Variational Bayes/Inference



Bayesian Inferencing

e Posterior distribution: p(@|x) o« p(x| @) p(8)

X likelihood oc

. Posterior
Prior

Both prior and likelihood distributions are user choices/assumptions



Tractability of Bayesian Inferencing

* p(O]x) = p(x] ) p(0)/ p(x) = p(x] &) p(8)/ J p(x] 8) p(0)d6
data Dbelief evidence

* The (normalizing) denominator is difficult to compute in closed form
* Except for the case of conjugate priors

* Need for Approximate Bayesian methods



Approximate Bayesian Inferencing

* MAP point estimate
* All probability mass concentrated at maxima
* Finding MAP doesn’t need evidence computation

e Laplace approximation

* Variational inferencing

* Sampling based methods




Variational Inference

closest
approximation

Variational
Distributions

Optimization problem



Kullback-Leibler Divergence

* KL divergence is a measure of closeness between two distributions

* KL(q| |p) =Ja(x) log (a(x)/p(x))dx = E,[log(a(x)/p(x))]

* g and p should have same domain

KL is always greater than or equal to zero
KL=0, if gand p are equal almost everywhere
Not symmetric

Works well in practice



Variational Inference

e Optimization problem over distribution functions q(&)
* Functional: KLD wrt p(&|x)

Minimize ) e KL(Q(O)] | p(6] X))



Solving the optimization problem

 Posterior distribution p(&|x) is not tractable/known
e Difficult to compute KL(q(x) || p(&|x))

* We can transform the VI optimization problem terms of p(x| &), p(&)
* p(x]| @), p(€) are known and usually tractable

* We will away with the normalizing denominator “evidence” in Bayes rule which is usually
difficult to compute



Variational Inference: Expanding the Evidence

log p(x) = /Q(é’) log p(x)db

:/ q(f)log plx 9)0’9

p(0]x)
Jr

:/ o(6) log P& ?)d9+ a(0) log 1944
(

q(0 p(]x)
L(q(8)) + KL(a(#)l[p(0]x))

Since KLD is positive -
log p(x) > L(q(#)) Evidence Lower Bound (ELBO)

If there is no restriction on q, then KLD is zero, and the lower bound is exact



Variational Inference: Optimization
log p(x) = L(q(0)) + KL(q(0)][p(0]x))

Since, p(x) is independent of g(@) it can be considered as a constant in the optimization problem -

Minimize ;)¢ ¢ KL(a(O) ] | p(E]x))

Is equivalent to

I\/Iaximize q(0) € @ ﬁ(q(t?)) ELBO - Variational lower bound



ELBO

ﬁ(q(ﬁ’)):/q(é’) log pg)({é?)dé’

:/q(é?)log p(x|0)p(f)

q(0)
B p(0)
_ f 4(6) log p(x|6)d6 + f a(0) o 217

= Eq(0)llog p(x[0)] — KL(q(0)||p(7))

df

* The first term is maximized when q(&) is a concentrated delta function at MLE — data term
* The second term is maximized when q(&) is same as the prior — regularization term
* A combination of both is maximized



Statistical Physics Interpretation of ELBO

p(x, )
q(0)

— Eqlog p(x.6)] — | a(6) og ()t

L(q(0)) = Energy of p(x, ) + Entropy of q(0)
L(q(#)) is known as variational energy of Helmholtz free energy in
statistical physics

do

£(q(6)) = / 4(8) log



Generalizing KL Divergence

One can create a family of divergence measures indexed by a parameter & € R by defining
the alpha divergence as follows:

4 | |
D.(pllq) & - (1 — / p(m)““‘wq(;;r:)“—“}f’zdm) (21.21)

This measure satisfies D, (p||qg) = O iff p = ¢, but is obviously not symmetric, and hence is
not a metric. KIL (p||q) corresponds to the limit &« — 1, whereas KIL (¢||p) corresponds to the
limit « — —1. When a = 0, we get a symmetric divergence measure that is linearly related to
the Hellinger distance, defined by

A 1 1\ 2
Dy(pllq) :f(p(:tr}ﬁ —q(:t:)ﬁ) dx (21.22)

See Murphy book for details



Variational Inference: Summary
log p(x) = L(q(0)) + KL(q(0)][p(0]x))

Since, p(x) is independent of g(@) it can be considered as a constant in the optimization problem -

Minimize ;)¢ ¢ KL(a(O) ] | p(E]x))

Is equivalent to

I\/Iaximize q(0) € @ ﬁ(q(t?)) ELBO - Variational lower bound

The above derivation for & can be generalized to latent variables + parameters
We call all of them as latent variables Zin subsequent discussion

What is the class of @ (the approximating distributions)?



