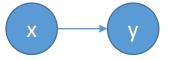
Conditional Models

Conditional Models

• Two node models - p(y|x)

- Supervised learning
 - Regression (y is real)
 - Classification (y is discrete)
- y depends on x



Estimating Conditional Models

- Conditional models can be estimated using one of the following two ways
 - **1** Estimate the joint distribution p(x, y) and then use Bayes rule to get p(y|x)

$$p(y|\mathbf{x},\theta) = \frac{p(\mathbf{x},y|\theta)}{p(\mathbf{x}|\theta)}$$

② Estimate the conditional p(y|x) directly (used when we don't care about modeling x), e.g.

$$p(y|\mathbf{x}) = \mathcal{N}(y|f_{\mu}(\mathbf{x}), f_{\sigma^2}(\mathbf{x}))$$
 (params of $p(y|\mathbf{x})$ will be functions of \mathbf{x})

Approach 1 is called generative approach, approach 2 is called discriminative approach

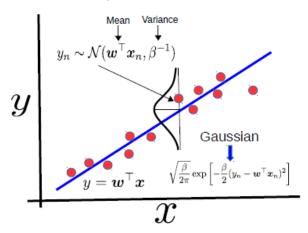
Linear Regression

- Given: N training examples $\{\boldsymbol{x}_n,y_n\}_{n=1}^N$, features: $\boldsymbol{x}_n \in \mathbb{R}^D$, response $y_n \in \mathbb{R}$
- Assume a "noisy" linear model with regression weight vector $\mathbf{w} = [w_1, w_2, \dots, w_D] \in \mathbb{R}^D$

$$y_n = \mathbf{w}^{\mathsf{T}} \mathbf{x}_n + \epsilon_n$$

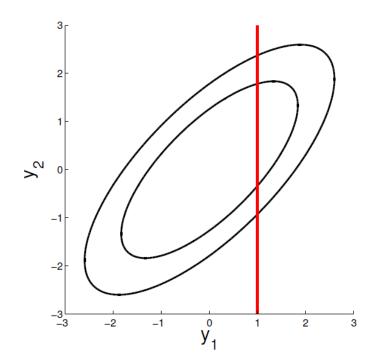
where $\epsilon_n \sim \mathcal{N}(0, \beta^{-1})$, β : precision (inverse variance) of Gaussian (assumed known)

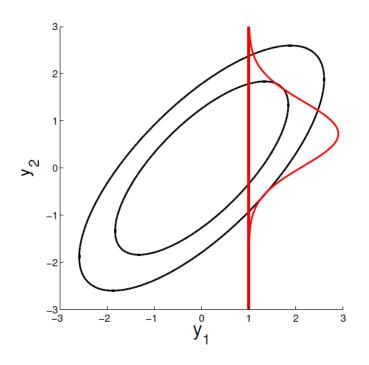
• Therefore $p(y_n|\mathbf{x}_n, \mathbf{w}, \beta) = \mathcal{N}(y_n|\mathbf{w}^{\top}\mathbf{x}_n, \beta^{-1})$

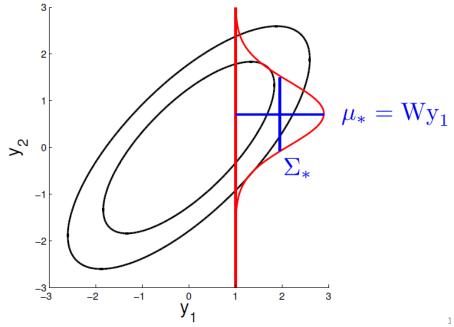


Conditional Distributions

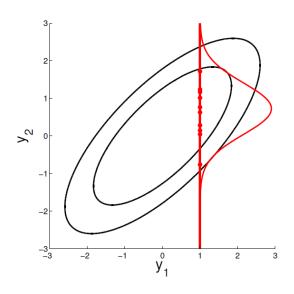
$$p(\mathsf{y}_2|\mathsf{y}_1,\Sigma) \propto \exp\left(-\frac{1}{2}(\mathsf{y}_2 - \mu_*){\Sigma_*}^{-1}(\mathsf{y}_2 - \mu_*)\right)$$

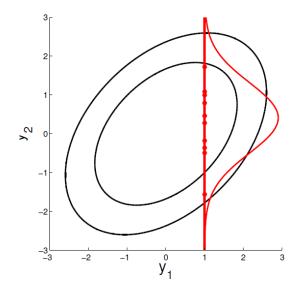






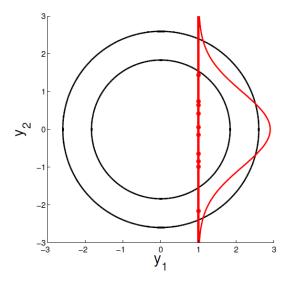
Conditional Distributions





$$\Sigma = \left[egin{array}{cc} 1 & .7 \\ .7 & 1 \end{array}
ight]$$

$$\Sigma = \left[egin{array}{cc} 1 & .4 \ .4 & 1 \end{array}
ight]$$



$$\Sigma = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]$$

Maximum Likelihood Estimate

- Notation: $\mathbf{X} = [\mathbf{x}_1 \dots \mathbf{x}_N]^\top : N \times D$ feature matrix, $\mathbf{y} = [y_1 \dots y_N]^\top : N \times 1$ response vector
- Assuming independent observations, the likelihood model

$$p(\mathbf{y}|\mathbf{w}, \mathbf{X}, \beta) = \prod_{n=1}^{N} p(y_n|\mathbf{w}, \mathbf{x}_n, \beta) = \prod_{n=1}^{N} \mathcal{N}(y_n|\mathbf{w}^{\top}\mathbf{x}_n, \beta^{-1})$$

$$= \prod_{n=1}^{N} \sqrt{\frac{\beta}{2\pi}} \exp\left[-\frac{\beta}{2}(y_n - \mathbf{w}^{\top}\mathbf{x}_n)^2\right]$$

$$= \left(\frac{\beta}{2\pi}\right)^{\frac{N}{2}} \exp\left[-\frac{\beta}{2}\sum_{n=1}^{N}(y_n - \mathbf{w}^{\top}\mathbf{x}_n)^2\right]$$

