Variational Bayes/Inference

Bayesian Inferencing

• Posterior distribution: $p(\theta|x) \propto p(x|\theta) p(\theta)$

Both prior and likelihood distributions are user choices/assumptions

Tractability of Bayesian Inferencing

• $p(\theta|x) = p(x|\theta) p(\theta) / p(x) = p(x|\theta) p(\theta) / \int p(x|\theta) p(\theta) d\theta$ data belief evidence

- The (normalizing) denominator is difficult to compute in closed form
 - Except for the case of conjugate priors

Need for Approximate Bayesian methods

Approximate Bayesian Inferencing

- MAP point estimate
 - All probability mass concentrated at maxima
 - Finding MAP doesn't need evidence computation

Laplace approximation

Variational inferencing

Sampling based methods

Variational Inference

Optimization problem

Kullback-Leibler Divergence

KL divergence is a measure of closeness between two distributions

- KL(q||p) = $\int q(x) \log (q(x)/p(x)) dx = E_q[\log(q(x)/p(x))]$
 - q and p should have same domain
 - KL is always greater than or equal to zero
 - KL = 0, if q and p are equal almost everywhere
 - Not symmetric
 - Works well in practice

Variational Inference

- Optimization problem over distribution functions $q(\theta)$
 - Functional: KLD wrt $p(\theta|x)$

Minimize
$$q(\theta) \in \mathcal{Q} KL(q(\theta) | | p(\theta|x))$$

Solving the optimization problem

- Posterior distribution $p(\theta|x)$ is not tractable/known
 - Difficult to compute $KL(q(x)||p(\theta|x))$

- We can transform the VI optimization problem terms of $p(x | \theta)$, $p(\theta)$
 - $p(x|\theta)$, $p(\theta)$ are known and usually tractable
 - We will away with the normalizing denominator "evidence" in Bayes rule which is usually difficult to compute

Variational Inference: Expanding the Evidence

$$\log p(x) = \int q(\theta) \log p(x) d\theta$$

$$= \int q(\theta) \log \frac{p(x,\theta)}{p(\theta|x)} d\theta$$

$$= \int q(\theta) \log \frac{p(x,\theta)q(\theta)}{p(\theta|x)q(\theta)} d\theta$$

$$= \int q(\theta) \log \frac{p(x,\theta)q(\theta)}{p(\theta|x)q(\theta)} d\theta$$

$$= \int q(\theta) \log \frac{p(x,\theta)}{q(\theta)} d\theta + \int q(\theta) \log \frac{q(\theta)}{p(\theta|x)} d\theta$$

$$= \mathcal{L}(q(\theta)) + \mathsf{KL}(q(\theta)||p(\theta|x))$$

Since KLD is positive - $\log p(x) \ge \mathcal{L}(q(\theta))$ Evidence Lower Bound (ELBO)

If there is no restriction on q, then KLD is zero, and the lower bound is exact

Variational Inference: Optimization

$$\log p(x) = \mathcal{L}(q(\theta)) + \mathsf{KL}(q(\theta)||p(\theta|x))$$

Since, p(x) is independent of $q(\theta)$ it can be considered as a constant in the optimization problem -

Minimize
$$q(\theta) \in \mathcal{Q} \text{KL}(q(\theta) | | p(\theta|x))$$

Is equivalent to

Maximize
$$q(\theta) \in \mathcal{Q}$$
 $\mathcal{L}(q(\theta))$ ELBO - Variational lower bound

ELBO

$$\mathcal{L}(q(\theta)) = \int q(\theta) \log \frac{p(x,\theta)}{q(\theta)} d\theta$$

$$= \int q(\theta) \log \frac{p(x|\theta)p(\theta)}{q(\theta)} d\theta$$

$$= \int q(\theta) \log p(x|\theta) d\theta + \int q(\theta) \log \frac{p(\theta)}{q(\theta)} d\theta$$

$$= \mathbb{E}_{q(\theta)}[\log p(x|\theta)] - \mathsf{KL}(q(\theta)||p(\theta))$$

