Conditional Models



Conditional Models

* Two node models - p(y|x)

* Supervised learning
* Regression (y is real)
 Classification (y is discrete)

* y depends on x

00



Estimating Conditional Models

o Conditional models can be estimated using one of the following two ways

@ Estimate the joint distribution p(x,y) and then use Bayes rule to get p(y|x)

(x.y|0)
p(x|6)

@ Estimate the conditional p(y|x) directly (used when we don't care about modeling x), e.g.

plylx.0) = F

p(y|x) = N(y|fu(x), f,2(x)) (params of p(y|x) will be functions of x)

o Approach 1 is called generative approach, approach 2 is called discriminative approach



Linear Regression

o Given: N training examples {x,. y, f;"zl, features: x, € RP, response y, € R

o Assume a “noisy” linear model with regression weight vector w = [wy, ws. ..., wp] € RP

-
Yn=W Xn T €

where €, ~ N(0.371), 3: precision (inverse variance) of Gaussian (assumed known)

o Therefore p(y,|xn. w. 3) = N(vo|lw ' x,.571)

Mean Marance




Conditional Distributions

P(yaly1. X) o exp (—%(yg — ;,;,.*)Z*_l(yQ — ;_L*))

pre = Wy,



Conditional Distributions
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Maximum Likelihood Estimate

o Notation: X = [x1...xn]": N x D feature matrix, ¥y = [y1...yn]': N x 1 response vector

o Assuming independent observations, the likelihood model

N N
, , - T, a—
ply|lw, X, 3) = I Ip{yn\w,xn,,ﬁ) = I |J\f (volw ' xn, 377)
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can also write the likelihood p(y|w. X) as an N-dim multivariate Gaussian

N
py|X, w, B) = N(y|Xw, 37 '1y) = (_> 2

—
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Prior

o Assume the entries in w are i.i.d. with zero mean Gaussian priors. Therefore

= = A 2 A
(w) = (wy) = | [ N(wg|o. A" D) =N (w|0. X Hp)=(=—) exp|—=w'w
p Elp d £[1 4 D (27?) p[ 5

PO)= A (510,4™")

o This prior promotes the entries in w to be small (close to zero)

Sparse regression and L, regularizers




Prior Hyperparameters

P N (0,1

o The role of the precision hyperparam A in the prior is important

o Large values of A would more aggressively encourage wy to be close to zero

o Can think of A as the regularization hyperparam for the weights

o Can even have different \ for each wy, i.e., p(w|{\s}7_,) = HdDle(Wd\O. A 1)

Sparse regression



Bayesian Linear Regression

@ plw)

plylx,w)

N

(Hyperparameters \,[3 not shown as they are fixed /known)
o Want to infer the posterior distribution over w (for now, assume /3 and A to be known)

w oy PwN)p(y|w, X, 5)
Pty %54 p(y|X, 5, )

o Want to infer the posterior predictive distribution

p(yul|xe. X, ¥y, B, A) = / p(y«|w. x.. B)p(w|X,y, 3. \)dw

If Likelihood and Prior are assumed to be Gaussians, posterior is simple to compute



Posterior Distribution

o The posterior over w (for now, assume hyperparams (3 and A to be known)

w|A)p(y|w. X. )

. P(
p(wly, X, 3,\) = -
(] )=

x p(w|\)p(y|lw, X, 3)
o Computing p(w|X,y. 3, \)

p(wly. X. 3. 1) oc N (w[0, X7 p) x N(y|Xw. 37 )

o Using the “completing the squares” trick (or directly using Gaussian conditioning formula)

p(wly. X, 5.0) = Ny En)
N
where Xy = (5 anx: +AMp) = (X" X+ Ap)~ " (posterior's covariance matrix)
n=1

py = Xy

N
B yaxi

n=1

A
— 3, {_SXT_y} = (XX +Z10) "Xy




Visualizing the Posterior

o Assume a linear regression problem with ground truth w = [wp, wq] with wp = —0.3,wy = 0.5
o Assume data generated by a linear regression model y = wy + wix + “noise”

o Note: It's actually 1-D regression (wp is just a bias term), or 2-D reg. with feature [1, x]

o Figures below show the “data space” and posterior of w for different number of observations
(note: with no observations, the posterior = prior)

Posterior o




Posterior Predictive Distribution

o Given the posterior p(w|y, X, 3,A) = N(up- Xn), how to make prediction y, for a new input x..?

o The posterior predictive distribution will be
p(ye|xe, Xy, B, A) = / p(ys|xs. w, B)p(w|X,y. 3. \)dw

o Using Gaussian predictive/marginal formula, the posterior predictive will be another Gaussian

