Sampling for Inferencing



Tractability of Bayesian Inferencing

* p(O]x) = p(x] ) p(0)/ p(x) = p(x] &) p(8)/ J p(x] 8) p(0)d6
data Dbelief evidence

* The (normalizing) denominator is difficult to compute in closed

* We only know the posterior distribution up to the normalizing factor
o Lets call it ptlde( G| x) = p(x| &) p(O)

* Need for Approximate Bayesian methods



Sampling Approximation of Distributions

* Approximate the posterior distribution using a sampled data set

A -
Original Distribution Mean Field VI Approximation Sampling Approximation

(Union of delta functions
at the sample points)

> >

If we can draw large number of samples from the target distribution we get a good approximation



Difficulties in Sampling

* The target distribution is unknown/intractable
* Or known only up to the normalizing constant

* Can we use another known/standard distribution to draw a sample
from the target distribution

* Often you have access to a uniform random number generator, or
even a randn() function to generate a random variable distributed
according to standard normal distribution



Univariate Sampling

* Target distribution — p(x) (intractable)

* Let us upper bound p(x) by a known distribution g(x) times a const. k.
* Constant k is a must for upper bounding
* g(x) is a standard distribution, say Normal with variance unity

* If the upper bound is tight every where, samples drawn from k.q(x)
will approximate the target distribution p(x)

k.a(x)

X



Rejection Sampling

Steps:
1. Generate a sample z,, using q(z)
2. Accept it with probability u,/kq(z,), u, = pt'?e(z,)

The grey part is the rejection region.
More points generated near the maxima of the target distribution.



How many samples get rejected?

* Fraction of samples accepted is proportional to the ratio of the
(white area)/(grey + white area) = k

(Since, area under a distribution function is 1)

ptilde(z) is same as p(z) up to normalizing constant

We can absorb the normalizing constant within k,

and use pt'e(z) in rejection sampling -



Monte Carlo Approximation

e Simulation method to approximately compute area of complex regions

Probabilistic model: p(x) = $5(x), Z = [ p(x)dx

construct samples x1. X, ..., , Xm from p(x) using only p(x).

Use the samples to approximately compute expectations.

Usage: B, f(x) = [ f(x)p(x)dx = 5 37, f(x)).



Markov Chain

0.5
0.5
0.7
Simulation of a Markov chain with time steps:

T(L-> R)=0.7
TR=>1)=05 LLRLRRRLLLL
T(L->1L1)=0.3 _ N
TR >R)=05 What is the probability that the system

is in state L after t time steps?
Transition depend on current state only.



Markov Chains &3
0.3
Timestep pb) | pbeR)
x1 1 0 0.7

X2 0.3 0.7

x3 0.3x0.3+0.7x0.5

S 0.42 0.58 <« (converging probabilities, defines a distribution over states)
x2M 0.42 0.58

p(x3) = p(x3|x%2 = L)p(x?=L) + p(x3|x? = R)p(x? = R) [Marginalization over previous state values]

Different ways it can reach L/R in the third step



Using Markov Chains to Generate Samples

Simulate the Markov chain a large number of times:

LRRRLLRL...LRR o(L) ~ 2/5 = 0.42
LRLRLRRL...LRR o(R) ~ 3/5 = 0.58
LRRRLLRL...LRL
LRLRLRLL...LRL
LRRRRLRL...LRR

If we look at the final value of the state (L/R) at the end of each simulation we get a sample
distributed according to a Bernoulli distribution with probabilities 0.42 and 1 - 0.42.

In practice, we need not look at just the last value, but may throw away first 1000 values in each chain
and use the rest of the values as samples.

The principle can be extended to discrete distributions with many possible value,
or to continuous distributions where the marginalization is an integration.



Markov Chain Sampling

e We want to sample from p(x)

* Build a Markov chain that converges to p(x)
e Start from any state x°

e Generate xk*1 ~ T(xk1 > xk)

 Eventually xk will look like samples from p(x)



Does a Markov Chain always converge?

i€ 2 3!