- The first term is maximized when $q(\theta)$ is a concentrated delta function at MLE data term
- The second term is maximized when $q(\theta)$ is same as the prior regularization term
- A combination of both is maximized

Statistical Physics Interpretation of ELBO

$$\mathcal{L}(q(\theta)) = \int q(\theta) \log \frac{p(x,\theta)}{q(\theta)} d\theta$$
$$= \mathbb{E}_{q(\theta)}[\log p(x,\theta)] - \int q(\theta) \log q(\theta) d\theta$$

 $\mathcal{L}(q(\theta)) = \text{Energy of } p(x,\theta) + \text{Entropy of } q(\theta)$ $\mathcal{L}(q(\theta))$ is known as variational energy of Helmholtz free energy in statistical physics

Generalizing KL Divergence

One can create a family of divergence measures indexed by a parameter $\alpha \in \mathbb{R}$ by defining the **alpha divergence** as follows:

$$D_{\alpha}(p||q) \triangleq \frac{4}{1-\alpha^2} \left(1 - \int p(x)^{(1+\alpha)/2} q(x)^{(1-\alpha)/2} dx \right)$$
 (21.21)

This measure satisfies $D_{\alpha}(p||q) = 0$ iff p = q, but is obviously not symmetric, and hence is not a metric. $\mathbb{KL}(p||q)$ corresponds to the limit $\alpha \to 1$, whereas $\mathbb{KL}(q||p)$ corresponds to the limit $\alpha \to -1$. When $\alpha = 0$, we get a symmetric divergence measure that is linearly related to the **Hellinger distance**, defined by

$$D_H(p||q) \triangleq \int \left(p(x)^{\frac{1}{2}} - q(x)^{\frac{1}{2}}\right)^2 dx \tag{21.22}$$

Variational Inference: Summary

$$\log p(x) = \mathcal{L}(q(\theta)) + \mathsf{KL}(q(\theta)||p(\theta|x))$$

Since, p(x) is independent of $q(\theta)$ it can be considered as a constant in the optimization problem -

Minimize
$$q(\theta) \in \mathcal{Q} \text{KL}(q(\theta) | | p(\theta|x))$$

Is equivalent to

Maximize
$$q(\theta) \in \mathcal{Q}$$
 $\mathcal{L}(q(\theta))$ ELBO - Variational lower bound

The above derivation for θ can be generalized to latent variables + parameters. We call all of them as latent variables Z in subsequent discussion

What is the class of \mathcal{Q} (the approximating distributions)?

Factorized Distributions

Let Z partition into non-overlapping groups Z_i

Assume:

$$q(\mathbf{Z}) = \prod_{i=1}^{M} q_i(\mathbf{Z}_i).$$
 (Recall naïve Bayes)

We do not make any assumption of the functional form of the individual factors

Note that it is a restriction on q and not on p

Mean Field Theory

- In physics and probability theory, mean-field theory studies the behavior of high-dimensional random models by studying a simpler model that approximates the original by averaging over degrees of freedom.
- Such models consider many individual components that interact with each other. In MFT, the effect of all the other individuals on any given individual is approximated by a single averaged effect, thus reducing a many-body problem to a one-body problem.
- The main idea of MFT is to replace all interactions to any one body with an average or effective interaction, sometimes called a molecular field.

Mean Field Approximation

- Do not consider interaction among all variable
- Cluster variables into groups
- Assume interaction within cluster locally joint distribution
- Assume independence across cluster factorization

Mean field of the clusters are considered

Mean Field VI

- One of the simplest ways of doing VB
- In mean-field VB, we define a partition of the latent variables **Z** into M groups $\mathbf{Z}_1, \ldots, \mathbf{Z}_M$
- Assume our approximation $q(\mathbf{Z})$ factorizes over these groups

$$q(\mathbf{Z}|\phi) = \prod_{i=1}^{M} q(\mathbf{Z}_i|\phi_i)$$

- ullet As a short-hand, sometimes we write $q = \prod_{i=1}^M q_i$ where $q_i = q(\mathbf{Z}_i|\phi_i)$
- ullet In mean-field VB, learning the optimal q reduces to learning the optimal q_1,\ldots,q_M