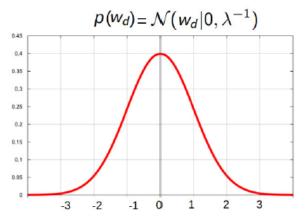
can also write the likelihood p(y|w,X) as an N-dim multivariate Gaussian

$$p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \beta) = \mathcal{N}(\mathbf{y}|\mathbf{X}\mathbf{w}, \beta^{-1}\mathbf{I}_{N}) = \left(\frac{\beta}{2\pi}\right)^{\frac{N}{2}} \exp\left[-\frac{\beta}{2}(\mathbf{y} - \mathbf{X}\mathbf{w})^{\top}(\mathbf{y} - \mathbf{X}\mathbf{w})\right]$$

Prior

ullet Assume the entries in $oldsymbol{w}$ are i.i.d. with zero mean Gaussian priors. Therefore

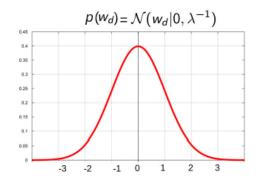
$$p(\mathbf{w}) = \prod_{d=1}^{D} p(w_d) = \prod_{d=1}^{D} \mathcal{N}(w_d|0, \lambda^{-1}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \lambda^{-1}\mathbf{I}_D) = \left(\frac{\lambda}{2\pi}\right)^{\frac{D}{2}} \exp\left[-\frac{\lambda}{2}\mathbf{w}^{\top}\mathbf{w}\right]$$



 \bullet This prior promotes the entries in \boldsymbol{w} to be small (close to zero)

Sparse regression and L₂ regularizers

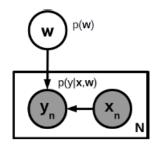
Prior Hyperparameters



- ullet The role of the precision hyperparam λ in the prior is important
- Large values of λ would more aggressively encourage w_d to be close to zero
- ullet Can think of λ as the regularization hyperparam for the weights
- Can even have different λ for each w_d , i.e., $p(\mathbf{w}|\{\lambda_d\}_{d=1}^D) = \prod_{d=1}^D \mathcal{N}(w_d|0,\lambda_d^{-1})$

Sparse regression

Bayesian Linear Regression



(Hyperparameters λ,β not shown as they are fixed/known)

• Want to infer the posterior distribution over \mathbf{w} (for now, assume β and λ to be known)

$$p(\mathbf{w}|\mathbf{y}, \mathbf{X}, \beta, \lambda) = \frac{p(\mathbf{w}|\lambda)p(\mathbf{y}|\mathbf{w}, \mathbf{X}, \beta)}{p(\mathbf{y}|\mathbf{X}, \beta, \lambda)}$$

Want to infer the posterior predictive distribution

$$p(y_*|\mathbf{x}_*,\mathbf{X},\mathbf{y},\beta,\lambda) = \int p(y_*|\mathbf{w},\mathbf{x}_*,\beta)p(\mathbf{w}|\mathbf{X},\mathbf{y},\beta,\lambda)d\mathbf{w}$$

If Likelihood and Prior are assumed to be Gaussians, posterior is simple to compute

Posterior Distribution

• The posterior over **w** (for now, assume hyperparams β and λ to be known)

$$p(\mathbf{w}|\mathbf{y}, \mathbf{X}, \beta, \lambda) = \frac{p(\mathbf{w}|\lambda)p(\mathbf{y}|\mathbf{w}, \mathbf{X}, \beta)}{p(\mathbf{y}|\mathbf{X}, \beta, \lambda)} \propto p(\mathbf{w}|\lambda)p(\mathbf{y}|\mathbf{w}, \mathbf{X}, \beta)$$

• Computing $p(\mathbf{w}|\mathbf{X},\mathbf{y},\beta,\lambda)$

$$p(\mathbf{w}|\mathbf{y}, \mathbf{X}, \beta, \lambda) \propto \mathcal{N}(\mathbf{w}|\mathbf{0}, \lambda^{-1}\mathbf{I}_D) \times \mathcal{N}(\mathbf{y}|\mathbf{X}\mathbf{w}, \beta^{-1}\mathbf{I}_N)$$

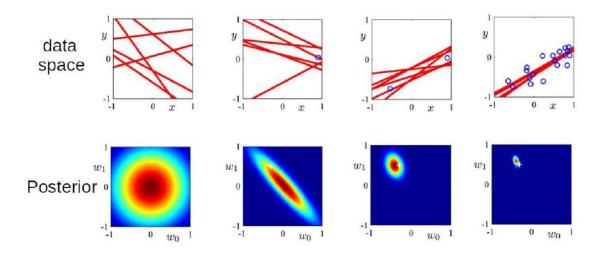
Using the "completing the squares" trick (or directly using Gaussian conditioning formula)

$$p(\mathbf{w}|\mathbf{y}, \mathbf{X}, \beta, \lambda) = \mathcal{N}(\boldsymbol{\mu}_N, \boldsymbol{\Sigma}_N)$$
 where $\boldsymbol{\Sigma}_N = (\beta \sum_{n=1}^N \mathbf{x}_n \mathbf{x}_n^\top + \lambda \mathbf{I}_D)^{-1} = (\beta \mathbf{X}^\top \mathbf{X} + \lambda \mathbf{I}_D)^{-1}$ (posterior's covariance matrix)

$$\boldsymbol{\mu}_{N} = \boldsymbol{\Sigma}_{N} \left[\beta \sum_{n=1}^{N} y_{n} \boldsymbol{x}_{n} \right] = \boldsymbol{\Sigma}_{N} \left[\beta \boldsymbol{\mathsf{X}}^{\top} \boldsymbol{y} \right] = (\boldsymbol{\mathsf{X}}^{\top} \boldsymbol{\mathsf{X}} + \frac{\lambda}{\beta} \boldsymbol{\mathsf{I}}_{D})^{-1} \boldsymbol{\mathsf{X}}^{\top} \boldsymbol{y}$$