It oscillates between L and R



Stationary Distribution

 p(x) is a stationary distribution for a Markov chain iff

p(x’) = 3, T(X"| x)p(x)

If we start from the distribution p(x) over states, and transition one
time step we get the same distribution p(x)

Once we encounter the stationary distribution during the sampling
process, we stay at it henceforth



Theorem

e If T(x'|x) >0 forall x/, x
(any state can be reached from any other state)

* Then there exists an unique stationary distribution for the Markov
chain

* And the Markov chain converges to the stationary distribution from
any starting point (ergodic)



Markov Chain Monte Carlo

* Given a target distribution p(x)

* How do you design a Markov chain such that simulating it generates
samples from p(x)? - stationary distribution

* Combine with Monte Carlo sampling

* Markov Chain Monte Carlo (MCMC)



Gibbs Sampling

Goal: generate samples from p(x) = 1 p5(x), where x = [x1,x2.. .., Xk].

Suppose x ~ p(x). Then the next point x™ is generated as follows: (Markov chain transition)

> x{ ~ p(x1|x2,x3,..., Xk); (1D distributions are easy to sample from)
> x5 ~ p(x2|x7, x3.. ... Xk);
> ..
new new new new .
> X o~ p(xp | X x5 X))
new __ new new new
> x"W =[xV, x5V, ... X",

It is easy to show than p(x) is invariant under such transition probability. If all
conditionals p(xj|x\;) > O, then the corresponding Markov chain would be ergodic.



Gibbs Sampling: Proof of Correctness

* p(x) is a stationary distribution if: p(X’) =3 T(X = X’)p(X)
* Let us consider a 3D state X=(x,y,z) with transition: T(x,y,z = x,y’,Z)

Z T(x,y.z—x".y'.Z")p(x,y, 2)

X, Y,z

=Y p(Xly=y.z=2)p(y|x =x"z=2)p(Z|x =x".y =y )p(x.y.2)

X, Y,z

= p(Z|¥.y")> (p(Xly. 2)p(y|x'.2) > " p(x.y.2))

v.z

=p(Z|X. )Y (p(Y'IX.2) ) p(X.y.2))

4 Yy

= p(Z|x'.y)> p(y . X z) = p(Z|X .y )p(y' . x') = p(x.y'.2)
Z



Example: Bivariate Gaussian

lllustration of Gibbs sampling by alter- %24

nate updates of two variables whose L
distribution is a correlated Gaussian.
The step size is governed by the stan-
dard deviation of the conditional distri-
bution (green curve), and is O(1), lead- | oA
ing to slow progress in the direction of
elongation of the joint distribution (red
ellipse). The number of steps needed
to obtain an independent sample from

the distribution is O((L/1)?%). Ii

e .

[

>
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Summary of Gibbs Sampling

* Long burn-in phase

* Small steps if variables are correlated

* Can not be parallelized

e Large number of steps for high dimension



Collapsed Gibbs Sampling

In some cases, we can analytically integrate out some of the unknown quantities, and just
sample the rest. This is called a collapsed Gibbs sampler, and it tends to be much more
efficient, since it is sampling in a lower dimensional space.

More precisely, suppose we sample z and integrate out 8. Thus the 6 parameters do not
participate in the Markov chain; consequently we can draw conditionally independent samples
0° ~ p(60|z°, D), which will have much lower variance than samples drawn from the joint state
space (Liu et al. 1994). This process is called Rao-Blackwellisation, named after the following
theorem:

Theorem 24.2.1 (Rao-Blackwell). Let z and @ be dependent random variables, and f(z,80) be
some scalar function. Then

vary g [f(2,0)] > var, [Eq [f (2, 6)|z]] (24.20

This theorem guarantees that the variance of the estimate created by analytically integrating
out @ will always be lower (or rather, will never be higher) than the variance of a direct MC
estimate. In collapsed Gibbs, we sample z with @ integrated out; the above Rao-Blackwell
theorem still applies in this case (Liu et al. 1994).