Py« Xe, Xy, B, A) = N(Mﬁx*- .-*B_l‘i‘szNX*)

o So we get a predictive mean ,ugx* and an input-specific predictive variance 3~ + x| Zyx.
o In contrast, MLE and MAP make “plug-in" predictions (using the point estimate of w)

P(Val|Xse, Wwnme) = J\f’(w;,;—LEx*, B - MLE prediction

P(Va|Xs, Wpap) = J\f’(w;;—Apx*, B - MAP prediction



Visualizing PPD

Black dots are training examples
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Width of the shaded region at any x denotes the predictive uncertainty at that x (+/- one std-dev)

Regions with more training examples have smaller predictive variance



Nonlinear Regression

Nl

|
az

o Can extend the linear regression model to handle nonlinear regression problems

o One way is to replace the feature vectors x by a nonlinear mapping ¢(x)
plylx. w) = N(w "o(x),571)
o The nonlinear mapping can be defined directly, e.g., for a one-dimensional feature x
o(x) = [1, x,x%

o Alternatively, a kernel function can be used to implicitly define the nonlinear mapping



Visualizations

o We can similarly visualize a Bayesian nonlinear regression model
o Figures below: Green curve is the true function and blue circles are observations (x,, y,)

o Posterior of the nonlinear regression model: Some curves drawn from the posterior

uncertainty




Learning Hyperparameters

o Can treat hyperparams as just a bunch of additional unknowns
o Can be learned using a suitable inference algorithm (point estimation or fully Bayesian)

o Example: For the linear regression model, the full set of parameters would be (w, A, /3)

O
O+ 6-®,

o Can assume priors on all these parameters and infer their “joint” posterior distribution

,, _ Ply|X,w, 3, \)p(w, A, B) ply|X, w, B, \)p(w[A)p(5)p(N)
plw, B, AlX,y) = by %) ~ Thly X, w, 5)p(wiA)p(5)p(\) dw dAdp

o Infering the above is usually intractable (rare to have conjugacy). Requires approximations.



MLE on Hyperparameters

@ One popular way to estimate hyperparameters is by maximizing the marginal likelihood

o For our linear regression model, this quantity (a function of the hyperparams) will be

p(y|X.5,A) = /p(y\X. w, 3)p(w|\)dw

o The “optimal” hyperparameters in this case can be then found by

B\ = arg max log p(y|X., 3, )

o This is called MLE-II or (log) evidence maximization



Sparse Regression

o Many probabilistic models consist of weights that are given zero-mean Gaussian priors, e.g.,

D
pix) = Z W X (mean of a prob. lin reg model)
d=1
N
pix) = Z Wk (Xn, X) (mean of a prob. kernel based nonlin reg model)

n=1
o A zero-mean prior is of the form p(wg) = N(0, A1) or p(wy) = N(0, A1)
o Precision A or Ay specifies our belief about how close to zero wy is (like regularization hyperparam)
o However, such a prior usually gives small weights but not very strong sparsity

o Putting a gamma prior on precision can give sparsity (will soon see why)

o Sparsity of weights will be a very useful thing to have in many models, e.g.,

o For linear model, this helps learn relevance of each feature xy



Hierarchical Priors

o Consider linear regression with prior p(wg|A\¢) = N(0,A\;) on each weight

o Let's treat precision \y as unknown and use a gamma (shape = a, rate = b) prior on it

a

b
r'(a)

p(Ag) = Gamma(a, b) = Aj_l exp(—bAg)

o Marginalizing the precision leads to a Student-t prior on each wy

br(a+1/2)

b+ WQ 2 —(a+1/2)
Varr(a) )

p(wg) = / p(wa|Aa)p(Ad)dAg =

Student-t




Bayesian Logistic Regression

o The goal is to learn p(y|x). Here p(y|x) will be a discrete distribution (e.g., Bernoulli, multinoulli)

o Usually two approaches to learn p(y|x): Discriminative Classification and Generative Classification

o Discriminative Classification: Model and learn p(y|x) directly

o This approach does not model the distribution of the inputs x

o Generative Classification: Model and learn p(y|x) “indirectly”as p(y|x) = %

o Called generative because, via p(x|y), we model how the inputs x of each class are generated
o The approach requires first learning class-marginal p(y) and class-conditional distributions p(x|y)

o Usually harder to learn than discriminative but also has some advantages (more on this later)



Classification by Logistic Regression

o Logistic Regression (LR) is an example of discriminative binary classification, i.e., y € {0,1}

o Logistic Regression models x to y relationship using the sigmoid function

1 ~ exp(w ' x)

