Latent Variable Models

Latent Variable Models

- Depends on
_Problem-specific type of e
(discrete or cqplmuous) (e.g., Gaussian)

*p®) o(x(2,0)

Z x
n ~ n
N

* Latent

* Variables that cannot be observed (both in training and testing)

Advantages:
* Augment model to simplify inference (logistic regression)
* Latent features/properties of data (clusters, topics, representation)

Example of Latent Variable

* Team Selection for a Sports Meet

Height (x,) (m) | Weight (x,) Daily exercise | Hours of sleep | Performance
(kg) (x3) (kCal) (x4) (hrs) Score
1.64 2300

1.83 80 2700 7 90
1.52 70 2200 6 70

Probabilistic Inference

p(score|xy, Xy, X3, X4)

Large number possible combinations
of the variables.

Probabilistic Inference

[

p(score|fitness)p(fitness|x,)p(fitness|x,)p(fitness|x;)p(fitness|x,)

Reduction in number of model parameters

Fitness — latent variable

Parameters vs Latent Variables

» Parameters are global, Latent Variables are observation specific/local
* Computationally difficult to do posterior inference for all the variables

* Hybrid inference
e Estimate Posterior for latent/local variable
* Point estimate (e.g., MLE) for parameters/global variables

Example: Gaussian Mixture Model (GMM)

0 0.5 1

Mixture of Gaussian

@ A Gaussian mixture model represents a distribution as

K
p(x) =D N (x|pk,)
k=1

with 7, the mixing coefficients, where:

K
Zwk:1 and 7, >0 Vk
k=1

@ GMMs are universal approximators of densities

Latent Variable View of GMM

@ We could introduce a hidden (latent) variable z which would represent
which Gaussian generated our observation x, with some probability

@ Let z ~ Categorical(w) (where 7, >0, >, m =1)

@ [hen:

Parameter Estimation of GMM

@ Maximum likelihood maximizes

N K
Inp(X|m, . X) = I (Z TN (X zk))

n=1 k=1

w.r.t @ = {Trk.,li.k. Zk}

@ How would you optimize this?
@ Can we have a closed form update?

@ Don't forget to satisfy the constraints on

Parameter Estimation in GMM

@ A Gaussian mixture distribution:

Mx

X‘;ik Zk
k:

@ We had: z ~ Categorical(w) (where 7 >0, >, m =1)
@ Joint distribution: p(x,z) = p(z)p(x|z)
@ Log-likelihood:

N

U7,) = Inp(X|m, g1,) Zlnp T L)
;ﬂ
—1

K
In > p(x"[2" 1. T)p(z"|)

z(n=1

@ Note: We have a hidden variable z(") for every observation

@ General problem: sum inside the log

Learning Parameters

o If we knew z(" for every x(", the maximum likelihood problem is easy:

N
(7, 1, L) Z Inp(x\", 2|7, 4, T) = Z In p(x| 2" 11, D) +1n p(27|)
n—1

n=1

N n
> et L=y x7

Mk = N
> et Lizm=g]
N n n
s > onet Lz (U — g) (x —) T
k p—

N
D =1 Ljztm=g]

| N
Tk = Nzgl[z(”)k

~]

|
|

Learning Parameters

* Similarly if we knew the parametersm, |, 2
e Estimating the latent variable is easy

* Chicken and Egg Problem!

Expectation Maximization Algorithm

@ Optimization uses the Expectation Maximization algorithm, which alternates
between two steps:

1. E-step: Compute the posterior probability that each Gaussian generates
each datapoint (as this is unknown to us)

2. M-step: Assuming that the data really was generated this way, change
the parameters of each Gaussian to maximize the probability that it
would generate the data it is currently responsible for.

EM Algorithm

@ Elegant and powerful method for finding maximum likelihood solutions for
models with latent variables
1. E-step:
» |n order to adjust the parameters, we must first solve the inference

problem: Which Gaussian generated each datapoint?
» We cannot be sure, so it's a distribution over all possibilities.

W = p(" = ki)

2. M-step:
» Each Gaussian gets a certain amount of posterior probability for each
datapoint.
» At the optimum we shall satisfy
dlnp(X|m, pn,) 0
00

» We can derive closed form updates for all parameters

E Step

@ Conditional probability (using Bayes rule) of z given x

p(z = k)p(x|z = k)
p(x)
p(z = k)p(x|z = k)

= plz=kix) =

S p(z=j)p(x|z =)
?T;(N(X|,!f.k.zk)
S TN (x|,)

M Step

@ Log-likelihood:

N
In p(X|m, 1. X) = "I

n=1

@ Set derivatives to 0O:

K
(Z TrkN(x(”)hz.k, Zk))
k=1

Oln p(X|m, 1. L) & kN (X |1k, L) (n)
; =0= (X — fuk)
Ik ; S TN (X, E))
@ We used:
1 1
N (x|, X) = exp (—=(x—p)"Z7 (x = p)
(2m)9] ()
and:
I x T
J(x" Ax) _xT(A+ AT)

M Step

| N

5, T, I, n

¢ |np(2(\ 1, X) _0-%" .«kN(k.) e (x™ —)

Ok 1 Z 1 N (X[, 2f)
e
@ This gives
L
- ~ (n) (n)
Lk = 5~ .' X

with Nk the effective number of points in cluster k

N
=3

n=1

M Step

@ We can get similarly expression for the variance

N
1 n n n
T = g 2 W =) () =)
n=1

@ We can also minimize w.r.t the mixing coefficients

N N
k . n
Tk = N with Ny = E ";-;E)

n=1

@ The optimal mixing proportion to use (given these posterior probabilities) is
just the fraction of the data that the Gaussian gets responsibility for.