Metropolis-Hastings Sampling

* Propose larger transitions — reject if they are not good

* Proposal — critic framework
* Monte Carlo sampling over Markov chains

* Markov Chain Monte Carlo



Metropolis-Hastings (MH) Algorithm

1 Initialize 22° -

2 for s =0,1,2,... do

3 Define » = x%5;

Sample 2/ ~ q(2/|z);

Compute acceptance probability

s

[}

~pla’)g(z|2")
p(x)q(a’|x)

Y

Compute » = min(1, a);
6 Sample u ~ U(0,1) ;
Set new sample to

S o ifu<r
5 ifu>r

=1




MH as a Markov Chain

The MH algorithm defines a Markov chain with the following transition matrix:

o A x)r(x ) if X' # X
p(xX|x) = { g(x|x) + fo;&x q(x'|x)(1 —r(x'|x)) otherwise

This follows from a case analysis: if you move to X’ from x, you must have proposed it (with
probability g(x’|x)) and it must have been accepted (with probability »(x’|x)); otherwise you
stay in state x, either because that is what you proposed (with probability g(x|x)), or because
you proposed something else (with probability ¢(x’|x)) but it was rejected (with probability
1 —r(x'|x)).



Detailed Balance

How do we construct a transition ¢(z’|x) with given p(x) as its stationary distribution? This problem can
be simplified if we consider special transitions that satisfy the detailed balance condition. If we are given
the marginal distribution p(z), the detailed balance condition for a transition ¢ is

a@|z)  p(a’)
a(ale’) ~ pla)

' Only ratios of distributions are considered.
No need of the normalizing constant.

\ Ve, x

Since:

Ldf

so that p(z) is the stationary distribution of g(a2'|z).

ﬁmwﬁi/ﬂﬂfmwﬂzﬂf)



Detailed Balance Holds for MH

Proof of Claim: We simply check that p(x) satisfies the detailed balance equations. We have

«a (v | x)Q(y | x) p X) = min {iii : 8E§ || iil}@(y | X)p(x)

T

P(y|x)

= 111111{@}{|yp ( | X)p

= 111111{ }Qx|yp

= a(x|y)@Q le;}

T

P(x|y)



Proof of Correctness of MH

Theorem: The transition matrix of the MH algorithm has p*(x) as its
stationary distribution

Proof. Consider two states x and x’. Either
P (x)g(x'|x) < p*(x")q(x|x)
or

P (x)q(x|x) > p* (x')q(x[x’)



Forward Case

p*(x')q(x|x")
<1 assume that p*(x)q(x’|x) > p*(x’)q(x|x’).

X %) = R e )

Hence we have r(x’|x) = a(x’|x) and r(x|x’) = 1.

Now to move from x to x’ we must first propose x” and then accept it. Hence
p*(x)g(xx’)  p*(xX')
pr(x)q(x'[x)  pr(x)

p(x'|x) = q(x'|x)r(x'[x) = q(x'[x) q(x|x)

Hence

pr(x)p(x'|x) = p* (x)q(x]x")



Backward Case

The backwards probability is

p(x|x") = q(x|x")r(x|x") = q(x|x")  since r(x|x’) = 1.

Here also details balance holds.

P (x)p(x'|x) = p* (x')p(x[x)

Hence proved the target distribution is the stationary distribution for MH.



MH: Gaussian Proposal

MH with N(0,1.000% proposal MH with N(2,500.0007) proposal

02, . - 006, .. -

0.04

01
002, . -

800

800

lterations 1000 _qgp Samples lterations 1000 _qqp Samples

MH with N(0,8.000%) proposal

Proposal distribution: s¥{x,1)

800

lterations 1000 _qp0 Samples



Trace Plots
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Summary of MCMC

 Unbiased

* If we simulate MCMC for large enough number of steps we can get arbitrarily
accurate approximation of the target distribution

* May be slow
* Long burn-in
* Slow exploration

* Parameter choice
* Gibbs: No parameter tuning
* Metropolis-Hastings: Proposal distribution has to be chosen

e Sensitive to initialization



Comparison between VI, MCMC

Variational Inference \"[e\%[®

Biased Unbiased
Fast Slow
Choice of approximations (Mean Field) Choice of proposal distributions
Error MCMC
Vi

Time step