1 +exp(—wTx) 1+exp(wTx)

p(y = 1|X. W} = = (.T(WTx) —

where w € RP is the weight vector. Also note that p(y = 0|x.w) =1 — p

Sigmoid
b /-
/M

x means large probability of label being 1 (0)

o A large positive (negative) “score” w'



Classification Rules

o The LR classification rule is
T 1 exp(w ' x)
Ply X, w) = olw x 1+exp(—w'x) 1+exp(w'x)
1

1+ exp(w ' x)

ply =0lx.w) = 1—p=1-—0o(w x)=

o This implies a Bernoulli likelihood model for the labels

exp(w " x)

p(y|x,w) = Bernoulli(a(wa)) = |13 exp(W x)

) (1-y)
1+ exp(w "x)

o Given N observations (X.y) = {x,. v, }"_,, we can do point estimation for w by maximizing the
log-likelihood (or minimizing the negative log-likelihood). This is basically MLE.
N N

WhLE = arg mﬁxz log p(Vn|Xn. w) = arg min — Z log p(yn|Xn. w) = arg min NLL(w)

n=1 n=1



Bayesian Logistic Regression

o Recall that the likelihood model is Bernoulli

(1—y)
p(v|x, w) = Bernoulli(o(w ' x)) = e ex;(wa)]

exp(w ' x) !
1+ exp(w'x)

o Just like the Bayesian linear regression case, let's use a Gausian prior on w
p(w) = N (0,27 1p) exp(—%wTw)
o Given N observations (X, y) = {x,. yn _1, where X'is N x D and y is N x 1, the posterior over w

p(y|X, W) ( ) Tl p(alxn, w (W)
l y‘x W )dW an lp y”‘x” dW

o The denominator is intractable in general (Ioglstlc—Bernoulll and Gau55|an are not conjugate)

p(w|X,y) =



Laplace Approximation of Posterior Distrib.

o Approximate the posterior distribution p(6|D) = p('l?)|((%{;(6) = pf)ﬁ;ﬁ)}) by the following Gaussian

p(0|D) = N (Opap. H™)

o Note: Opap is the maximum-a-posteriori (MAP) estimate of 6, i.e.,
Omap = arg max p(#|D) = arg max p(D,f) = arg max p(D|A)p(f) = arg mjx[log p(D|#) + log p(0)]

o Usually #pmap can be easily solved for (e.g., using first/second order iterative methods)

o H is the Hessian matrix of the negative log-posterior (or negative log-joint-prob) at fyap

H=-V? log p(#|D) ‘9 o =% |ng(D'H)‘9:9MAP



Derivation of Laplace Aprroximation

o Let's write the Bayes rule as

p(D. 9) p(D. ) e'°8 P(D0)

D) =
p(0|D) p(D) IPDH felo*gp(pb')dﬁ

o Suppose log p(D.f#) = f(#). Let’s approximate f(#) using its 2nd order Taylor expansion

f(6) = f(6o) + (0 — o) "V F(bo)+ %(H — 00) "V (60) (0 — bp)

where g is some arbitrarily chosen point in the domain of f

o Let's choose g = Opap. Note that VF(Opmap) = Viog p(D,Omap) = 0. Therefore

1 ,
log p(D, #) = log p(D. Opmap) + 5(9 — _HMAP)TW log p(D. Opap)(0 — Omar)



Contd..

o Plugging in this 2nd order Taylor approximation for log p(D, #), we have

olog p(D,0) o198 P(D.0p1ap)+3(0—0pap) T V2 l0g (D, 0p1ap) (0 —Opgap)
0|D) = =
POID) | eloeP(P.0)do ’"elog .fJ('D,fﬂ"mr,cu::)—i-%(fi'—ﬂmﬂ.,y:'}—r'G’2 log p(D,0p1ap (O —=OMmaP) 4o

o Further simplifying, we have

e'_%(g_("':'vl';d'.P)T{—'\72 log p(D.Opgap) O —Cpgap)
p(0|D) ~

i e—%(o—oMAp)T {—V2 log P(D.0piap) HO—0pmAP) 4y

o Therefore the Laplace approximation of the posterior p(#|D) is a Gaussian and is given by

p(0|D) = N (0|0map. H™ ) where H = —V?log p(D. Oap)

Laplace Approx.
| Gaussian / \"'-\

/
\

. Target posterior
L N2



Properties of Laplace Aprroximation

o Usually straightforward if derivatives (first and second) can be computed easily

o Expensive if the number of parameters is very large (due to Hessian computation and inversion)