@ Note that this is not a closed form solution of the parameters, as they
depend on the responsibilities ’*}-';E”), which are complex functions of the

parameters

@ But we have a simple iterative scheme to optimize

Summary of GMM

@ Initialize the means i, covariances 2, and mixing coefficients 7y

@ [terate until convergence:

» E-step: Evaluate the responsibilities given current parameters

= p(z"x) =

N (X pax, T
SR TN (x|, T 5)

» M-step: Re-estimate the parameters given current responsibilities

[k

2k

Tk

Ny
N

N
y with N, = Z f}-}(”)

» Evaluate log likelihood and check for convergence

N K
In p(X|7, 0, T) = 3 In (Z mN (i, Zk))
n=1

k=1

Generalized Expectation Maximization

Generalized EM Algorithm

f(a.a + (1- a).b) 2 a.f(a) + (1- a).f(b)
In general:
flay.a, + a,.a, + 05.35) 2 a,.f(ay) + a,.f(a,) + a;.f(a;)

@

If: o, +a, +0,=1
a.a+ (1- a).b b s

Can think of a’s as probabilities.

_ Logarithm is an example of concave function
Concave function

Jensen Inequality

Theorem. Let [be a convex function, and let X be a random variable.
Then:
E[f(X)] = f(EX).

Reverse holds for concave functions.

If f is concave, -f is convex

Kullback-Leibler Divergence

* Measures similarity between two distributions

Dz (pllg) = / p(ﬂ?)logggi d

* The value is greater than or equal to zero.
* The value is zero when two distributions are identical.

MLE In LVM

o Suppose we want to estimate parameters © via MLE. If we knew both x, and z, then we could do
N N

OME = arg max 2; log p(xp, 2,|©) = arg mé]xX; [log p(z,|) + log p(xn|zp, 6)]
n—= n=

o Simple to solve (usually closed form) if p(z,|®) and p(x,|z,,0) are “simple” (e.g., exp-fam. dist.)

o However, in LVMs where z,, is “hidden”, the MLE problem will be the following
N

Ouie = arg max Zglogp(xné)) = arg méaxlogp(X\@)
n—=

o The form of p(x,|©) may not be simple since we need to sum over unknown z,'s possible values

p(x,|@) = Zp Xn.Zn|©) or if z, is continuous: p(x,|©) = /p(xn.zn\@)dzn

MLE in LVM: Optimization Problem

* The summation/integral may lead to complex expressions for the
likelihood

p(xn|©)

OmMLE

Optimizing a Lower Bound

p(xn|©)

q(ZZI e)
q(zll e

OmLE

x,|©) 2q(z, 6)
p(X:[©) q — variational distribution, changes with z

Depends on both latent variable and parameter
Easy to maximise

Two Step lterative Optimization (for MLE)

e Step 1: Obtain the variational distribution lower bound with lowest
gap

e Step 2: Obtain the maximum point for that variational distribution as
candidate solution for 6, ;

* Repeat

Lower Bound on the Likelihood

o Define p, = p(Z|X, ©) and let g(Z) be some distribution over Z

o Assume discrete Z, the identity below holds for any choice of the distribution g(Z)

log p(X|©) = L(q.©) + KL(ql|p-)

KL(q| p)
_ op 4 PX ZIO)
L(q.0) = Zz: q(Z) g{ @ }
ZIX, ©
KL(q|lpz) = —ZQ‘(Z) Iog{ l q|(Z.)) } L(q.8) Inp(X8)
z
. |

(Exercise: Verify the above identity)
o Since KL(q||p;) > 0, £(q,©) is a lower-bound on log p(X|©)

log p(X[©) > L(q,0)

o Maximizing £(q, ©) will also improve log p(X|©)

Maximising L

o First recall the identity we had: log p(X|©) = L(q.©) + KL(q||p,) with

_ op 4 PX.Z19)
L(q,©)=> 4q(2)! g{ @)

z

(Z|X, ©)

o og 4 PAEIM)
} and KL(qllp:) = Zq(z)'g{ q(Z) }

z

o Maximize £ w.r.t. g with © fixed at ©°: Since log p(X|®) will be a constant in this case,

g = arg maxﬁ(q.@o"d) = argminKL(q||p;) = p; = p(Z\X.@O’;d)
q

q

o Maximize £ w.r.t. © with g fixed at § = p(Z|X, @Old)

new __ Py _ old
™" =arg max L£(G,0)=arg max ; p(Z|X,0%7) log

.. therefore,

" = arg max Q(©, @"M)
)

p(X,Z|O)
p(Z|X, 64

_ old
= arg mgx; p(Z|X, 0% log p(X, Z|©)

where Q(©, @°) = E,(z)x,000)[log p(X, Z|©)]

