability

Sum rule
PG = ) P(x,y)
y

Product rule
P(x,y) = P(y|x)P(x)

Bayes’ theorem
P(x|[y)P(y)

P(ylx) = P(x)

Denominator
PCO) = ) P(Iy)P()
Yy



Probabilistic Modelling in Practice

e Large number of variables with relations between them

* Complex analytic calculations during the inferencing procedure
* Problem of estimating high dimensional probability distributions
* How do we incorporate domain knowledge

* How do we update models



Probabilistic Graphical Models

Combine probability theory with graphs
v’ new insights into existing models
v framework for designing new models

v’ Graph-based algorithms for calculation



Advantages

* Common semantics

* Compact representation
* Fast Computation

* Ease of Visualization

* Ease of incorporating domain knowledge



Tasks

e Representation: what is the joint probability dist. on multiple
variables?

P(Xsz:X3nX4?X5=X6nX?7X3)

e How many state configurations in total? --- 28

e Are they all needed to be represented?
e Do we get any scientific/medical insight?

e Learning: where do we get all this probabilities?
e Maximal-likelihood estimation? but how many data do we need?

e Are there other est. principles?

e Where do we put domain knowledge in terms of plausible relationships between variables, and
plausible values of the probabilities?

e Inference: If not all variables are observable, how to compute the
conditional distribution of latent variables given evidence?



Types of Graphical Models

* Directed Graphical Models — Nodes: Variables, Edges: Causality
e Bayesian Network

* Undirected Graphical Models — Nodes: Variables, Edges: Correlation
* Markov Random Fields

* Factor Graphs — Combines above two in a general form

* Many others!



Directed Graphical Model ()

* Decomposition of the joint distribution: @ @
* p(a, b, c) = plc|b, a)p(b|a)p(a) [not unique]
 Every factorization of the joint distribution is a directed graph

* In the directed graph representation
* Every variable is a node

* The conditionals in the factor corresponding to the variable are represented
by directed edges

* Just a compact representation. No additional information

* Any distribution can be represented as the graph above. If we drop
edges we get more restricted distributions.



DGM

p(x1, x2, x3, x4, x5, x6, x7) =7?

p(Xl, ce Xn) = H P(Xf | XPa(f))

ieV

Arrows may represent causal relationship.



Directed Graphical Models (Bayes Net)

@ A Bayesian network is specified by a directed acyclic graph
G = (V. E) with:
© One node / € V for each random variable X;
@ One conditional probability distribution (CPD) per node, p(x; | xpa(i)).
specifying the variable's probability conditioned on its parents’ values
@ Corresponds 1-1 with a particular factorization of the joint
distribution:

pP(X1,...Xn) = H p(xi | XPa(f‘))

eV

@ Powerful framework for designing algorithms to perform probability
computations



Example: Bayesian Network

@ Consider the following Bayesian network:
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@ What is its joint distribution?

p(x1,...%xy) = H p(xi | XPa.(:‘))

ieV
p(d.i,g,s.1) = p(d)p(i)p(g | i,d)p(s|i)p(/]g)



Conditional Independence

Conditional Independence:

XIUY|V & pX|Y.V)=pX|V)
when p(Y, V') > 0. Also

XUY|V & pX,Y|V)=pX|V)p(Y|V)

In general we can think of conditional independence between sets of variables:
XYY <& p(X, V) =pX[V)p(Y|V)

Marginal Independence:

XU1Y < X1UY|) & p(X,)Y)=pX)p)



Conditional and Marginal Independence (Examples)

Amount of Speeding Fine 1L Type of Car | Speed

Lung Cancer AL Yellow Teeth | Smoking

(Position, Velocity);.; I (Position, Velocity);_, | (Position, Velocity),, Acceleration,
Child’s Genes L Grandparents’ Genes | Parents’ Genes

Ability of Team A 1L Ability of Team B

not ( Ability of Team A 1L Ability of Team B | Outcome of A vs B Game )



BayesNet Structure Implies Conditional

CDiffcutty>  Celligence>
v X_\\ A node is conditionally independent
<~_GT“'E’.{> Csar D of its non-descendents given its parent.
Cteter

@ T[he joint distribution corresponding to the above BN factors as

p(d.i.g,s. 1) =p(d)p(i)p(g | i.d)p(s | )p(!] g)

@ However, by the chain rule, any distribution can be written as

p(d,i.g.s, 1) =p(d)p(i | d)p(g | i,d)p(s|i.d.g)p(l|g.d.i,g,s)

@ [hus, we are assuming the following additional independencies:

D1l SL{D.GYy|I, LL{l.D.S}|G.  What else?