(]

Can do badly if the (true) posterior is multimodal

o Can actually apply it when working with any regularized loss function (not just probabilistic
models) to get a Gaussian posterior distribution over the parameters

o negative log-likelihood (NLL) = loss function, negative log-prior = regularizer



Laplace Approximation for Logistic Regression

o Data D = (X, y) and parameter # = w. The Laplace approximation of posterior will be
p(w\X.y) ~ N(WMAP. H_l)

o The required quantities are defined as
wuap = argmaxlog p(wly, X) = argmaxlog p(y. w|X) = arg min[— log p(y, w|X)]
H = V’[—logp(y. w|X)]|

W=Wpap
o We can compute wpap using iterative methods (gradient descent):

o First-order (gradient) methods: w¢+1 = w; — 1g,. Requires gradient g of — log p(y, w|X)
g = V[—log p(y, w|X)]

o Second-order methods. w1 = w; — H7'g,. Requires both gradient and Hessian (defined above)



PPD for Logistic Regression

o When using MLE, the predictive distribution will be

plye = 1xe, wmie) = o(wjiyex.)
p(ve|Xe. whie) = Bernoulli(o(w iy gx.))

o When using MAP, the predictive distribution will be

p(ye = LUxe.wmap) = o(wyapx.)
p(Ve|Xs.whap) = Bernoulli(o(wjipXs))

o When using Bayesian inference, the posterior predictive distribution, based on posterior averaging

Pl = 1xXoy) = [ plr. = Lo wp(wiX.y)dw = [ o(w”x.)p(wiX. y)dw
o Above is hard in general. :-( If using the Laplace approximation for p(w|X.y), it will be

p(y. =1|x.. X, y) = /O’(WTX*)N(WleAp,H_l)dW

o Its multiclass extension is softmax regression (which again can be treated in a Bayesian manner)



Bayesian Generative Classification

o Consider N labeled examples {(x;,y;)}N_,. Assume binary labels, i.e., y; € {0,1}
o Goal: Classify a new example x by assigning a label y € {0,1} to it
o We will assume a Generative Model for both labels y and and features x
o What it means: We will have (probabilistic) observation models for both y as well as x

o In contrast, in Bayesian linear regression model (and Bayesian logistic regression model), we didn't
model x (there, we simply conditioned y on x, treating x as “fixed")

o When we don't model x and simply model y as a function of x: Discriminative Model
o Generative classification models have many benefits. E.g.,

o Can also utilize unlabeled examples (semi-supervised learning)
o Can handle missing/corrupted features in x

o Can properly handle cases when features in x could be of mixed type (e.g., real, binary, count)



Generative Classification

o Basic idea: Each x; is assumed generated conditioned on the value of corresponding label y;

o The associated generative story is as follows

o First draw (“generate”) a binary label y; € {0, 1}
yi ~ Bernoulli()
o Now draw ( “generate”) the feature vector x from a distribution specific to the value y; takes

Xi|yi ~ p(x\ﬁyr.)

@ @ Shaded is observed
N




Generative Classification

o Our generative model for classification is
y; ~ Bernoulli(m). xilyi ~ p(x|6,,)

o Note: We have two distributions p(x|#y) and p(x|f;) for feature vector x (depending on its label)
o These distributions are also known as ‘“class-conditional distributions”
o For now, we will not assume any specific form for the distriutions p(x|fp) and p(x|61)
o Depends on nature of x (real-valued vectors? binary vectors? count vectors?)
o Model parameters to be learned here: (7.6, 61)

o Note: Can extend to more than 2 classes (e.g., by replacing the Bernoulli on y by multinoulli)



Predicting Labels

o Note: The generative model only defines p(y|7) and p(x|f,). Doesn't define p(y|x)

o We combine these using Bayes rule to get p(y|x)

pvIm)p(x|6y) _ ply|7)p(x|6y)
p(x) 2. ply[m)p(x]6))

ply|x) =

o Parameters of distributions p(y|m) and p(x|f,) are estimated from training data using point
estimation methods (MLE or MAP) or using fully Bayesian inference (discussed today)

o Once these parameters 7 and ), are estimated (point estimates, or full posterior if doing Bayesian
inference), the above Bayes rule can be applied to a new input X to compute p(y|X)



Priors

o Let us focus on the supervised, binary classification setting for now

o In this case, we have three parameters to be learned: 7, 6y, and 64

o Probability m € (0,1) of the Bernoulli. Can assume the following Beta prior
7 ~ Beta(a, b)
o Parameters 6y, and #; of the class-conditional distributions. Will assume the same prior on both

fo, 61 ~ p(0)

o We will jointly denote the prior on 7, #y, and #; as p(7, 0g,61) = p(7)p(Ho)p(H1)