Visualization

o Step 1: We set § = p(Z|X.©°9), £(§, ©) touches log p(X|©) at @

o Step 2: We maximize £(§.©) w.r.t. © (equivalent to maximizing Q(©, ©°))

After updating q log p (X ‘ 6)

o) OrLE

Visualization

o Step 1: We set § = p(Z|X.©°9), £(§.O) touches log p(X|©) at ©°H

o Step 2: We maximize £(§.©) w.r.t. © (equivalent to maximizing Q(©.©°9))

log p(X|©)

After maximizing
w.rt. © :

00 o) OrLE

Visualization

o Step 1: We set g = p(Z|X,©°9), £(4.0O) touches log p(X|©) at @°H

o Step 2: We maximize £(§.©) w.r.t. © (equivalent to maximizing Q(©, ©°))

After updating q logp(X\@)

00 o) Gh.fm

Visualization

o Step 1: We set § = p(Z|X.©°), £(§.©) touches log p(X|©) at ©°

o Step 2: We maximize £(§.©) w.r.t. © (equivalent to maximizing Q(©, ©°))

log p(X|0©)

After maximizing
W.It. ©

0 o) Gtz) @:‘l:fLE

Visualization

o Step 1: We set § = p(Z|X.©°), £(§,O) touches log p(X|©) at @°1

o Step 2: We maximize £(§,©) w.r.t. © (equivalent to maximizing Q(@, ©°9))

After updating q logp(X\(-))

o o) o® Onip

Visualization

o Step 1: We set § = p(Z|X.©°), £(g,©) touches log p(X|©) at @

o Step 2: We maximize £(§,©) w.r.t. © (equivalent to maximizing Q(©, @°%))

log p(X|[O)

After maximizing
W.rt. ©

e0)) (__)i:z) (H)'(fi) E}J'I:fLE

Visualization

o Step 1: We set § = p(Z|X.©°) L(4.0O) touches log p(X|©) at ©°

o Step 2: We maximize £(§.©) w.r.t. © (equivalent to maximizing Q(©.©°))

Local Maxima Found

After updating q logp(X\(-))

00 o) 2 o) Ornrpg

Monotonicity

o The two-step alternating optimzation scheme we saw can never decrease p(X|©) (good thing)

o To see this consider both steps: (1) Optimize q given © = @°; (2) Optimize © given this ¢

KL(qllp) = 0 ‘ KL(glp) l

£(q.8%) Inp(X|6°'7)
L(g,8"™) In p(X|67°")

(Step 1) (Step 2)

o Step 1 keeps © fixed, so p(X|©) obviously can't decrease (stays unchanged in this step)

o Step 2 maximizes the lower bound £(q,©) w.r.t ©. Thus p(X|©) can’t decrease!

The EM Algorithm

Initialize the parameters: ©°. Then alternate between these steps:
o E (Expectation) step:
o Compute the posterior distribution p(Z|X, ©°9) over latent variables Z using @°"
o Compute the expected complete data log-likelihood w.r.t. this posterior distribution

N
Q(@.@OM) = EP(lejeofd)[log p(X Z|@)] = ZEP(anxm@oM}[lOg p(xn,Zn‘e)]

n=1

N
— E 2, x,.c0d)[l0g p(x,|z,, ©) + log p(z,|0)]
1

n=

o M (Maximization) step:

o Maximize the expected complete data log-likelihood w.r.t. ©
O™ = arg max Q(e, 0%

Continue till log-likelihood does not converge!

Pseudocode

The EM Algorithm

o Initialize © as ©(9) set t =1

o Step 1: Compute conditional posterior of latent vars given current params ©(t—1)

p(zy 100 D)p(x,| 2y € 1)
p(x,|0(=1)

o Step 2: Now maximize the expected complete data log-likelihood w.r.t. ©

N

@(t) = arg mé]x Q(@ @(t—l)) = arg mgx Z EP(ZE:”XW'@“_I)) [log ,D(Xn. ZE?” |e)]

n=1

p(z\Vx,, 0=y = o prior x likelihood

o If not yet converged, set t =t + 1 and go to Step 1.

Applications of EM

o Mixture of (multivariate) Gaussians/Bernoullis,multinoullis, Mixture of experts models
o Problems with missing labels/features (treat these as latent variables)

o Note that EM not only gives estimates of the parameters © but also infers latent variables Z

o Hyperparameter estimation in probabilistic models (an alternative to MLE-II)

o We've already seen MLE-Il where we did MLE on marginal likelihood, e.g., for linear regression
p(y|X. A, B) = /p(y|X. w. 3)p(w|\)dw

o As an alternative, can treat w as a latent variable and 3. A as parameters and use EM to learn these