Visualizing the Posterior

- Assume a linear regression problem with ground truth $\mathbf{w} = [w_0, w_1]$ with $w_0 = -0.3, w_1 = 0.5$
- Assume data generated by a linear regression model $y = w_0 + w_1 x +$ "noise"
 - Note: It's actually 1-D regression (w_0 is just a bias term), or 2-D reg. with feature [1,x]
- Figures below show the "data space" and posterior of \mathbf{w} for different number of observations (note: with no observations, the posterior = prior)



Posterior Predictive Distribution

- Given the posterior $p(\mathbf{w}|\mathbf{y}, \mathbf{X}, \beta, \lambda) = \mathcal{N}(\mu_N, \mathbf{\Sigma}_N)$, how to make prediction y_* for a new input \mathbf{x}_* ?
- The posterior predictive distribution will be

$$p(y_*|\mathbf{x}_*,\mathbf{X},\mathbf{y},\beta,\lambda) = \int p(y_*|\mathbf{x}_*,\mathbf{w},\beta)p(\mathbf{w}|\mathbf{X},\mathbf{y},\beta,\lambda)d\mathbf{w}$$

Using Gaussian predictive/marginal formula, the posterior predictive will be another Gaussian

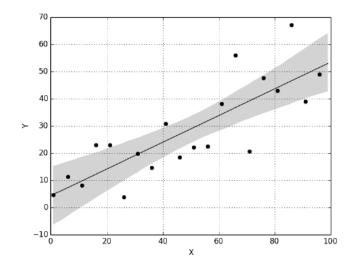
$$p(y_*|\mathbf{x}_*,\mathbf{X},\mathbf{y},\beta,\lambda) = \mathcal{N}(\boldsymbol{\mu}_N^\top \mathbf{x}_*,\beta^{-1} + \mathbf{x}_*^\top \mathbf{\Sigma}_N \mathbf{x}_*)$$

- So we get a predictive mean $\mu_N^{\top} \mathbf{x}_*$ and an input-specific predictive variance $\beta^{-1} + \mathbf{x}_*^{\top} \mathbf{\Sigma}_N \mathbf{x}_*$
- ullet In contrast, MLE and MAP make "plug-in" predictions (using the point estimate of $oldsymbol{w}$)

$$p(y_*|\mathbf{x}_*, \mathbf{w}_{MLE}) = \mathcal{N}(\mathbf{w}_{MLE}^{\top}\mathbf{x}_*, \beta^{-1})$$
 - MLE prediction $p(y_*|\mathbf{x}_*, \mathbf{w}_{MAP}) = \mathcal{N}(\mathbf{w}_{MAP}^{\top}\mathbf{x}_*, \beta^{-1})$ - MAP prediction

Visualizing PPD

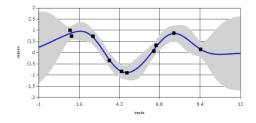
Black dots are training examples



Width of the shaded region at any x denotes the predictive uncertainty at that x (+/- one std-dev)

Regions with more training examples have smaller predictive variance

Nonlinear Regression



- Can extend the linear regression model to handle nonlinear regression problems
- One way is to replace the feature vectors \mathbf{x} by a nonlinear mapping $\phi(\mathbf{x})$

$$p(y|\mathbf{x}, \mathbf{w}) = \mathcal{N}(\mathbf{w}^{\top} \phi(\mathbf{x}), \beta^{-1})$$

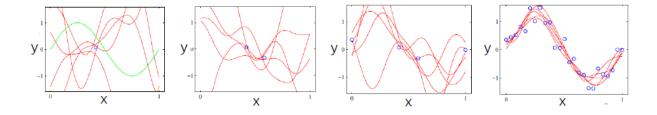
 \bullet The nonlinear mapping can be defined directly, e.g., for a one-dimensional feature x

$$\phi(x) = [1, x, x^2]$$

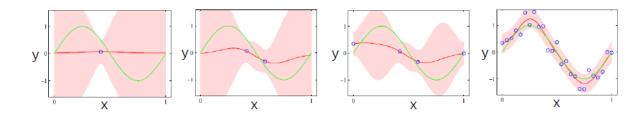
Alternatively, a kernel function can be used to implicitly define the nonlinear mapping

Visualizations

- We can similarly visualize a Bayesian nonlinear regression model
- Figures below: Green curve is the true function and blue circles are observations (x_n, y_n)
- Posterior of the nonlinear regression model: Some curves drawn from the posterior

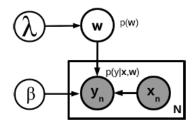


Posterior predictive: Red curve is predictive mean, shaded region denotes predictive uncertainty



Learning Hyperparameters

- Can treat hyperparams as just a bunch of additional unknowns
- Can be learned using a suitable inference algorithm (point estimation or fully Bayesian)
- Example: For the linear regression model, the full set of parameters would be $(\mathbf{w}, \lambda, \beta)$



• Can assume priors on all these parameters and infer their "joint" posterior distribution

$$p(\mathbf{w}, \beta, \lambda | \mathbf{X}, \mathbf{y}) = \frac{p(\mathbf{y} | \mathbf{X}, \mathbf{w}, \beta, \lambda) p(\mathbf{w}, \lambda, \beta)}{p(\mathbf{y} | \mathbf{X})} = \frac{p(\mathbf{y} | \mathbf{X}, \mathbf{w}, \beta, \lambda) p(\mathbf{w} | \lambda) p(\beta) p(\lambda)}{\int p(\mathbf{y} | \mathbf{X}, \mathbf{w}, \beta) p(\mathbf{w} | \lambda) p(\beta) p(\lambda) d\mathbf{w} d\lambda d\beta}$$

• Infering the above is usually intractable (rare to have conjugacy). Requires approximations.