Local Conditional Independence Structures

@ Generalizing the above arguments, we obtain that a variable is
independent from its non-descendants given its parents

'&
@ Common parent - fixing B decouples A and C d > o

@ Cascade — knowing B decouples A and C
4 _Oo=—=>»>8_ O>—»C >

@ V-structure — Knowing C couples A and B

e [ his important phenomona is called explaining away and is what
makes Bayesian networks so powerful



Justification

‘&

d>S &

We'll show that p(A,C | B) = p(A| B)p(C | B) for any distribution
p(A, B, C) that factors according to this graph structure, i.e.

p(A.B.C) = p(B)p(A| B)p(C | B)

Proof.




D-Separation (Global Independences)

Semantics: X 1LY |V if V d-separates X from Y

Definition: V d-separates X from Y if every undirected path® between X and Y is
blocked by V. A path is blocked by V if there is a node TV on the path such that either:

1. W has converging arrows along the path (— W «-)* and neither TV nor its descendants

are observed (in V), or
2. W does not have converging arrows along the path (— W — or — W —) and W is

observed (W € V).

Corollary: Markov Boundary for X: {parents(X )Uchildren(X )Uparents-of-children(X) }.

3An undirected path ignores the direction of the edges.
*Note that converging arrows along the path only refers to what happens on that path. Also called a collider.



Examples of D-Separation in DAGs

Examples:

e AllBsince A— C «— B is blocked; by C, A— C — D « B is blocked; by D, etc.
e not (AL B|C")since A — C <« B is not blocked.

o AILD|{B.C} since A— C — D is blockeds by C', A — C «— B — D is blockeds by
B,and A — C — E < D is blocked; by C'.

e not (AL B|F) since A — C < B is not blocked.

Note that it is the absence of edges that conveys conditional independence.



Markov Blankets

e The conditional P(x; | X4, ..., Xi.1, Xisq, -.., X,) lOOKS intimidalting,
but recall Markov Blankets:

e Let MB(x;) be the Markov Blanket of x;, then
P(xX, | X5 X, 05X, 000 X,) = P(x, | MB(x;))

}Ef Bf{k
e For a BN, the Markov Blanket of x; is the set wﬂ&g{
containing its parents, children, and co-parents f‘\

e For an MRF, the Markov Blanket of x; is its immedlate
nheighbors



Independence Maps

o Let /(G) be the set of all conditional independencies implied by the
directed acyclic graph (DAG) G

@ Let /(p) denote the set of all conditional independencies that hold for
the joint distribution p.

o A DAG G is an I-map (independence map) of a distribution p if
1(G) € I(p)
e A fully connected DAG G is an |-map for any distribution, since
[(G) =0 C I(p) forall p

@ G is a minimal I-map for p if the removal of even a single edge
makes it not an |-map

e A distribution may have several minimal |-maps
e Each corresponds to a specific node-ordering

@ G is a perfect map (P-map) for distribution p if /(G) = I(p)



Undirected Graphical Models



Undirected Graphical Models

p(x) = - [ velxe)
C

Z=>_1]vec(xe)
x C

M K-state variables — KM terms in Z

Maximal Clique

Markov Random Fields



Undirected Graphical Model

In an Undirected Graphical Model, the joint probability over all variables can be written in
a factored form:

where x = (z1....,2g), and

are subsets of the set of all variables, and xg = (7, : k € 5).

Graph Specification: Create a node for each variable. Connect nodes ¢ and k if there
exists a set C'; such that both i € C; and £ € C;. These sets form the cliques of the graph
(fully connected subgraphs).



Independences: Undirected Graphical Models




Independences in Undirected Models
(4, (B
Q)
e»@

p(A,B.C.D.E) = %gl(a. gs(B,C, D)gs(C. D, E)

Fact: X 1LY |V if every path between X and Y contains some node V €V

Corollary: Given the neighbors of X, the variable X is conditionally independent of all
other variables: X Il Y|ne(X), VY ¢ {X}Une(X)

Markov Blanket: V is a Markov Blanket for X iff X ILY|V for all Y ¢ {X UV}



Soundness

@ p(x) is a Gibbs distribution over G if it can be written as

p(X1,...,Xn) = % H Oc(Xe),

ceC
where the variables in each potential ¢ € C form a clique in G

@ Theorem (soundness of separation): If p(x) is a Gibbs distribution
for G, then G is an I-map for p(x), i.e. [(G) C I(p)

o A distribution is positive if p(x) > 0 for all x

@ Theorem (Hammersley-Clifford, 1971): If p(x) is a positive
distribution and G is an |-map for p(x), then p(x) is a Gibbs
distribution that factorizes over G



