Probabilistic Bayesian
Modelling



Probabilistic Model

* X —an observation (random variable/vector)
* X ={x, X,, ..., X,}, set of observations, evidence, data

* Probabilistic model — a mathematical form which provides stochastic
information about the random variable x

* @- parameters of a model T R T
* M — hyperparameters of a model LI '20\/ \/
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Modelling Goals

 Estimation (of the underlying model parameters) - p(6.m/[X)
* Understand
* Generate new data

* Prediction - p(x*[ 6) or p(x*[X), x* is a new observation
* Model comparison — p(X/ 6,) > p(X| 6,)

* Solving the first goal helps solve the second and third goals



Some probabilities of interest

o Likelihood function p(x|#) or the “observation model” specifies how data is generated

o Measures data fit (or “loss”) w.r.t. the given parameter ¢

o Prior distribution p(#) specifies how likely different parameter values are a priori

o Also corresponds to imposing a “regularizer” over #

o Domain knowledge can help in the specification of the likelihood and the prior

NB: We are talking about probability distributions and not single (point) probabilities



Maximum Likelihood Estimation

o Perhaps the simplest way is to find # that makes the observed data most likely or most probable
®,

o Formally, find # that maximizes the probability of the observed data

0 = arg max log p(X|¢)

o However, this gives a single “point” estimate of #. Doesn't tell us about the uncertainty in 6



Rules of Probability

o Keep in mind these two simple rules of probability: sum rule and product rule
P(a) = Z P(a.b) (Sum Rule)

b
P(a.b) = P(a)P(bla) = P(b)P(a|lb) (Product Rule)

o Note: For continuous random variables, sum is replaced by integral: P(a) = [ P(a, b)db

o Another rule is the Bayes rule (can be easily obtained from the above two rules)

(bja) = P(D)P(Ib) _ P(B)P(alb) _ P(b)P(a\b)
P(a)  [P(a.b)db — [ P(b)P(a|b)db




Bayesian Estimation

o Can infer the parameters by computing the posterior distribution (Bayesian inference)

X,0lm)  p(X[#.m)p(#|lm)  Likelihood x Prior
~ [ p(X]|6. m)p(8|m)dé ~ Marginal likelihood
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o Cheaper alternative: Point Estimation of the parameters. E.g.,
o Maximum likelihood estimation (MLE): Find 6 that makes the observed data most probable

G = arg max log p(X|A)
o Maximum-a-Posteriori (MAP) estimation: Find # that has the largest posterior probability

Ormap = arg m@axlog p(6|X) = arg me?x[log p(X|0) + log p(9)]



Posterior Distribution

o Posterior provides us a holistic view about # given observed data

o A simple unimodal posterior distribution for a scalar parameter # might look something like

p(0]X) |

o Various types of estimates regarding # can be obtained from the posterior, e.g.,

o Mode of the posterior (same as the MAP estimate)
o Mean and median of the posterior

o Variance/spread of the posterior (uncertainty in our estimate of the parameters)



o

Predictions

Posterior can be used to compute the posterior predictive distribution (PPD) of new observation

The PPD of a new observation x, given previous observations
p(x.|X, m) = /p(x*.Q\X,m)dQ = /p(x*|t9_.X,m)p(9|X. m)d#@

= / p(xs« |6, m)p(8]|X, m)dé
Note: In the above, we assume that the observations are i.i.d. given 6

Computing PPD requires doing a posterior-weighted averaging over all values of 6

If the integral in PPD is intractable, we can approximate the PPD by plug-in predictive

p(x.|X. m) & p(x.|0. m)

. where  is a point estimate of # (e.g., MLE/MAP)



Marginal Likelihood

o Recall the Bayes rule for computing the posterior

p(X,8lm)  p(X|0,m)p(#|lm)  Likelihood x Prior

61X, m) = = =
p(9]X, m) p(X[m) — [ p(X|6. m)p(6lm)dé ~ Marginal likelihood

o The denominator in the Bayes rule is the marginal likelihood (a.k.a. “model evidence™)
o Note that p(X|m) = E,gm)[p(X|0. m)] is the average/expected likelihood under model m

o For a good model, we would expect this “averaged” quantity to be large (most #'s will be good)

Model Evidence

P(DIM)