Factorized Distributions

Let Z partition into non-overlapping groups Z,

M
¢(Z) = H qi(Zi). (Recall naive Bayes)

1=1

Assume:

We do not make any assumption of the functional form of the individual factors

Note that it is a restriction on g and noton p



Mean Field Theory

* In physics and probability theory, mean-field theory studies the behavior of
high-dimensional random models by studying a simpler model that
approximates the original by averaging over degrees of freedom.

* Such models consider many individual components that interact with each
other. In MFT, the effect of all the other individuals on any given individual
is approximated by a single averaged effect, thus reducing a many-body
problem to a one-body problem.

* The main idea of MFT is to replace all interactions to any one body with an
average or effective interaction, sometimes called a molecular field.



Mean Field Approximation

* Do not consider interaction among all variable

* Cluster variables into groups

* Assume interaction within cluster — locally joint distribution
* Assume independence across cluster — factorization

* Mean field of the clusters are considered



Mean Field VI

Q

Q

Q

Q

Q

One of the simplest ways of doing VB

In mean-field VB, we define a partition of the latent variables Z into M groups Z;.. ...

Assume our approximation g(Z) factorizes over these groups

q(Z|p) = Hq iloi)

As a short-hand, sometimes we write g = ]_L.Zl q; where q; = q(Z;|®;)

In mean-field VB, learning the optimal g reduces to learning the optimal ¢;



Deriving Mean Field VI

o With g = H:nil gj, what's each optimal g; equal to when we do arg max, £(q)?

o Note that under this mean-field assumption, the ELBO simplifies to

p(X-Z)] [

dZ = i |log p(X,Z) — log g; | dZ

o(2) __ Hq gp(X.Z) Z gq

o Suppose we wish to find the optimal g; given all other g; (i # j). Let's re-express £(q) as

L(q) = /qj /Iogp(X.Z)Hq;dZ; de—/leongde + consts w.r.t. qj
) ) 1#) '

£(q) = / (2) log

— [qj- log p(X, Z;)dZ; — /qj log q;jdZ;

where log p(X. Z;) = Ej4j[log p(X. Z)] + const

o Note that £(q) = —KL(gqj||p) + const. Which g; will maximize it?

qj = p(X. Zj)




Contd..

o Since log g7 (Z;) = log p(X, Z;) = Ei4[In p(X, Z)] + const, we have

(Z)) exp(Ejj[In p(X. Z)])

" TewEylnpX.2))dz;

o For locally-conjugate models, qu*‘(Zj) will have the same form as the prior p(Z;)

o Important: For estimating g;, the required expectation depends on other {g;};

o Thus we need to cycle through updating each gj in turn co-ordinate ascent

o Guaranteed to converge (to a local optima)



Coordinate Ascent Algorithm

o Also known as Co-ordinate Ascent Variational Inference (CAVI) Algorithm
o Input: Model p(X,Z), Data X

o Output: A variational distribution ¢(Z) =[], q;(Z;)

o Initialize: Variational distributions g;(Z;), j=1,....M

o While the ELBO has not converged

o Foreachj=1...., M, set

qi(Z;) oc exp(Eix[log p(X, Z)])

o Compute ELBO L(q) = E,[log p(X. Z)] — E[log g(Z)]



Nature of Approximation in VI

Recall that VB is equivalent to finding g by minimizing KL(q||p)

KL(qgl|p) = / 9(2)log [p?élzi)]

If the true posterior p(Z|X) is very small in some region then, to minimize KL(g||p), the approx. dist. g
will also have to be very small (otherwise KL will be very large)

This has two key consequences for VB
o Underestimates the variances of the true posterior

o For multimodal posteriors, VB locks onto one of the modes




Simple Example: Univariate Gaussian

o Consider data X = {x, ..., xn} from a 1-D Gaussian NV(x|p. 771) with mean yu, precision 7

o Assume the following normal-gamma prior on 2 and 7

p(p|7) = N(plpo. (Mo7)™1)  p(7) = Gamma(7|ag, by)

o Note: Here posterior is straightforward (normal-gamma due to the jointly conjugate prior)

o Let's try mean-field VI nevertheless to illustrate the idea

o With mean-field assumption on the variational posterior q(s.7) = q,,(1¢)q-(7)

log q.(;t) = Eg,[log p(X, . 7)] + const
log g7 (7) = Eqg,[logp(X, 1, 7)] + const

o In this example, the log-joint log p(X. y1,7) = log p(X|p. 7) + log p(y¢|7) + log p(7). Therefore

logq. (1) = Eg, [log p(X|p,7) + log p(se|7)] + const (only keeping terms that involve )