Image Denoising using MRF




Conditional Random Fields

@ Conditional random fields are undirected graphical models of conditional
distributions p(Y | X)

o Y is a set of target variables
e X is a set of observed variables

@ We typically show the graphical model using just the Y variables

@ Potentials are a function of X and Y



CRF

@ A CRF is a Markov network on variables X U'Y, which specifies the
conditional distribution

Ply 1) = 55 [T oty

ceC

with partition function

@ As before, two variables in the graph are connected with an undirected edge
if they appear together in the scope of some factor

@ The only difference with a standard Markov network is the normalization
term — before marginalized over X and Y, now only over Y



CRF

@ Factors may depend on a large number of variables

o We typically parameterize each factor as a log-linear function,

@'{’c(xa YC) — exp{w : fC(xC* yc)}

o fo(Xc,yc) is a feature vector

@ Undirected graphical models very popular in applications such as computer
vision: segmentation, stereo, de-noising

@ Grids are particularly popular, e.g., pixels in an image with 4-connectivity



Factorization

Directed graphs:

Undirected graphs:

p(x) = %ch(xc)
C
Both have the form of products of factors:

p(x) = [ fulxe)



Factor Graphs

T Zo T3

fa Jo Tis i
p(x) = fa(x1,22) fo(1, 22) fe(22, 23) fa(23)

p(x) = H fs(Xs)



Directed Graphs to Factor Graphs

p(CUl, 5!3'2,5133) — p($1)p($2)p($3|3§1, :132)

i i)
I3
fa(wl = p(:l?l)
fo(r2) = p(a2)
fe(@1,m2,23) = plas|zi,z2)



Factor Graphs

'/A\ '(B)' /A\ '/B\ Two types of nodes:
kx_ K& e The circles in a factor graph

(C) C represent random variables (e.g. A).
D) ) )
/))/ D) /é'/ D), The filled dots represent factors in
£ Ny the joint distribution (e.g. g1(-)).

(2) (b)
(a) p(*A?Br CDE) = %91(*4: C)QQ(BC D)g3(CDE)

(b) p(A,B,C,D,E) = £g1(A, C)ga(B,C)g3(C, D)ga(B,D)gs(C. E)ge(D, E)

The g; are non-negative functions of their arguments, and Z is a normalization constant.
E.g. in (a), if all variables are discrete and take values in A x BxC x D x &:

Z=>33YD gAd=a,C=c)g(B=bC=c,D=d)gs(C=c,D=d,E =e)

acA beB ceC deD ecé




Conditional Independences in Factor Graphs

Two nodes are neighbors if they share a common factor.
Definition: A path is a sequence of neighboring nodes.
Fact: X 1LY |V if every path between X and Y contains some node V €V

Corollary: Given the neighbors of X, the variable X is conditionally independent of all
other variables: X 11 Y|ne(X), VY ¢ {X}Une(X)



Justification of Independences

Assume:

g b4

We want to show conditional independence:
XILY|V < pX|Y,V)=pX|V) (2)

Summing (1) over X we get:

1 _
p(Y V) =— ;91(?{ V)| g2(Y.V) (3)
Dividing (1) by (3) we get:
P(X|Y.V) = (X, V) (4)

B ZX g1(X. V)

Since the rhs. of (4) doesn't depend on Y, it follows that X is independent of Y given V.
Therefore factorizaton (1) implies conditional independence (2).



Expressive Powers of Directed and Undirected
Graphs

Y
PN
Vs N No Directed Graph (Bayesian

network) can represent these and

\ ) \ /
N A _/ . :
) X / ) only these independencies
( -__h\'
'\\---_-/-'

No matter how we direct the arrows there will always be two non-adjacent parents sharing
a common child = dependence in Directed Graph but independence in Undirected Graph.

Graph can represent these and
only these independencies

N N
\_/ f/' No Undirected Graph or Factor
D
N4

Directed graphs are better at expressing causal generative models, undirected graphs are
better at representing soft constraints between variables.



Inference in Graphical Models



Inference in a Graphical Model

N

\C

~ which represents:

p(A,B,C,D,E)=p(A)p(B)p(C|A, B)p(D|B,C)p(E|C, D)

Consider the following graph: )

Inference: evaluate the probability distribution over some set of variables, given the values
of another set of variables.