Model Comparison/Averaging

o Marginal likelihood is hard-to-compute (due to integral) but a very useful quantity

o It can be used for doing model selection

o Choose model m that has largest posterior probability

m = arg max p(m|X) = arg max P(XLT))J;(”?) = arg max p(X|m)p(m)

o If all models are equally likely a priori then m = arg max, p(X|m)

o If mis a hyperparam, then arg max,, p(X|m) is MLE-Il based hyperparameter estimation

o Marginal likelihood can be used to compute p(m|X) and then perform Bayesian Model Averaging
M

p(x-IX) = 3 plx.|X. m)p(mX)

m=1



Simple Example (MLE)

o Consider a sequence of N coin tosses (call head = 0, tail = 1)
o The n'" outcome x,, is a binary random variable € {0, 1}

o Assume # to be probability of a head (parameter we wish to estimate)

o Each likelihood term p(x,, | 8) is Bernoulli: p(x, | #) = 6*"(1 — §)*—*
o Log-likelihood: "N log p(xn | 8) = SN xnlog 6 + (1 — x,) log(1 — 6)

o Taking derivative of the log-likelihood w.r.t. #, and setting it to zero gives

o OpLe in this example is simply the fraction of heads!



MAP Estimate

o MAP estimation can incorporate a prior p(/) on 0 ‘ \\
@ Since # € (0,1), one possibility can be to assume a Beta prior ,f\ :
MNMa+p3) ) -
H —_— HQ—]. 1 — H —3_1 0 02 04 06
PO = im0 ©

o «, 3 are called hyperparameters of the prior (these can have intuitive meaning; we'll see shortly)

o Note that each likelihood term is still a Bernoulli: p(x,[#) = §%"(1 — #)r =%

The log posterior probability = Zle log p(x,|6) + log p(#)

o

©

lgnoring the constants w.r.t. €, the log posterior probability:

SV {xnlogf+ (1 — x,)log(1 — )} + (o — 1) logh + (5 — 1) log(1 — #)

o Taking derivative w.r.t. # and setting to zero gives
N
' N+ao+5-2

Note: For a = 1.3 =1, i.e., p(#) = Beta(1,1) (equivalent to a uniform prior), Ayap = O e

o




Bayesian Estimate

o Recall that each likelihood term was Bernoulli: p(x,|0) = 6%(1 — §)t—*n

o Let's again choose the prior p(#) as Beta: p(#) = Beta(«, 5) = rr{(f)Jrrg:a))H&_l(l s

o The posterior distribution will be proportional to the product of likelihood and prior

N

p(01X) o TT p(xal0)p(0)

n=1

O EnmXn=l(] — ) N e

o From simple inspection, note that the posterior p(#|X) = Beta(a + Zle Xn, 3+ N— Zle Xn)

Posterior has the same form as prior — conjugate prior



Predictions

o Let's say we want to compute the probability that the next outcome xpy.q1 € {0, 1} will be a head
o The plug-in predictive distribution using a point estimate (e.g., using MLE/MAP)

p(xns1 = 1|X) = p(xni1 = 1]0) = 0 or equivalently p(xn+1|X) = Bernoulli(xys1 | 0)

o The posterior predictive distribution (averaging over all 6 weighted by their posterior probabilities):
1
plxns =1|1X) = / P(xns1 = 1|0)p(6]X)dO
40

1
= / 0 x Beta(f|a + N1, B + No)d6
Jo

—  E[0|X]
o+ Nl
o+ 8+ N

o Therefore the posterior predictive distribution: p(xpy.1|X) = Bernoulli(xy.1 | E[#]X])



Multinomial Model

o Assume N discrete-valued observations {xi, ..., xy } with each x, € {1,.... K}, eg.,

o X, represents the outcome of a dice roll with K faces
o X, represents the class label of the n-th example (total K classes)

o X, represents the identity of the n-th word in a sequence of words

o Assume likelihood to be multinoulli with unknown params @ = [my....,7k] s.t. Zf_lﬂ-k —1
K =
p(xa|7) = multinoulli(x,|m) = H,ﬂ_i[xn:k]
k=1

o 7 is a vector of probabilities (“probability vector"), e.g.,
o Biases of the K sides of the dice
o Prior class probabilities in multi-class classification

o Probabilities of observing each words in the vocabulary

o Assume a conjugate Dirichlet prior on 7 with hyperparams o« = [, .. .. ak] (also, ax > 0, Vk)

K K K
— r(zk:l Qk) oy —1 1 W‘lk—l
k

p(7|ca) = Dirichlet(w|aa, . . ., ak)