Deriving Mean Field VI

- With $q = \prod_{i=1}^M q_i$, what's each optimal q_i equal to when we do $\arg\max_q \mathcal{L}(q)$?
- Note that under this mean-field assumption, the ELBO simplifies to

$$\mathcal{L}(q) = \int q(\mathbf{Z}) \log \left[\frac{p(\mathbf{X}, \mathbf{Z})}{q(\mathbf{Z})} \right] d\mathbf{Z} = \int \prod_i q_i \left[\log p(\mathbf{X}, \mathbf{Z}) - \sum_i \log q_i \right] d\mathbf{Z}$$

• Suppose we wish to find the optimal q_j given all other q_i $(i \neq j)$. Let's re-express $\mathcal{L}(q)$ as

$$\mathcal{L}(q) = \int q_j \left[\int \log p(\mathbf{X}, \mathbf{Z}) \prod_{i \neq j} q_i d\mathbf{Z}_i \right] d\mathbf{Z}_j - \int q_j \log q_j d\mathbf{Z}_j + \text{consts w.r.t. } q_j$$

$$= \int q_j \log \tilde{p}(\mathbf{X}, \mathbf{Z}_j) d\mathbf{Z}_j - \int q_j \log q_j d\mathbf{Z}_j$$

where $\log \tilde{p}(\mathbf{X}, \mathbf{Z}_i) = \mathbb{E}_{i \neq i}[\log p(\mathbf{X}, \mathbf{Z})] + \text{const}$

• Note that $\mathcal{L}(q) = -KL(q_i||\tilde{p}) + \text{const.}$ Which q_i will maximize it?

$$q_j = \tilde{p}(\mathbf{X}, \mathbf{Z}_j)$$

Contd...

• Since $\log q_j^*(\mathbf{Z}_j) = \log \tilde{p}(\mathbf{X}, \mathbf{Z}_j) = \mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})] + \text{const}$, we have

$$q_j^*(\mathbf{Z}_j) = \frac{\exp(\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})])}{\int \exp(\mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})])d\mathbf{Z}_j} \quad \forall j$$

- ullet For locally-conjugate models, $q_j^*(\mathbf{Z}_j)$ will have the same form as the prior $p(\mathbf{Z}_j)$
- Important: For estimating q_j , the required expectation depends on other $\{q_i\}_{i\neq j}$
- Thus we need to cycle through updating each q_i in turn co-ordinate ascent
- Guaranteed to converge (to a local optima)

Coordinate Ascent Algorithm

- Also known as Co-ordinate Ascent Variational Inference (CAVI) Algorithm
- Input: Model p(X, Z), Data X
- Output: A variational distribution $q(\mathbf{Z}) = \prod_{j=1}^{M} q_j(\mathbf{Z}_j)$
- Initialize: Variational distributions $q_j(\mathbf{Z}_j)$, $j=1,\ldots,M$
- While the ELBO has not converged
 - For each $j = 1, \dots, M$, set

$$q_j(\mathbf{Z}_j) \propto \exp(\mathbb{E}_{i \neq j}[\log p(\mathbf{X}, \mathbf{Z})])$$

• Compute ELBO $\mathcal{L}(q) = \mathbb{E}_q[\log p(\mathbf{X}, \mathbf{Z})] - \mathbb{E}_q[\log q(\mathbf{Z})]$

Nature of Approximation in VI

Recall that VB is equivalent to finding q by minimizing KL(q||p)

$$\mathsf{KL}(q||p) = \int q(\mathbf{Z}) \log \left[rac{q(\mathbf{Z})}{p(\mathbf{Z}|\mathbf{X})} \right]$$

If the true posterior $p(\mathbf{Z}|\mathbf{X})$ is very small in some region then, to minimize $\mathsf{KL}(q||p)$, the approx. dist. q will also have to be very small (otherwise KL will be very large)

This has two key consequences for VB

- Underestimates the variances of the true posterior
- For multimodal posteriors, VB locks onto one of the modes