For example, how can we compute p(A|C' = ¢)? Assume each variable is binary.

Naive method:

p(A,C=¢) = > p(A,B,.C=c,D,E) [16 terms]
B,D.E
p(C=¢) = Z p(A,C = ¢) [2 terms]
A
p(A,C =¢c
p(A|C =¢) = P4, ) [2 terms]
p(C = ¢)

Total: 164+2+2 = 20 terms have to be computed and summed



Efficient Computation by Reordering
Operations

Z Zazy = X1Y1 T T2Y1 T T1Y2 T T2Y>2

L Y

= (o1 +x2)(y1 + ¥2)



Efficient Computation

4)  (B)

Consider the following graph: CP\ which represents:

p(A,B,.C,D.FE)=pA)pB)p(C|\A,B)p(D B,C)p(E|C,D)
Computing p(A|C' = ¢).

More efficient method:

p(A,C=c) = > p(A)p(B)p(C =c|A, B)p(D|B,C = c)p(E|C = ¢, D)
B.D.E

= > p(A)p(B)p(C =c|lA.B)Y p(D|B,C=c)) p(E|C=c,D)
B D I3

— ZL’J(A)P(B)P(C = c|A, B) [4 terms]
B

Total: 44212 = 8 terms



Singly Connected DAGs

Definition: A DAG is singly connected if its underlying undirected graph is a tree, ie there
is only one undirected path between any two nodes.

oo N0
O g O &
OGS ®

Goal: For some node X we want to compute conditional p(X|e) given evidence (i.e.
observed, visible variables) .

Since we are considering singly connected graphs:

e every node X divides the evidence into upstream ey and downstream e

e every edge X — Y divides the evidence into upstream e3 and downstream exy-.



Belief Propagation (Message Passing)

b ond
N Ny
I
A

Idea 1: The probability of a variable X can be found by combining upstream and
downstream evidence:

. p(X,e) p(X.et.ex) . R

p(Xle) = _ — +X 2 x p(X|ex) X plex| X, ex)
p(ff) jj(t?Xf EX) ~ N ' d

X d-separates ¢ from e,

= p(X f})p(:(if;( X) = 7(X)AX)

Idea 2: The upstream and downstream evidence can be computed via a local message
passing algorithm between the nodes in the graph.

Idea 3: "Don’t send back to a node (any part of) the message it sent to you!”



Factor Graph Propagation

Algorithmically and implementationally, it's often easier to convert directed and undirected
graphs into factor graphs, and run factor graph propagation.

p(x) = play)plas|zy)plas|rs)playrs)

fi(xq, x2) falxe, x3) f3(10, 24)

Singly connected VS Multiply connected factor graphs:




Propagation in Factor Graphs

Let n(x) denote the set of factor nodes that are neighbors of .
Let n(f) denote the set of variable nodes that are neighbors of f.

We can compute probabilities in a factor graph by propagating messages from variable
nodes to factor nodes and viceversa.

message from variable = to factor f:

,“'33—".}'3("1,') — H fih—a ()
hen(z)\{f}

message from factor f to variable z:

pr—a(@) =Y | ) ] s

X\z ven(f)\{z}

where x are the variables that factor f depends on, and ), is a sum over all variables
neighboring factor f except . |



n(x) denotes the set of factor nodes that are neighbors of .
n(f) denotes the set of variable nodes that are neighbors of f.

message from variable z to factor f:

TR | T
hen(z)\{f}

message from factor f to variable z:

ppal@) =3 (£ T s
xX\z ven(f)\{z}

If a variable has only one factor as a neighbor, it can initiate message propagation.

Once a variable has received all messages from its neighboring factor nodes, one can
compute the probability of that variable by multiplying all the messages and renormalising:

p(x) o H foh—o(T)

hen(x)



Example

initialise all messages to be constant functions

an example schedule of messages resulting in computing p(xy4):

message direction message value

r1 — f1 1(1)

r3 — f2 1(x3)

fi— a2 Dy J1(21, '1“2)1(' 1)

fa — a2 ngfz r3, v2)1(23)

T2 — f3 (Zm fi(zy, o) (ng fa(w3, 22)

f3 —r T4 ng fg(:;lfg, ;1"4) Zml fl (; r1. ;1.2)) 21:3 fg(i‘g, ;1’-2))

where 1(x) is a constant uniform function of x



an example schedule of messages resulting in computing p(z4|x1 = a):

message direction message value

r1 — i 0(r1 = a)

r3 — fo 1(x3) |

J1— a2 > e [1(z1,22)0(21 = a) = fi(21 = a,22)
fo— o D zs J2(23, 22)1(23)

T — [3 fi(x1 = a, x2) (ZT,S fa(xs. lz))

f3 — T4 ZIE fg _;172, ;1?4)f1 I = da, .!_‘2) (ng fg (;1?3_. ;1‘.2))

where 0(xr = a) is a delta function



Eliminating Nodes

eliminating observed variables

If a variable x; is observed, i.e. its value is given, then it is a constant in all factor that
include x;.