Likelihood

o Denote the N x D feature matrix by X and the N x 1 label vector by y

o Since both X and y are being modeled here, the likelihood function will be

i\'r
p(X, yl7.01,00) = ]___[P(-'T?»-‘fe'Ji|7T:91f90)
i=1
i\'r
= H p(:l-‘-;|'y@-. m, 01, 9(1))?(3}4% 0. 90)
i=1

i\'r
— H p(wi|6y, )p(yilm)
=1



Posterior

o We need to infer the following posterior distribution
p(X jlﬂ' 9] 6’( )p(ﬂ' 9] 8{)
Ja, Ja, J p(X, g7, 01, 60)p(7, 01, 00)dmdd; dby

p(ﬂ-: 6’1_* QOIJ X)

o Note: 2y denotes the domain of 6

o Recall the prior p(7. 9. 601) = p(7)p(fo)p(#1). The likelihood also factorized over data points, i.e.,

N
p(X.y|m. b1.60) = | [ p(xil6y,)p(vil7)
i=1

Posterior:

p(m, 01, 6y, X) {H plxi61)p(6h) ] {H zﬁ(rfé’{))f)(@())] {Hp(yfﬂ)p(ﬁ)]

1y =1 221, =0



Posterior

o Luckily, in this case, the same factorization structure simplies the denominator as well

[Liyoa p(@il0)p(6h) Tl o P(il6o)p(fo) HLP(_';_U:‘\?T)])(W)
f H:t,‘lep({’f|91)p(91)d91 f Hé:y,;zO p({’f‘eo)p(gg)dgo f ]___[?\:1 p(y?‘?l_)p(ﬂ-)dﬂ-

o The above is just a product of three posterior distributions !

p(m. 01, 00|, X) = p(bh[{xi - yi = 1})p(Bol{z: : y: = 0})p(7[7)

o We also know what p(7|y) will be (recall the coin-toss example)
N
p(rl) o [[plmp(r)  —  p(el) = Beta(a + X,y b+ N = X, i)

i=1

p(T, 91-_90\5: X) =

o Form of posteriors on #; and #, will depend on p(x|#;1) and p(f;), and p(x|fy) and p(fp), resp.



PPD

o Original goal is classification. We thus also want the predictive posterior for label of a new input,
i.e., p(7|X), for which the more “complete” notation in this Bayesian setting would be p(y|x, X, y)

. 1
p(§12, X, ) = / / / p(§1, 61 8o, 7)p(By. 8o, 7| X, §)drdr 8y
Ja, Ja, Jo

o Luckily, in this case, this too has a rather simple form. Using Bayes rule, we have

PG|, X. ) = p(e|y, X, §)p(y| X, )
s ply =L X, 9)ply =1X,9) +p(zly =0, X. 9)p(y = 0|X.,7)
p(@lg, X, p(3l7)

p(zly =1, X, 7)p(y = 1) + p(x|y = 0, X, y)p(y = 0[y)
o In order to compute this, we need p(x|y, X,y) and p(7|y)

o p(X|y,X.y): Marginal class-conditional distribution of the new input vector X

o p(yly): Marginal probability of its label ¥ given the labels of training data



Contd..

o Predictive posterior requires computing p(X|y. X, y) and p(V|y)

o The marginal likelihood p(X|y, X, y) of X can be computed as

wxp = [ [ st
Qp J

— / p(;f?
Qg

o The above is simply the posterior predictive distribution of class y. The final expression will depend
on the forms of p(x|fy) and p(fy|.). If exp-family, we will have closed form expression!

p(x y,01,00)p(61, 60| X, 1)dO1db,

H!})p(gﬁ‘{{l?.,— Y = ;l:!})(fﬂs}




Naive Bayes Classifier

o Usually the most critical choice in generative classification is that of class conditional p(x|6,)
o Very complex p(x|f,) with lots of parameters may make estimation difficult

o Often however we can choose simple forms of p(x|f,) to make estimation easier

o The naive Bayes assumption: The conditional distribution p(x|f,) factorizes over individual
features (or over groups of features)

o Suppose the features of X can be partitioned into v groups X = {X(j)}/-;
o Can also assume a similar partitioning for the parameters 6y
o This further simplifies calculation of marginal likelihood p(X|y. X, y)

p(2lg. X, g) = /Hp(i’(ﬁ\ﬁsi(j))}J(ﬁg}(j)Hé?«’s(,f)1;Us=;l}})d93;
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