Simple Example: Univariate Gaussian

- Consider data $\mathbf{X} = \{x_1, \dots, x_N\}$ from a 1-D Gaussian $\mathcal{N}(x|\mu, \tau^{-1})$ with mean μ , precision τ
- ullet Assume the following normal-gamma prior on μ and au

$$p(\mu|\tau) = \mathcal{N}(\mu|\mu_0, (\lambda_0\tau)^{-1})$$
 $p(\tau) = \mathsf{Gamma}(\tau|a_0, b_0)$

- Note: Here posterior is straightforward (normal-gamma due to the jointly conjugate prior)
- Let's try mean-field VI nevertheless to illustrate the idea
- With mean-field assumption on the variational posterior $q(\mu, \tau) = q_{\mu}(\mu)q_{\tau}(\tau)$

$$\log q_{\mu}^{*}(\mu) = \mathbb{E}_{q_{\tau}}[\log p(\mathbf{X}, \mu, \tau)] + \text{const}$$

$$\log q_{\tau}^{*}(\tau) = \mathbb{E}_{q_{\mu}}[\log p(\mathbf{X}, \mu, \tau)] + \text{const}$$

• In this example, the log-joint $\log p(\mathbf{X}, \mu, \tau) = \log p(\mathbf{X}|\mu, \tau) + \log p(\mu|\tau) + \log p(\tau)$. Therefore

$$\log q_{\mu}^*(\mu) = \mathbb{E}_{q_{\tau}}[\log p(\mathbf{X}|\mu,\tau) + \log p(\mu|\tau)] + \text{const}$$
 (only keeping terms that involve μ)

Example Contd..

• Substituting the expressions $p(\mathbf{X}|\mu,\tau) = \prod_{n=1}^{N} p(x_n|\mu,\tau)$ and $\log p(\mu|\tau)$, we get

$$\log q_{\mu}^{*}(\mu) = \mathbb{E}_{q_{\tau}}[\log p(\mathbf{X}|\mu,\tau) + \log p(\mu|\tau)] + \text{const}$$

$$= -\frac{\mathbb{E}_{q_{\tau}}[\tau]}{2} \left\{ \sum_{n=1}^{N} (x_{n} - \mu)^{2} + \lambda_{0}(\mu - \mu_{0})^{2} \right\} + \text{const}$$

• (Verify) The above is log of a Gaussian. Thus $q_{\mu}^*(\mu) = \mathcal{N}(\mu|\mu_N, \tau_N)$ with

$$\mu_{N} = rac{\lambda_{0}\mu_{0} + Nar{x}}{\lambda_{0} + N}$$
 and $\lambda_{N} = (\lambda_{0} + N)\mathbb{E}_{q_{\tau}}[\tau]$

• Proceeding in a similar way (verify), we can show that $q_{\tau}^*(\tau) = \operatorname{\mathsf{Gamma}}(\tau|a_N,b_N)$

$$a_N = a_0 + rac{N+1}{2}$$
 and $b_N = b_0 + rac{1}{2}\mathbb{E}_{q_\mu}\left[\sum_{n=1}^N (x_n - \mu)^2 + \lambda_0(\mu - \mu_0)^2\right]$

Updates of $q_{\mu}^*(\mu)$ and $q_{\tau}^*(\tau)$ depend on each-other

Mean Field Approximation: Univariate Gaussian

Figure 10.4 Illustration of variational inference for the mean μ and precision τ of a univariate Gaussian distribution. Contours of the true posterior distribution $p(\mu,\tau|D)$ are shown in green. (a) Contours of the initial factorized approximation $q_{\mu}(\mu)q_{\tau}(\tau)$ are shown in blue. (b) After re-estimating the factor $q_{\mu}(\mu)$. (c) After re-estimating the factor $q_{\tau}(\tau)$. (d) Contours of the optimal factorized approximation, to which the iterative scheme converges, are shown in red.