We can eliminate x; from the graph by removing the corresponding node and modifying
all neighboring factors to treat it as a constant.



e eliminating hidden variables

If a variable x; is hidden and we are not interested in it we can eliminate it from the
graph by summing over all its values.

S = 53T hxs)
_;Hfjﬁxs Do I felxs

ji’fn(:ci) z; ken(z;)
B H fj (XS fnew ( XSHGW)
j‘%ﬂ(mi

where fnew(XSuew) = in HkEn(mi) f,L (XS;‘,) and Shew = U Sk \ {3}

ken(z;)

This causes all its neighboring factor nodes to merge into one new factor node.



Belief Propagation in Directed Graphs

top-down upstream evidence:
(message U; sends to X')

S S
N 7T 77 :
|/U \" e UL mx(Us) = p(U -i\f"ﬁix )
4 P
’ \;/ _\’ 4
| X ) :

| N_A bottom-up downstream evidence:
2 '>/—-~\)’ (message Y sends to X))

[\Yl Jo LY, o (X (o= X
, x/\\ N y; (A ) = plexy,|4)

To update the probability of X given the evidence:

1 \
BEL(X) = p(X]e) = ZA(X) (X)
AMX) = [ (X)
J



top-down upstream evidence:
(message U, sends to X)

Y R Yy - |
Ul\ ( U; X [ (E } =p { (l |(E|_E X)
» -. 4 , R
' X\,

\ K/ ) bottom-up downstream evidence:
\ : P (message Y; sends to X))
IO e
/k ‘/<\ » -/\ AYj {‘X ) — p(EXYj ‘X)

Bottom-up propagation, message X sends to Uj;:

Ax(Ui) = Y NX) > p(X[Th.....Un) [ [ 7x(Uk)
X

Up:ki ki

Top-down propagation, message X sends to Y:

() = Z D] 3 w0 [t = 25500



Inference in Multiply Connected DAGs

The Junction Tree algorithm: Form an undirected graph from your directed graph such
that no additional conditional independence relationships have been created (this step is
called “moralization”). Lump variables in cliques together and form a tree of cliques—this
may require a nasty step called “triangulation”. Do inference in this tree of cliques.

Cutset Conditioning: or “reasoning by assumptions’. Find a small set of variables which,
if they were given (i.e. known) would render the remaining graph singly connected. For each
value of these variables run belief propagation on the singly connected network. Average
the resulting beliefs with the appropriate weights (given by normalizing constants).

Loopy Belief Propagation: just use BP although there are loops. In this case the terms
“upstream” and “downstream” are not clearly defined. No guarantee of convergence,
except for certain special graphs, but often works well in practice (c.f. “turbo-decoding”
for error-correcting codes).



Junction Tree Algorithm: Step 1

o
e

starting with a DAG...



Junction Tree Algorithm: Step 2

moralize by marrying the parents of each node
remove edge directions
this results in an undirected graph with no additional conditional independence relations



Junction Tree Algorithms: Step 3

triangulate so that there is no loop of length > 3 without a chord
this is necessary so that the final junction tree satisfies the running intersection property



Junction Tree Algorithm: Step 4

find cliques of the moralized, triangulated graph



Junction Tree Algorithm: Step 5

- Q

CcD

CE

e form junction tree: tree of (overlapping) sets of variables

e the running intersection property means that if a variable appears in more than one
clique (e.g. ('), it appears in all intermediate cliques in the tree.

e the junction tree propagation algorithm ensures that neighboring cliques have consistent
probability distribution

e |ocal consistency — global consistency



Approximate Inference
* Gibbs Sampling

* Variational Inference
* Mean field approximation
* Loopy belief propagation



Gibbs Sampling for Graphical Models

e The GS algorithm:
1. Suppose the graphical model contains variables x,,...,X
2. Initialize starting values for x,,...,X_
3. Do until convergence:

Pick an ordering of the n variables (can be fixed or random)

For each variable x; in order:

1. Sample X~ P(X; | Xy, ..., Xi1» X115 ---» X,), 1.€. the conditional distribution of x; given the
current values of all other variables

2. Update x; < x

e \When we update x;, we immediately use its new value for
sampling other variables x;




Gibbs Sampling Example
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e Consider the alarm network

e Assume we sample variables in the order B,E A,J,M
e |Initialize all variables att = 0 to False
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e Sampling P(BJA,E) att = 1: Using Bayes Rule,
P(B|A,E)>x P(A|B,E)P(B)

e A=false, E=false, so we compute:
P(B=T|A=F,E=F)x(0.06)0.01)=0.0006

P(B=F|A=F,E = F) = (0.999)(0.999) = 0.9980



Contd.

F F F F F
FooT

Earthquake

M=M=
h =3
th

~ W N - O

Al P A | POV
T[] 50

: T| .70
: A3 @ ] m

e Sampling P(E|A,B): Using Bayes Rule,
P(E|A,B)x P(A|B,E)P(E)

e (AB)=(F,F), sowe compute the following,
P(E=T|A=F,B=F)x(0.71)(0.02) =0.0142

P(E=F|A=F,B=F)x(0.999)(0.998) =0.9970
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e Sampling P(A|B,E,J,M): Using Bayes Rule,
P(A|B,E,J,M)ox P(J| A)P(M | A)P(A| B,E)
e (BEJM)=(FT,F,F), sowecompute:
P(A=T|B=F,E=T,J=F,M =F)x(0.1)(0.3)(0.29) = 0.0087
P(A=F |\B=F,E=T,J=F,M =F) «(0.95)(0.99)(0.71) = 0.6678
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e Sampling P(J|A): No need to apply Bayes Rule
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e A=F, sowe compute the following, and sample
P(J=T|A=F)=0.05

P(J=F|A=F)x0.95
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e Sampling P(M|A): No need to apply Bayes Rule

e A=F, sowe compute the following, and sample
PM=T|A=F)x0.01

P(M=F|A=F)x0.99
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e Nowt =2, and we repeat the procedure to sample new values of
B.EAJM ...
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e Nowt =2, and we repeat the procedure to sample new values of
B.EAJM ...

e And similarly fort =3, 4, etc.



Ssummary

* Elegant method for representing probabilistic models
* Factorization and Independences
e Exact Inference

e Approximate Inference



Learning Probabilistic Graphical Models



Learning parameters

0.2 103 |05

P(ﬁ?l)P(IQ\ml)p(il?3|371)p(334\$2)

Assume each variable z; is discrete and can take on K; values.

The parameters of this model can be represented as 4 tables: 6; has K entries, #5 has
K41 x K9 entries, etc.

These are called conditional probability tables (CPTs) with the following semantics:
pley =k)=61 plaa=FkK|lvy=k) =6y

If node 7 has M parents, 6; can be represented either as an M + 1 dimensional table, or as
a 2-dimensional table with (Hjepa(i) Kj) x K; entries by collapsing all the states of the
parents of node i. Note that >, 6, . v = 1.

Assume a data set D = {x("}N How do we learn 6 from D?

n=1"



Learning parameters (x,)
Assume a data set D = {x(™}_,. How do we learn 8 from D? @
p(X‘G) (.I‘l‘lgl ’Lg‘l’l 6‘2 ’Lg‘.l’l 93) (14‘.’132,!94)

Likelihood:
p(D|6) = H p(x™6)

log p(DI6) = ZZIO%p w7ty )

This decomposes into sum of functlons of 9@. Each 6; can be optimized separately:
p T,k k'

ik, —
’ Z;crr TGk k"

Log Likelihood:

where n; j, 5 is the number of times in D where x; = k" and Tpa(i) = k, where k represents
a joint conflguranon of all the parents of : (i.e. takes on one of [[. ) K values)

1, % 0, %
2 3 0 04|06 0
i = Y _
ML solution: Simply calculate frequencies! I I Sl Rl




Deriving the Maximum Likelihood Estimate

(y|z, 6) = Ha oy.b)

Dataset D = {(z(™ y(™):n=1... N}

G-

L) = p(y™]z™.6)

—
Q
a2
S |

L (n)

|
Ja—
Q
V=!
s !—1

_ 5(;17(”“)_._ k)6 (y™, ) log Oy ¢
n,k,l

— (Z O‘(I(n)‘ };)(jn(y(n)ﬂ {)) log 9k:,€ — Z "y, log 9;@33
.

n k.t

Maximize £(6) w.r.t. 6 subject to ), 0, =1 for all k.