MLE on Hyperparameters

- One popular way to estimate hyperparameters is by maximizing the marginal likelihood
- For our linear regression model, this quantity (a function of the hyperparams) will be

$$p(\mathbf{y}|\mathbf{X},\beta,\lambda) = \int p(\mathbf{y}|\mathbf{X},\mathbf{w},\beta)p(\mathbf{w}|\lambda)d\mathbf{w}$$

• The "optimal" hyperparameters in this case can be then found by

$$\hat{\beta}, \hat{\lambda} = \arg\max_{\beta, \lambda} \log p(\mathbf{y}|\mathbf{X}, \beta, \lambda)$$

This is called MLE-II or (log) evidence maximization

Sparse Regression

Many probabilistic models consist of weights that are given zero-mean Gaussian priors, e.g.,

$$\mu(\mathbf{x}) = \sum_{d=1}^{D} w_d x_d$$
 (mean of a prob. lin reg model)
$$\mu(\mathbf{x}) = \sum_{n=1}^{N} w_n k(\mathbf{x}_n, \mathbf{x})$$
 (mean of a prob. kernel based nonlin reg model)

- A zero-mean prior is of the form $p(w_d) = \mathcal{N}(0, \lambda^{-1})$ or $p(w_d) = \mathcal{N}(0, \lambda_d^{-1})$
- Precision λ or λ_d specifies our belief about how close to zero w_d is (like regularization hyperparam)
- However, such a prior usually gives small weights but not very strong sparsity
- Putting a gamma prior on precision can give sparsity (will soon see why)
 - Sparsity of weights will be a very useful thing to have in many models, e.g.,
 - For linear model, this helps learn relevance of each feature x_d

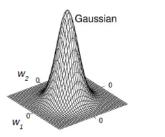
Hierarchical Priors

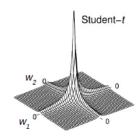
- ullet Consider linear regression with prior $p(w_d|\lambda_d)=\mathcal{N}(0,\lambda_d^{-1})$ on each weight
- ullet Let's treat precision λ_d as unknown and use a gamma (shape =a, rate =b) prior on it

$$p(\lambda_d) = \text{Gamma}(a, b) = \frac{b^a}{\Gamma(a)} \lambda_d^{a-1} \exp(-b\lambda_d)$$

• Marginalizing the precision leads to a Student-t prior on each w_d

$$p(w_d) = \int p(w_d | \lambda_d) p(\lambda_d) d\lambda_d = \frac{b^a \Gamma(a + 1/2)}{\sqrt{2\pi} \Gamma(a)} (b + w_d^2/2)^{-(a+1/2)}$$





Bayesian Logistic Regression

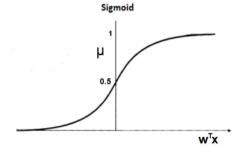
- The goal is to learn $p(y|\mathbf{x})$. Here $p(y|\mathbf{x})$ will be a discrete distribution (e.g., Bernoulli, multinoulli)
- Usually two approaches to learn $p(y|\mathbf{x})$: Discriminative Classification and Generative Classification
- Discriminative Classification: Model and learn p(y|x) directly
 - This approach does not model the distribution of the inputs x
- Generative Classification: Model and learn $p(y|\mathbf{x})$ "indirectly" as $p(y|\mathbf{x}) = \frac{p(y)p(\mathbf{x}|y)}{p(\mathbf{x})}$
 - Called generative because, via p(x|y), we model how the inputs x of each class are generated
 - The approach requires first learning class-marginal p(y) and class-conditional distributions p(x|y)
 - Usually harder to learn than discriminative but also has some advantages (more on this later)

Classification by Logistic Regression

- Logistic Regression (LR) is an example of discriminative binary classification, i.e., $y \in \{0, 1\}$
- Logistic Regression models x to y relationship using the sigmoid function

$$p(y = 1 | \boldsymbol{x}, \boldsymbol{w}) = \mu = \sigma(\boldsymbol{w}^{\top} \boldsymbol{x}) = \frac{1}{1 + \exp(-\boldsymbol{w}^{\top} \boldsymbol{x})} = \frac{\exp(\boldsymbol{w}^{\top} \boldsymbol{x})}{1 + \exp(\boldsymbol{w}^{\top} \boldsymbol{x})}$$

where $\mathbf{w} \in \mathbb{R}^D$ is the weight vector. Also note that $p(y=0|\mathbf{x},\mathbf{w})=1-\mu$



• A large positive (negative) "score" $\mathbf{w}^{\top}\mathbf{x}$ means large probability of label being 1 (0)

Classification Rules

The LR classification rule is

$$p(y = 1|\mathbf{x}, \mathbf{w}) = \mu = \sigma(\mathbf{w}^{\top}\mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^{\top}\mathbf{x})} = \frac{\exp(\mathbf{w}^{\top}\mathbf{x})}{1 + \exp(\mathbf{w}^{\top}\mathbf{x})}$$
$$p(y = 0|\mathbf{x}, \mathbf{w}) = 1 - \mu = 1 - \sigma(\mathbf{w}^{\top}\mathbf{x}) = \frac{1}{1 + \exp(\mathbf{w}^{\top}\mathbf{x})}$$

This implies a Bernoulli likelihood model for the labels

$$p(y|\mathbf{x}, \mathbf{w}) = \mathsf{Bernoulli}(\sigma(\mathbf{w}^{\top}\mathbf{x})) = \left[\frac{\exp(\mathbf{w}^{\top}\mathbf{x})}{1 + \exp(\mathbf{w}^{\top}\mathbf{x})}\right]^{y} \left[\frac{1}{1 + \exp(\mathbf{w}^{\top}\mathbf{x})}\right]^{(1-y)}$$