Example Contd..

o Substituting the expressions p(X|u, 7) = Hle p(xn|p, 7) and log p(pe|7), we get

log (1) = Eq, [log p(X|p.7) + log p(42|7)] + const
N
_ _EQT[T] Z( 2 4 a1 — 110)2
— 5 Xp — )"+ Xo(pt — j10)° p + const
n=1
o (Verify) The above is log of a Gaussian. Thus g7, (1) = N (jt[pn, 7nv) with
Aopto + NXx
= o £ N and Ay = (Ao + N)Eg, [7]

o Proceeding in a similar way (verify), we can show that ¢*(7) = Gamma(7|an. byn)

N

D (o= 1)+ Ao — uo)2]

n=1

N+ 1 1
8N280+T+ and bN:bOJFEEq#

Updates of ¢;(1¢) and g;(7) depend on each-other



Mean Field Approximation: Univariate Gaussian

(b)

(d)

Figure 10.4 lllustration of variational inference for the mean p and precision 7 of a univariate Gaussian distribu-
tion. Contours of the true posterior distribution p(, 7| D) are shown in green. (a) Contours of the initial factorized
approximation g, (pt)g- (7) are shown in blue. (b) After re-estimating the factor g, (i). (c) After re-estimating the
factor ¢ (7). (d) Contours of the optimal factorized approximation, to which the iterative scheme converges, are
shown in red.



Locally Conjugate Models

o Since log g7 (Z;) = Eix[In p(X, Z)] + const = Ei4[In p(X, Z;, Z_;)] + const, we can also write
log g7 (Z;) = Eix[log p(Z;|X. Z_;)] + const

o This is interesting: The form of optimal g;(Z;) will be the same as the conditional posterior of Z;

o For locally conjugate models, p(Z;|X,Z_;) is easy to find, and usually an exp-fam dist.

PZIX.Zj) = hZ)ew [n(X.Z2))7Z —A(X.Z-)]

where 7)() denotes the natural params of this exp-fam distribution (would depends on X and Z_)

o Using the above, we can rewrite the optimal variational distribution as follows
logq:(Z;) = Eiy [Iog (h(ZJ;) exp ln(x, Z_J,-)TZJ,- — A(n(X, Z_J,-))D} + const

= q'(Z) x hEZ)ew [Eyli(X.Z )7Z]  (verify)



ELBO Gradient

o More general way of doing VI is by computing ELBO’s gradient and doing gradient ascent/descent
o The gradient based approach is broadly applicable, not just for mean-field VI. Works as follows
@ Assume g(Z) to be from some family of distributions with variational parameters ¢

@ Write down the full ELBO expression (this will give us a function of variational params ¢)
L(q) = £L(¢) = Eqllogp(X.Z)] - Eqlog q(Z)]
= [ a@osp(x(2)dz + [ 4(2)log p(2)dZ ~ [ 4(2)l0g 4(2)d2
@ Compute ELBO gradients, i.e., V,£L(®) and use gradient methods to find optimal ¢

o Note: Step 2 may be simplified due to the problem structure or assumptions on the form of g(Z)

o i.i.d. observations simplify log p(X|Z); conditionally independent priors simplify log p(Z)

o Locally-conjugate models

o The mean-field assumption simplifies q(Z) as q(Z) = [, ¢:(Z))



Convergence of VI

o VI is guaranteed to converge but only to a local optima (just like EM)

o Therefore proper initialization is important (just like EM)
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Different initializations may lead to different optima

o ELBO increases monotonically with iterations, so we can monitor the ELBO to assess convergence



Modern VI

o Moving beyond locally conjugate models
o Moving beyond the mean-field assumption

o More scalable variational inference

o General-purpose VI (that doesn’t require model-specific derivations)

o Posing VI as a general gradient based optimization problem
¢"" = 6%+ x Vy [Ey,[log p(X, Z)] — Eqy, [log q(Z|0)]]

o A lot of recent research on approximating the gradient of an expectation



Questions