Maximum Likelihood Learning with Hidden Variables

Assume a model parameterised by € with
observable variables Y and hidden variables X

Goal: maximize parameter log likelihood given observed data.

L(6) =logp(Y|0) =log» p(Y.X|6)
X



Maximum Likelihood Learning with Hidden Variables:

The EM Algorithm

OX

Goal: maximise parameter log likelihood given observables.
'3-3 BZE.

L(#) =logp(Y|) =log Y p(Y.X|6) @
X
0

‘@

The Expectation Maximization (EM) algorithm (intuition):

Iterate between applying the following two steps:

e The E step: fill-in the hidden/missing variables

e The M step: apply complete data learning to filled-in data.



Maximum Likelihood Learning with Hidden Variables:
The EM Algorithm

Goal: maximise parameter log likelihood given observables.
£(0) =logp(Y|0) =log y p(Y. X|f)

The EM algorithm (derivation):

N oo p(Y, oo PYXI0)
LO) = log)y q(X) %) E;Q(X)la 0~ 7 aX).6)

e The E step: maximize F(q(X).6") wrt ¢(X) holdlng ol fixed:
¢(X) = p(X|Y, 6

e The M step: maximize F(q(X),#) wrt 6 holding ¢(X') fixed:

A+ argmax, Z q(X)logp(Y. X

0)

The E-step requires solving the inference problem, finding the distribution over the hidden
variables p(X|Y,#lY) given the current model parameters. This can be done using belief
propagation or the junction tree algorithm.



Maximum Likelihood Learning without and with Hidden Variables

ML Learning with Complete Data (No Hidden Variables)

Log likelihood decomposes into sum of functions of #;,. Each 6; can be optimized separately:

- ik
H J

ijk < —=
J Zk; ”i',j-'(t'f
where 7. is the number of times in D where z; = k and xp,,;) = J.

Maximum likelihood solution: Simply calculate frequencies!

ML Learning with Incomplete Data (i.e. with Hidden Variables)

Iterative EM algorithm

E step: compute expected counts given previous settings of parameters E|n;;r|D, G[t]i.

M step: re-estimate parameters using these expected counts

P [nije|D, 0"
ijk S Elngw|D. Q[t]]




Maximum Entropy (MaxEnt)

@ We can approach the modeling task from an entirely different point of view

@ Suppose we know some expectations with respect to a (fully general)
distribution p(x):

(true) Z p(x)f;(x). (empirical) %| Z fi(x) = «a;

xeD

@ Assuming that the expectations are consistent with one another, there may
exist many distributions which satisfy them. Which one should we select?

The most uncertain or flexible one, i.e., the one with maximum entropy.

@ This yields a new optimization problem:

max H(p(x)) = = > _ p(x) log p(x)

X

st p)x) = o

Z p(x) =1 (strictly concave w.r.t. p(x))



MaxEnt

@ To solve the MaxEnt problem, we form the Lagrangian:

L=-) p(x)logp(x ZA (ZP(X)f(X tn) ~ (Zp

X

@ Then, taking the derivative of the Lagrangian,

oL
_ = —1—1 Aifi(x) — p

@ And setting to zero, we obtain:

p"(x) = exp (1 —p=y )\;f}(x)) _ o1t g T M)

@ From the constraint 3_, p(x) = 1 we obtain e'™# =3 e~ 2/ Aifilx)

@ We conclude that the maximum entropy distribution has the form
(substituting w; = — ;)

p*(x) = Z(lw) EXD(Z w;f;(x))

=Z(\)



Bayesian Learning

Apply the basic rules of probability to learning from data.
Data set: D = {x1,...,: Tn b Models: m, m/ etc. Model parameters: #

Prior probability of models: P(m), P(m') etc.
Prior probabilities of model parameters: P(6|m)
Model of data given parameters (likelihood model): P(x|6,m)

If the data are independently and identically distributed then:

P(DI|6,m) HP |0, m)

Posterior probability of model parameters:

P(DI|8. m)P(8|m
P(6D,m) = (D0, m) P(0]m)

P(D|m)

Posterior probability of models:
P(m)P(D|\m)
P(D)

P(m|D) =



Bayesian parameter learning with no hidden variables

Let n;;;, be the number of times (;1’.5”) — k and IS;)(T:) — j)in D.