• Given N observations $(\mathbf{X}, \mathbf{y}) = \{\mathbf{x}_n, y_n\}_{n=1}^N$, we can do point estimation for \mathbf{w} by maximizing the log-likelihood (or minimizing the negative log-likelihood). This is basically MLE.

$$\mathbf{w}_{MLE} = \arg\max_{\mathbf{w}} \sum_{n=1}^{N} \log p(y_n | \mathbf{x}_n, \mathbf{w}) = \arg\min_{\mathbf{w}} - \sum_{n=1}^{N} \log p(y_n | \mathbf{x}_n, \mathbf{w}) = \arg\min_{\mathbf{w}} \frac{NLL(\mathbf{w})}{n}$$

Bayesian Logistic Regression

Recall that the likelihood model is Bernoulli

$$p(y|\mathbf{x}, \mathbf{w}) = \mathsf{Bernoulli}(\sigma(\mathbf{w}^{\top}\mathbf{x})) = \left[\frac{\exp(\mathbf{w}^{\top}\mathbf{x})}{1 + \exp(\mathbf{w}^{\top}\mathbf{x})}\right]^{y} \left[\frac{1}{1 + \exp(\mathbf{w}^{\top}\mathbf{x})}\right]^{(1-y)}$$

Just like the Bayesian linear regression case, let's use a Gausian prior on w

$$p(\mathbf{w}) = \mathcal{N}(0, \lambda^{-1} \mathbf{I}_D) \propto \exp(-\frac{\lambda}{2} \mathbf{w}^{\top} \mathbf{w})$$

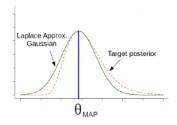
• Given N observations $(\mathbf{X}, \mathbf{y}) = \{\mathbf{x}_n, y_n\}_{n=1}^N$, where \mathbf{X} is $N \times D$ and \mathbf{y} is $N \times 1$, the posterior over \mathbf{w}

$$p(\mathbf{w}|\mathbf{X},\mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{X},\mathbf{w})p(\mathbf{w})}{\int p(\mathbf{y}|\mathbf{X},\mathbf{w})p(\mathbf{w})d\mathbf{w}} = \frac{\prod_{n=1}^{N} p(y_n|\mathbf{x}_n,\mathbf{w})p(\mathbf{w})}{\int \prod_{n=1}^{N} p(y_n|\mathbf{x}_n,\mathbf{w})p(\mathbf{w})d\mathbf{w}}$$

The denominator is intractable in general (logistic-Bernoulli and Gaussian are not conjugate)

Laplace Approximation of Posterior Distrib.

• Approximate the posterior distribution $p(\theta|\mathcal{D}) = \frac{p(\mathcal{D}|\theta)p(\theta)}{p(\mathcal{D})} = \frac{p(\mathcal{D},\theta)}{p(\mathcal{D})}$ by the following Gaussian $p(\theta|\mathcal{D}) \approx \mathcal{N}(\theta_{MAP},\mathbf{H}^{-1})$



• Note: θ_{MAP} is the maximum-a-posteriori (MAP) estimate of θ , i.e.,

$$\theta_{MAP} = \arg\max_{\theta} p(\theta|\mathcal{D}) = \arg\max_{\theta} p(\mathcal{D}, \theta) = \arg\max_{\theta} p(\mathcal{D}|\theta) p(\theta) = \arg\max_{\theta} [\log p(\mathcal{D}|\theta) + \log p(\theta)]$$

- Usually θ_{MAP} can be easily solved for (e.g., using first/second order iterative methods)
- ullet H is the Hessian matrix of the negative log-posterior (or negative log-joint-prob) at $heta_{MAP}$

$$\mathbf{H} = -\nabla^2 \log p(\theta|\mathcal{D})\big|_{\theta=\theta_{MAP}} = -\nabla^2 \log p(\mathcal{D},\theta)\big|_{\theta=\theta_{MAP}}$$

Derivation of Laplace Aprroximation

Let's write the Bayes rule as

$$p(\theta|\mathcal{D}) = \frac{p(\mathcal{D}, \theta)}{p(\mathcal{D})} = \frac{p(\mathcal{D}, \theta)}{\int p(\mathcal{D}, \theta) d\theta} = \frac{e^{\log p(\mathcal{D}, \theta)}}{\int e^{\log p(\mathcal{D}, \theta)} d\theta}$$

• Suppose $\log p(\mathcal{D}, \theta) = f(\theta)$. Let's approximate $f(\theta)$ using its 2nd order Taylor expansion

$$f(\theta) \approx f(\theta_0) + (\theta - \theta_0)^{\top} \nabla f(\theta_0) + \frac{1}{2} (\theta - \theta_0)^{\top} \nabla^2 f(\theta_0) (\theta - \theta_0)$$

where θ_0 is some arbitrarily chosen point in the domain of f

• Let's choose $\theta_0 = \theta_{MAP}$. Note that $\nabla f(\theta_{MAP}) = \nabla \log p(\mathcal{D}, \theta_{MAP}) = 0$. Therefore

$$\log p(\mathcal{D}, \theta) \approx \log p(\mathcal{D}, \theta_{MAP}) + \frac{1}{2}(\theta - \theta_{MAP})^{\top} \nabla^2 \log p(\mathcal{D}, \theta_{MAP})(\theta - \theta_{MAP})$$

Contd..

