
Sampling for Inferencing



Tractability of Bayesian Inferencing

• p(|x) = p(x| ) p( )/ p(x) = p(x| ) p( )/∫p(x| ) p( )d

data    belief  evidence

• The (normalizing) denominator is difficult to compute in closed
• We only know the posterior distribution up to the normalizing factor

• Lets call it ptilde(|x) = p(x| ) p( )

• Need for Approximate Bayesian methods



Sampling Approximation of Distributions

• Approximate the posterior distribution using a sampled data set

Original Distribution Mean Field VI Approximation Sampling Approximation
(Union of delta functions
at the sample points)

If we can draw large number of samples from the target distribution we get a good approximation



Difficulties in Sampling

• The target distribution is unknown/intractable
• Or known only up to the normalizing constant

• Can we use another known/standard distribution to draw a sample 
from the target distribution

• Often you have access to a uniform random number generator, or 
even a randn() function to generate a random variable distributed 
according to standard normal distribution



Univariate Sampling

• Target distribution – p(x) (intractable)

• Let us upper bound p(x) by a known distribution q(x) times a const. k. 
• Constant k is a must for upper bounding

• q(x) is a standard distribution, say Normal with variance unity

• If the upper bound is tight every where, samples drawn from k.q(x) 
will approximate the target distribution p(x)

x

p(x)

k.q(x)



Rejection Sampling

Steps:
1. Generate a sample z0, using q(z)
2. Accept it with probability u0/kq(z0), u0 = ptilde(z0) 

The grey part is the rejection region.
More points generated near the maxima of the target distribution.



How many samples get rejected?

• Fraction of samples accepted is proportional to the ratio of the 
(white area)/(grey + white area) = k

(Since, area under a distribution function is 1)

ptilde(z) is same as p(z) up to normalizing constant

We can absorb the normalizing constant within k, 
and use ptilde(z) in rejection sampling



Monte Carlo Approximation

• Simulation method to approximately compute area of complex regions

Use the samples to approximately compute expectations.



Markov Chain
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T(L → R) = 0.7
T(R → L) = 0.5
T(L → L) = 0.3
T(R → R) = 0.5

Simulation of a Markov chain with time steps:

LLRLRRRLLLL

What is the probability that the system 
is in state L after t time steps?

Transition depend on current state only.



Markov Chains

Time Step p(x=L) p(x=R)

x1 1 0

x2 0.3 0.7

x3 0.3x0.3+0.7x0.5 …

x1M 0.42 0.58

x2M 0.42 0.58
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p(x3) = p(x3|x2 = L)p(x2 = L) + p(x3|x2 = R)p(x2 = R)   [Marginalization over previous state values]

Different ways it can reach L/R in the third step

(converging probabilities, defines a distribution over states)



Using Markov Chains to Generate Samples

LRRRLLRL…LRR
LRLRLRRL…LRR
LRRRLLRL…LRL
LRLRLRLL…LRL
LRRRRLRL…LRR

p(L) ~ 2/5 = 0.42
p(R) ~ 3/5 = 0.58

Simulate the Markov chain a large number of times:

If we look at the final value of the state (L/R) at the end of each simulation we get a sample
distributed according to a Bernoulli distribution with probabilities 0.42 and 1 - 0.42.

In practice, we need not look at just the last value, but may throw away first 1000 values in each chain 
and use the rest of the values as samples.

The principle can be extended to discrete distributions with many possible value, 
or to continuous distributions where the marginalization is an integration.



Markov Chain Sampling

• We want to sample from p(x)

• Build a Markov chain that converges to p(x)

• Start from any state x0

• Generate xk+1 ~ T(xk+1 → xk)

• Eventually xk will look like samples from p(x)



Does a Markov Chain always converge?
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It oscillates between L and R



Stationary Distribution

• p(x) is a stationary distribution for a Markov chain iff

p(x’) = ∑xT(x’|x)p(x)

If we start from the distribution p(x) over states, and transition one 
time step we get the same distribution p(x)

Once we encounter the stationary distribution during the sampling 
process, we stay at it henceforth



Theorem

• If  T(x’|x) > 0 for all x’, x 

(any state can be reached from any other state)

• Then there exists an unique stationary distribution for the Markov 
chain

• And the Markov chain converges to the stationary distribution from 
any starting point (ergodic)



Markov Chain Monte Carlo

• Given a target distribution p(x)

• How do you design a Markov chain such that simulating it generates 
samples from p(x)?  - stationary distribution
• Combine with Monte Carlo sampling

• Markov Chain Monte Carlo (MCMC)



Gibbs Sampling

(1D distributions are easy to sample from)

(Markov chain transition)



Gibbs Sampling: Proof of Correctness
• p(x) is a stationary distribution if:   p(X’) = ∑xT(X → X’)p(X)

• Let us consider a 3D state X=(x,y,z) with transition: T(x,y,z → x’,y’,z’)



Example: Bivariate Gaussian



Summary of Gibbs Sampling

• Long burn-in phase

• Small steps if variables are correlated

• Can not be parallelized

• Large number of steps for high dimension



Collapsed Gibbs Sampling



Metropolis-Hastings Sampling

• Propose larger transitions – reject if they are not good

• Proposal – critic framework

• Monte Carlo sampling over Markov chains

• Markov Chain Monte Carlo



Metropolis-Hastings (MH) Algorithm



MH as a Markov Chain



Detailed Balance

Since:

Only ratios of distributions are considered.
No need of the normalizing constant.



Detailed Balance Holds for MH



Proof of Correctness of MH

Theorem: The transition matrix of the MH algorithm has p*(x) as its 
stationary distribution 



Forward Case



Backward Case

Here also details balance holds.

Hence proved the target distribution is the stationary distribution for MH.



MH: Gaussian Proposal

Proposal distribution: N (x,1)



Trace Plots



Summary of MCMC

• Unbiased 
• If we simulate MCMC for large enough number of steps we can get arbitrarily 

accurate approximation of the target distribution

• May be slow
• Long burn-in
• Slow exploration

• Parameter choice
• Gibbs: No parameter tuning
• Metropolis-Hastings: Proposal distribution has to be chosen

• Sensitive to initialization



Comparison between VI, MCMC

Variational Inference MCMC

Biased Unbiased

Fast Slow

Choice of approximations (Mean Field) Choice of proposal distributions

Time step

Error MCMC

VI


