
Variational Bayes/Inference



Bayesian Inferencing

• Posterior distribution:    p(|x)  p(x| ) p( )

Both prior and likelihood distributions are user choices/assumptions

Prior

X likelihood 

Posterior



Tractability of Bayesian Inferencing

• p(|x) = p(x| ) p( )/ p(x) = p(x| ) p( )/∫p(x| ) p( )d

data    belief  evidence

• The (normalizing) denominator is difficult to compute in closed form 
• Except for the case of conjugate priors

• Need for Approximate Bayesian methods



Approximate Bayesian Inferencing

• MAP point estimate
• All probability mass concentrated at maxima

• Finding MAP doesn’t need evidence computation

• Laplace approximation

• Variational inferencing

• Sampling based methods



Variational Inference
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Kullback-Leibler Divergence

• KL divergence is a measure of closeness between two distributions

• KL(q||p) = ∫q(x) log (q(x)/p(x))dx = Eq[log(q(x)/p(x))]

• q and p should have same domain

• KL is always greater than or equal to zero

• KL = 0, if q and p are equal almost everywhere

• Not symmetric

• Works well in practice



Variational Inference

• Optimization problem over distribution functions q( ) 
• Functional: KLD wrt p(|x)

Minimize q( ) ∈ Q KL(q( )||p(|x)) 



Solving the optimization problem

• Posterior distribution p(|x) is not tractable/known
• Difficult to compute KL(q(x)|| p(|x))

• We can transform the VI optimization problem terms of p(x| ), p( ) 

• p(x| ), p( ) are known and usually tractable

• We will away with the normalizing denominator “evidence” in Bayes rule which is usually 
difficult to compute



Variational Inference: Expanding the Evidence

If there is no restriction on q, then KLD is zero, and the lower bound is exact



Variational Inference: Optimization

Since, p(x) is independent of q( ) it can be considered as a constant in the optimization problem -

Minimize q( ) ∈ Q KL(q( )||p(|x)) 

Is equivalent to 

Maximize q( ) ∈ Q
ELBO - Variational lower bound



ELBO

• The first term is maximized when q( ) is a concentrated delta function at MLE – data term
• The second term is maximized when q( ) is same as the prior – regularization term
• A combination of both is maximized



Statistical Physics Interpretation of ELBO 



Generalizing KL Divergence

See Murphy book for details



Variational Inference: Summary

Since, p(x) is independent of q( ) it can be considered as a constant in the optimization problem -

Minimize q( ) ∈ Q KL(q( )||p(|x)) 

Is equivalent to 

Maximize q( ) ∈ Q
ELBO - Variational lower bound

The above derivation for  can be generalized to latent variables + parameters 
We call all of them as latent variables Z in subsequent discussion

What is the class of Q (the approximating distributions)?



Factorized Distributions

Let Z partition into non-overlapping groups Zi

Assume:
(Recall naïve Bayes)

We do not make any assumption of the functional form of the individual factors

Note that it is a restriction on q and not on p



Mean Field Theory

• In physics and probability theory, mean-field theory studies the behavior of 
high-dimensional random models by studying a simpler model that 
approximates the original by averaging over degrees of freedom. 

• Such models consider many individual components that interact with each 
other. In MFT, the effect of all the other individuals on any given individual 
is approximated by a single averaged effect, thus reducing a many-body 
problem to a one-body problem.

• The main idea of MFT is to replace all interactions to any one body with an 
average or effective interaction, sometimes called a molecular field.



Mean Field Approximation

• Do not consider interaction among all variable

• Cluster variables into groups

• Assume interaction within cluster – locally joint distribution

• Assume independence across cluster – factorization

• Mean field of the clusters are considered



Mean Field VI



Deriving Mean Field VI



Contd..



Coordinate Ascent Algorithm



Nature of Approximation in VI



Simple Example: Univariate Gaussian



Example Contd..



Mean Field Approximation: Univariate Gaussian



Locally Conjugate Models



ELBO Gradient



Convergence of VI



Modern VI



Questions