• Plugging in this 2nd order Taylor approximation for $\log p(\mathcal{D}, \theta)$, we have

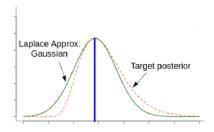
$$p(\theta|\mathcal{D}) = \frac{e^{\log p(\mathcal{D}, \theta)}}{\int e^{\log p(\mathcal{D}, \theta)} d\theta} \approx \frac{e^{\log p(\mathcal{D}, \theta_{MAP}) + \frac{1}{2}(\theta - \theta_{MAP})^{\top} \nabla^{2} \log p(\mathcal{D}, \theta_{MAP})(\theta - \theta_{MAP})}}{\int e^{\log p(\mathcal{D}, \theta_{MAP}) + \frac{1}{2}(\theta - \theta_{MAP})^{\top} \nabla^{2} \log p(\mathcal{D}, \theta_{MAP})(\theta - \theta_{MAP})} d\theta}$$

Further simplifying, we have

$$p(\theta|\mathcal{D}) \approx \frac{e^{-\frac{1}{2}(\theta - \theta_{MAP})^{\top} \{-\nabla^{2} \log p(\mathcal{D}, \theta_{MAP})\}(\theta - \theta_{MAP})}}{\int e^{-\frac{1}{2}(\theta - \theta_{MAP})^{\top} \{-\nabla^{2} \log p(\mathcal{D}, \theta_{MAP})\}(\theta - \theta_{MAP})} d\theta}$$

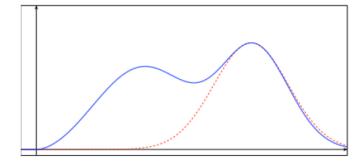
• Therefore the Laplace approximation of the posterior $p(\theta|\mathcal{D})$ is a Gaussian and is given by

$$p(\theta|\mathcal{D}) pprox \mathcal{N}(\theta|\theta_{MAP}, \mathbf{H}^{-1})$$
 where $\mathbf{H} = -\nabla^2 \log p(\mathcal{D}, \theta_{MAP})$



Properties of Laplace Aprroximation

- Usually straightforward if derivatives (first and second) can be computed easily
- Expensive if the number of parameters is very large (due to Hessian computation and inversion)
- Can do badly if the (true) posterior is multimodal



- Can actually apply it when working with any regularized loss function (not just probabilistic models) to get a Gaussian posterior distribution over the parameters
 - negative log-likelihood (NLL) = loss function, negative log-prior = regularizer

Laplace Approximation for Logistic Regression

• Data $\mathcal{D} = (\mathbf{X}, \mathbf{y})$ and parameter $\theta = \mathbf{w}$. The Laplace approximation of posterior will be

$$p(\mathbf{w}|\mathbf{X},\mathbf{y}) \approx \mathcal{N}(\mathbf{w}_{MAP},\mathbf{H}^{-1})$$

The required quantities are defined as

$$\mathbf{w}_{MAP} = \arg \max_{\mathbf{w}} \log p(\mathbf{w}|\mathbf{y}, \mathbf{X}) = \arg \max_{\mathbf{w}} \log p(\mathbf{y}, \mathbf{w}|\mathbf{X}) = \arg \min_{\mathbf{w}} [-\log p(\mathbf{y}, \mathbf{w}|\mathbf{X})]$$

$$\mathbf{H} = \nabla^{2} [-\log p(\mathbf{y}, \mathbf{w}|\mathbf{X})]|_{\mathbf{w} = \mathbf{w}_{MAP}}$$

- We can compute \mathbf{w}_{MAP} using iterative methods (gradient descent):
 - First-order (gradient) methods: $\mathbf{w}_{t+1} = \mathbf{w}_t \eta \mathbf{g}_t$. Requires gradient \mathbf{g} of $-\log p(\mathbf{y}, \mathbf{w}|\mathbf{X})$

$$\mathbf{g} = \nabla[-\log p(\mathbf{y}, \mathbf{w}|\mathbf{X})]$$

ullet Second-order methods. $oldsymbol{w}_{t+1} = oldsymbol{w}_t - oldsymbol{H}_t^{-1} oldsymbol{g}_t$. Requires both gradient and Hessian (defined above)

PPD for Logistic Regression

• When using MLE, the predictive distribution will be

$$p(y_* = 1 | \boldsymbol{x}_*, \boldsymbol{w}_{MLE}) = \sigma(\boldsymbol{w}_{MLE}^{\top} \boldsymbol{x}_*)$$
$$p(y_* | \boldsymbol{x}_*, \boldsymbol{w}_{MLE}) = \text{Bernoulli}(\sigma(\boldsymbol{w}_{MLE}^{\top} \boldsymbol{x}_*))$$

When using MAP, the predictive distribution will be

$$p(y_* = 1 | \boldsymbol{x}_*, \boldsymbol{w}_{MAP}) = \sigma(\boldsymbol{w}_{MAP}^\top \boldsymbol{x}_*)$$
$$p(y_* | \boldsymbol{x}_*, \boldsymbol{w}_{MAP}) = \text{Bernoulli}(\sigma(\boldsymbol{w}_{MAP}^\top \boldsymbol{x}_*))$$

When using Bayesian inference, the posterior predictive distribution, based on posterior averaging

$$p(y_* = 1 | \boldsymbol{x}_*, \boldsymbol{\mathsf{X}}, \boldsymbol{y}) = \int p(y_* = 1 | \boldsymbol{x}_*, \boldsymbol{w}) p(\boldsymbol{w} | \boldsymbol{\mathsf{X}}, \boldsymbol{y}) d\boldsymbol{w} = \int \sigma(\boldsymbol{w}^\top \boldsymbol{x}_*) p(\boldsymbol{w} | \boldsymbol{\mathsf{X}}, \boldsymbol{y}) d\boldsymbol{w}$$

• Above is hard in general. :-(If using the Laplace approximation for $p(\boldsymbol{w}|\boldsymbol{X},\boldsymbol{y})$, it will be

$$p(y_* = 1 | \mathbf{x}_*, \mathbf{X}, \mathbf{y}) \approx \int \sigma(\mathbf{w}^{\top} \mathbf{x}_*) \mathcal{N}(\mathbf{w} | \mathbf{w}_{MAP}, \mathbf{H}^{-1}) d\mathbf{w}$$