For each 7 and j, ;. is a probability vector of length K; x 1.

Since x; is a discrete variable with probabilities given by 6, ; ., the likelihood is:
D|9 HHp (n (ﬂ HHHﬁzzik

If we choose a prior on @ of the form:
- L o —1
=c1H 1%

where ¢ is a normalization constant, and }_, #;, = 1 Vi, j, then the posterior distribution

also has the same form: )
p(@|D) = c H H H 9:;3;{;‘ Dirichlet distribution.

where @i = Qijk + nijk.



Bayesian parameter learning with hidden variables

Notation: let D be the observed data set, A be hidden variables, and @ be model
parameters. Assume discrete variables and Dirichlet priors on 6

Goal: to infer p(8|D) =), p(X.0|D)

Problem: since (a)
p(6|D) =) p(68]X.D)p(X|D),
X
and (b) for every way of filling in the missing data, p(@|X", D) is a Dirichlet distribution,

and (c) there are exponentially many ways of filling in X', it follows that p(8 /D) is a mixture
of Dirichlets with exponentially many terms!

Solutions:

e Find a single best (“Viterbi") completion of X" (Stolcke and Omohundro, 1993)

e Markov chain Monte Carlo methods

e Variational Bayesian (VB) methods (Beal and Ghahramani, 2003)



Summary of parameter learning

Complete (fully observed) data

Incomplete (hidden /missing) data

ML calculate frequencies

Bayesian | update Dirichlet distributions

EM

MCMC / Viterbi / VB

For complete data Bayesian learning is not more costly than ML

For incomplete data VB ~ EM time complexity

Other parameter priors are possible but Dirichlet is pretty flexible and intuitive.

For non-discrete data, similar ideas but generally harder inference and learning.




Structure learning

Given a data set of observations of (A, B,C,D,FE) can we learn the structure of the
graphical model?

@  ®

(©
()

@ 2/

Let m denote the graph structure = the set of edges.



Structure learning

@ B (4 (B)
fﬁ/\
© ©)
g D\‘
N AN
\£/ \£)

Constraint-Based Learning: Use statistical tests of marginal and conditional
independence. Find the set of DAGs whose d-separation relations match the results of
conditional independence tests.

Score-Based Learning: Use a global score such as the BIC score or Bayesian marginal
likelihood. Find the structures that maximize this score.



Score-based structure learning for complete data

Consider a graphical model with structure m, discrete observed data D, and parameters 6.
Assume Dirichlet priors.

The Bayesian marginal likelihood score is easy to compute:
score(m) = log p(D|m) = log/p(D|9._ m)p(6|m)df
score(m) = » > |log (> ayjx) — » logT(ayjr) — logT(»  Gue) + »  log T'(duji)
where o, = ;_1@3: + k. Nkote that t}i1e score decompose: over 1. k
One can incorporate structure prior information p(m) as well:
score(m) = log p(D|m) + log p(m)

Greedy search algorithm: Start with m. Consider modifications m — m’ (edge deletions,
additions, reversals). Accept m/ if score(m’) > score(m). Repeat.

Bayesian inference of model structure: Run MCMC on m.



Bayesian Structural EM for incomplete data

Consider a graphical model with structure m, observed data D, hidden variables X" and
parameters f

The Bayesian score is generally intractable to compute:
score(m) = p(Dim) = /Zp(/l’. 0, D|m)df
X

Bayesian Structure EM (Friedman, 1998):

1. compute MAP parameters 6 for current model m using EM
2. find hidden variable distribution p(X|D. 8)

3. for a small set of candidate structures compute or approximate

score(m’) = Z-p(ﬂt’ﬂ?, é) log p(D, X |m’)
X

4. m «— m’ with highest score



Learning parameters and structure in undirected graphs

Problem: computing Z () is computationally intractable for general (non-tree-structured)
undirected models. Therefore, maximum-likelihood learning of parameters is generally
intractable, Bayesian scoring of structures is intractable, etc.

Solutions:

e directly approximate Z(0) and/or its derivatives (cf. Boltzmann machine learning;
contrastive divergence; pseudo-likelihood)

e use approx inference methods (e.g. loopy belief propagation, bounding methods, EP).

See: (Murray and Ghahramani, 2004; Murray et al, 2006) for Bayesian learning in undirected models.



Ssummary

* Graphical models provide a powerful and intuitive framework for
modelling and inference.

* Directed, undirected and factor graphs.
* Inference by message passing.
* Parameter and structure learning.