Locally Conjugate Models

- Since $\log q_j^*(\mathbf{Z}_j) = \mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z})] + \operatorname{const} = \mathbb{E}_{i \neq j}[\ln p(\mathbf{X}, \mathbf{Z}_j, \mathbf{Z}_{-j})] + \operatorname{const}$, we can also write $\log q_j^*(\mathbf{Z}_j) = \mathbb{E}_{i \neq j}[\log p(\mathbf{Z}_j|\mathbf{X}, \mathbf{Z}_{-j})] + \operatorname{const}$
- This is interesting: The form of optimal $q_j(\mathbf{Z}_j)$ will be the same as the conditional posterior of \mathbf{Z}_j
- For locally conjugate models, $p(\mathbf{Z}_j|\mathbf{X},\mathbf{Z}_{-j})$ is easy to find, and usually an exp-fam dist.

$$p(\mathbf{Z}_j|\mathbf{X},\mathbf{Z}_{-j}) = h(\mathbf{Z}_j) \exp \left[\eta(\mathbf{X},\mathbf{Z}_{-j})^{\top}\mathbf{Z}_j - A(\eta(\mathbf{X},\mathbf{Z}_{-j}))\right]$$

where $\eta()$ denotes the natural params of this exp-fam distribution (would depend on \mathbf{X} and \mathbf{Z}_{-j})

Using the above, we can rewrite the optimal variational distribution as follows

$$\log q_j^*(\mathbf{Z}_j) = \mathbb{E}_{i\neq j} \left[\log \left(h(\mathbf{Z}_j) \exp \left[\eta(\mathbf{X}, \mathbf{Z}_{-j})^\top \mathbf{Z}_j - A(\eta(\mathbf{X}, \mathbf{Z}_{-j})) \right] \right) \right] + \text{const}$$

$$\implies q_j^*(\mathbf{Z}_j) \propto h(\mathbf{Z}_j) \exp \left[\mathbb{E}_{i\neq j} [\eta(\mathbf{X}, \mathbf{Z}_{-j})]^\top \mathbf{Z}_j \right] \quad \text{(verify)}$$

ELBO Gradient

- More general way of doing VI is by computing ELBO's gradient and doing gradient ascent/descent
- The gradient based approach is broadly applicable, not just for mean-field VI. Works as follows
 - **1** Assume $q(\mathbf{Z})$ to be from some family of distributions with variational parameters ϕ
 - ② Write down the **full ELBO** expression (this will give us a function of variational params ϕ)

$$\mathcal{L}(q) = \mathcal{L}(\phi) = \mathbb{E}_q[\log p(\mathbf{X}, \mathbf{Z})] - \mathbb{E}_q[\log q(\mathbf{Z})]$$

$$= \int q(\mathbf{Z}) \log p(\mathbf{X}|\mathbf{Z}) d\mathbf{Z} + \int q(\mathbf{Z}) \log p(\mathbf{Z}) d\mathbf{Z} - \int q(\mathbf{Z}) \log q(\mathbf{Z}) d\mathbf{Z}$$

- **3** Compute **ELBO gradients**, i.e., $\nabla_{\phi} \mathcal{L}(\phi)$ and use gradient methods to find optimal ϕ
- Note: Step 2 may be simplified due to the problem structure or assumptions on the form of q(Z)
 - i.i.d. observations simplify $\log p(\mathbf{X}|\mathbf{Z})$; conditionally independent priors simplify $\log p(\mathbf{Z})$
 - Locally-conjugate models
 - The mean-field assumption simplifies $q(\mathbf{Z})$ as $q(\mathbf{Z}) = \prod_{i=1}^M q_i(\mathbf{Z}_i)$

Convergence of VI

- VI is guaranteed to converge but only to a local optima (just like EM)
- Therefore proper initialization is important (just like EM)

ELBO increases monotonically with iterations, so we can monitor the ELBO to assess convergence

Modern VI

- Moving beyond locally conjugate models
- Moving beyond the mean-field assumption
- More scalable variational inference
- General-purpose VI (that doesn't require model-specific derivations)
 - Posing VI as a general gradient based optimization problem

$$\phi^{new} = \phi^{old} + \eta \times \nabla_{\phi} \left[\mathbb{E}_{q_{\phi}} [\log p(\mathbf{X}, \mathbf{Z})] - \mathbb{E}_{q_{\phi}} [\log q(\mathbf{Z}|\phi)] \right]$$

A lot of recent research on approximating the gradient of an expectation

Questions