Its multiclass extension is softmax regression (which again can be treated in a Bayesian manner)

Bayesian Generative Classification

- Consider N labeled examples $\{(\boldsymbol{x}_i, y_i)\}_{n=1}^N$. Assume binary labels, i.e., $y_i \in \{0, 1\}$
- ullet Goal: Classify a new example $oldsymbol{x}$ by assigning a label $y \in \{0,1\}$ to it
- We will assume a Generative Model for both labels y and and features x
 - What it means: We will have (probabilistic) observation models for both y as well as x
 - In contrast, in Bayesian linear regression model (and Bayesian logistic regression model), we didn't model x (there, we simply conditioned y on x, treating x as "fixed")
 - When we don't model x and simply model y as a function of x: Discriminative Model
- Generative classification models have many benefits. E.g.,
 - Can also utilize unlabeled examples (semi-supervised learning)
 - Can handle missing/corrupted features in x
 - \bullet Can properly handle cases when features in x could be of mixed type (e.g., real, binary, count)

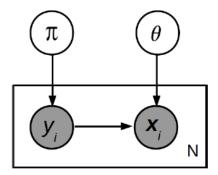
Generative Classification

- Basic idea: Each x_i is assumed generated conditioned on the value of corresponding label y_i
- The associated generative story is as follows
 - First draw ("generate") a binary label $y_i \in \{0,1\}$

$$y_i \sim \mathsf{Bernoulli}(\pi)$$

• Now draw ("generate") the feature vector x from a distribution specific to the value y_i takes

$$\mathbf{x}_i|y_i \sim p(\mathbf{x}|\theta_{y_i})$$



Shaded is observed

Generative Classification

Our generative model for classification is

$$y_i \sim \mathsf{Bernoulli}(\pi), \qquad \mathbf{x}_i | y_i \sim p(\mathbf{x} | \theta_{y_i})$$

- Note: We have two distributions $p(\mathbf{x}|\theta_0)$ and $p(\mathbf{x}|\theta_1)$ for feature vector \mathbf{x} (depending on its label)
- These distributions are also known as "class-conditional distributions"
- For now, we will not assume any specific form for the distriutions $p(\mathbf{x}|\theta_0)$ and $p(\mathbf{x}|\theta_1)$
 - Depends on nature of x (real-valued vectors? binary vectors? count vectors?)
- Model parameters to be learned here: $(\pi, \theta_0, \theta_1)$
- Note: Can extend to more than 2 classes (e.g., by replacing the Bernoulli on y by multinoulli)

Predicting Labels

- Note: The generative model only defines $p(y|\pi)$ and $p(\mathbf{x}|\theta_y)$. Doesn't define $p(y|\mathbf{x})$
- We combine these using Bayes rule to get p(y|x)

$$p(y|\mathbf{x}) = \frac{p(y|\pi)p(\mathbf{x}|\theta_y)}{p(\mathbf{x})} = \frac{p(y|\pi)p(\mathbf{x}|\theta_y)}{\sum_{y} p(y|\pi)p(\mathbf{x}|\theta_y)}$$

- Parameters of distributions $p(y|\pi)$ and $p(\mathbf{x}|\theta_y)$ are estimated from training data using point estimation methods (MLE or MAP) or using fully Bayesian inference (discussed today)
- Once these parameters π and θ_y are estimated (point estimates, or full posterior if doing Bayesian inference), the above Bayes rule can be applied to a new input \hat{x} to compute $p(\hat{y}|\hat{x})$

Priors

- Let us focus on the supervised, binary classification setting for now
- ullet In this case, we have three parameters to be learned: π , $heta_0$, and $heta_1$
 - Probability $\pi \in (0,1)$ of the Bernoulli. Can assume the following Beta prior

$$\pi \sim \text{Beta}(a, b)$$

• Parameters θ_0 , and θ_1 of the class-conditional distributions. Will assume the same prior on both

$$\theta_0, \theta_1 \sim p(\theta)$$

• We will jointly denote the prior on π , θ_0 , and θ_1 as $p(\pi, \theta_0, \theta_1) = p(\pi)p(\theta_0)p(\theta_1)$

Likelihood

- ullet Denote the N imes D feature matrix by X and the N imes 1 label vector by $oldsymbol{y}$
- ullet Since both X and $oldsymbol{y}$ are being modeled here, the likelihood function will be

$$p(X, \vec{y} | \pi, \theta_1, \theta_0) = \prod_{i=1}^{N} p(x_i, y_i | \pi, \theta_1, \theta_0)$$

$$= \prod_{i=1}^{N} p(x_i | y_i, \pi, \theta_1, \theta_0) p(y_i | \pi, \theta_1, \theta_0)$$

$$= \prod_{i=1}^{N} p(x_i | \theta_{y_i}) p(y_i | \pi)$$

Posterior

We need to infer the following posterior distribution

$$p(\pi, \theta_1, \theta_0 | \vec{y}, X) = \frac{p(X, \vec{y} | \pi, \theta_1, \theta_0) p(\pi, \theta_1, \theta_0)}{\int_{\Omega_\theta} \int_0^1 p(X, \vec{y} | \pi, \theta_1, \theta_0) p(\pi, \theta_1, \theta_0) d\pi d\theta_1 d\theta_0}$$

- Note: Ω_{θ} denotes the domain of θ
- Recall the prior $p(\pi, \theta_0, \theta_1) = p(\pi)p(\theta_0)p(\theta_1)$. The likelihood also factorized over data points, i.e.,

$$p(X, \mathbf{y}|\pi, \theta_1, \theta_0) = \prod_{i=1}^{N} p(x_i|\theta_{y_i}) p(y_i|\pi)$$

Posterior:

$$p(\pi, \theta_1, \theta_0 | \vec{y}, X) \propto \left[\prod_{i:y_i=1} p(x_i | \theta_1) p(\theta_1) \right] \left[\prod_{i:y_i=0} p(x_i | \theta_0) p(\theta_0) \right] \left[\prod_{i=1}^N p(y_i | \pi) p(\pi) \right]$$

Posterior

• Luckily, in this case, the same factorization structure simplies the denominator as well

$$p(\pi, \theta_1, \theta_0 | \vec{y}, X) = \frac{\prod_{i:y_i=1} p(x_i | \theta_1) p(\theta_1)}{\int \prod_{i:y_i=1} p(x_i | \theta_1) p(\theta_1) d\theta_1} \cdot \frac{\prod_{i:y_i=0} p(x_i | \theta_0) p(\theta_0)}{\int \prod_{i:y_i=0} p(x_i | \theta_0) p(\theta_0) d\theta_0} \cdot \frac{\prod_{i=1}^N p(y_i | \pi) p(\pi)}{\int \prod_{i=1}^N p(y_i | \pi) p(\pi) d\pi}$$

• The above is just a product of three posterior distributions!

$$p(\pi, \theta_1, \theta_0 | \vec{y}, X) = p(\theta_1 | \{x_i : y_i = 1\}) p(\theta_0 | \{x_i : y_i = 0\}) p(\pi | \vec{y})$$

• We also know what $p(\pi|\mathbf{y})$ will be (recall the coin-toss example)

$$p(\pi|\vec{y}) \propto \prod_{i=1}^{N} p(y_i|\pi)p(\pi) \longrightarrow p(\pi|\vec{y}) = \text{Beta}(a + \sum_{i} y_i, b + N - \sum_{i} y_i)$$

• Form of posteriors on θ_1 and θ_2 will depend on $p(\mathbf{x}|\theta_1)$ and $p(\theta_1)$, and $p(\mathbf{x}|\theta_0)$ and $p(\theta_0)$, resp.

PPD

• Original goal is classification. We thus also want the predictive posterior for label of a new input, i.e., $p(\hat{y}|\hat{x})$, for which the more "complete" notation in this Bayesian setting would be $p(\hat{y}|\hat{x}, X, y)$

$$p(\hat{y}|\hat{x}, X, \vec{y}) = \int_{\Omega_{\theta}} \int_{\Omega_{\theta}}^{1} \int_{0}^{1} p(\hat{y}|\hat{x}, \theta_1, \theta_0, \pi) p(\theta_1, \theta_0, \pi|X, \vec{y}) d\pi d\theta_1 d\theta_0$$

Luckily, in this case, this too has a rather simple form. Using Bayes rule, we have

$$p(\hat{y}|\hat{x}, X, \vec{y}) = \frac{p(\hat{x}|\hat{y}, X, \vec{y})p(\hat{y}|X, \vec{y})}{p(\hat{x}|\hat{y} = 1, X, \vec{y})p(\hat{y} = 1|X, \vec{y}) + p(\hat{x}|\hat{y} = 0, X, \vec{y})p(\hat{y} = 0|X, \vec{y})}$$

$$= \frac{p(\hat{x}|\hat{y}, X, \vec{y})p(\hat{y}|\vec{y})}{p(\hat{x}|\hat{y} = 1, X, \vec{y})p(\hat{y} = 1|\vec{y}) + p(\hat{x}|\hat{y} = 0, X, \vec{y})p(\hat{y} = 0|\vec{y})}$$

- In order to compute this, we need $p(\hat{x}|\hat{y}, X, \mathbf{y})$ and $p(\hat{y}|\mathbf{y})$
 - $p(\hat{x}|\hat{y}, X, y)$: Marginal class-conditional distribution of the new input vector \hat{x}
 - $p(\hat{y}|y)$: Marginal probability of its label \hat{y} given the labels of training data

Contd...

- Predictive posterior requires computing $p(\hat{x}|\hat{y}, X, \mathbf{y})$ and $p(\hat{y}|\mathbf{y})$
- The marginal likelihood $p(\hat{x}|\hat{y}, X, \mathbf{y})$ of \hat{x} can be computed as

$$p(\hat{x}|\hat{y}, X, \vec{y}) = \int_{\Omega_{\theta}} \int_{\Omega_{\theta}} p(\hat{x}|\hat{y}, \theta_1, \theta_0) p(\theta_1, \theta_0 | X, \vec{y}) d\theta_1 d\theta_0$$
$$= \int_{\Omega_{\theta}} p(\hat{x}|\theta_{\hat{y}}) p(\theta_{\hat{y}} | \{x_i : y_i = \hat{y}\}) d\theta_{\hat{y}}$$

• The above is simply the posterior predictive distribution of class \hat{y} . The final expression will depend on the forms of $p(\hat{x}|\theta_{\hat{y}})$ and $p(\theta_{\hat{y}}|.)$. If exp-family, we will have closed form expression!

Naïve Bayes Classifier

- Usually the most critical choice in generative classification is that of class conditional $p(\mathbf{x}|\theta_{\gamma})$
- Very complex $p(\mathbf{x}|\theta_{V})$ with lots of parameters may make estimation difficult
- Often however we can choose simple forms of $p(\mathbf{x}|\theta_y)$ to make estimation easier
- The naïve Bayes assumption: The conditional distribution $p(\mathbf{x}|\theta_y)$ factorizes over individual features (or over groups of features)
 - Suppose the features of \hat{x} can be partitioned into v groups $\hat{x} = \{\hat{x}(j)\}_{j=1}^v$
 - ullet Can also assume a similar partitioning for the parameters $heta_{\hat{\mathbf{y}}}$
 - This further simplifies calculation of marginal likelihood $p(\hat{x}|\hat{y}, X, y)$

$$p(\hat{x}|\hat{y}, X, \vec{y}) = \int_{\Omega_{\theta}} \prod_{i=1}^{v} p(\hat{x}(j)|\theta_{\hat{y}}(j)) p(\theta_{\hat{y}}(j)|\{x_{i}(j) : y_{i} = \hat{y}\}) d\theta_{\hat{y}}$$