; HkK:I r(ﬂ'k) k=1 Ik B(a) k=1



Dirichlet Distribution

Draws from a 3-dimensional Dirichlet with different o

K
PDF for a 3-dim Dirichlet =2 2.2) o= {10, 10, 10] 1 ae—1
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Estimation

o The posterior over 7 is easy to compute in this case due to conjugacy b/w multinoulli and Dirichlet

p(X|r. a)p(w|a) _ p(X|m)p(r|cr)

plr X, ) = —
() p(X|ar) p(XJa)
@ Assuming x,'s are i.i.d. given T, (X|7r) =1\, p(xn|7r) therefore
K
SN e g
o(r|X. ) “HH I[xn—kll—[ S | C
n=1 k=1 k=1

@ Even without computing the normalization constant p(X|a), we can see that it's a Dirichlet! :-)

@ Denoting Ny = ZL [[x, = k], i.e., number of observations with value k, the posterior will be

p(m|X, a) = Dirichlet(m|ay + Ny, . ... ak + Nk)



Gaussian Models

* Univariate wit
* Univariate wit
* Univariate wit
* Multivariate

n fixed variance

n fixed mean

n varying mean and variance



Fixed Variance Gaussian Model

o Consider N i.i.d. observations X = {xq,..., xy} drawn from a one-dim Gaussian N(x|u. o?)
2
p(Xnlpt.0?) = N(x|p.0?) x exp [ (X”2G2}u) ]
N
p(X|p,0%) = H p(Xalp, %)
n=1

o Assume the mean 1 € R of the Gaussian is unknown and assume variance o2 to be known /fixed

o We wish to estimate the unknown & given the data X

o Let's choose a Gaussian prior on 1, i.e., p(p) = N'(jt|po. 08) with pg. g as fixed



Bayesian Estimate of Mean

o The posterior distribution for the unknown mean parameter 1

p(1|X) = (ij(j x He"p{ Xn_ﬂ) ] . [m}

2
o Simplifying the above (using completing the squares trick) gives p(11|X) o< exp [—%} with

N

S
o2 03 o2
2 2 N
o Nog  _ D> 1 Xn
| = N2 oM ————5 X where X = ==
HN Nog + o2 Ho No32 + o2 ( N )

Notion of Sufficient Statistics



Prediction

Qo

Q

Q

Q

Q

What is the posterior predictive distribution p(x.|X) of a new observation x,?

Using the inferred posterior p(y:|X), we can find the posterior predictive distribution
p(x«|X) = /P(X*Iu-.-02)P(u-lx)dﬁf- = /N(X*\HaUQ)N(H-\HN.-U!%)O'H = N (X |pn. 0% + o)

Note; Can also get the above result by thinking of x, as x, = pt + € where . ~ N (pup. 0!2\,) and
e ~ N(0.0?) is independently added observation noise

Note that, as per the above, the uncertainty in distribution of x, now has two components

o o2: Due to the noisy observation model, o3: Due to the uncertainty in

In contrast, the plug-in predictive posterior, given a point estimate ji (e.g., MLE/MAP) would be

p(x|X) = /P(X*\H-Uz)P(ﬁf-\X)dﬁf- ~ p(xelfin %) = N (x|, o)

o Note that as N — oo, both approaches would give the same p(x.|X) since o3, — 0



Fixed Mean Gaussian Model

Q

Q

Q

Again consider N i.i.d. observations X = {x, ..., xy} drawn from a one-dim Gaussian A(x|u, o?)
N
p(xalpr;0%) = N(x|p,0%) and  p(X|u, %) = | [ p(xalpe, o)
n=1
Assume the variance 0% € R of the Gaussian is unknown and assume mean j: to be known /fixed

Let's estimate o2 given the data X using fully Bayesian inference (not MLE/MAP)

We first need a prior distribution for o2. What prior p(c?) to choose in this case?

If we want a conjugate prior, it should have the same form as the likelihood
2
2 2\ —1/2 B (Xn — 1)
p(Xalp, %) x (67) exp { 52 ]

o An inverse-gamma prior /G(c, 3) has this form («, 3 are shape and scale hyperparams, resp)

p(o?) ox (o°) " exp [__f]

o2

N
n=1 (X” —H )2

The posterior p(c?|X) = IG(av + gg Fp>

2

The posterior p(c2|X) = IG(a+ 5. 3+ Zf=1(X”_‘“')2).

2

). Again |G due to conjugacy.



Gaussian Model: Mean and Variance

o Goal: Infer the mean and precision of a univariate Gaussian N/ (x|, A~ 1)

o Given N i.i.d. observations X = {xq, ..., xn }, the likelihood will be

X A 2 1/2 )\N-z N ! A 2
p(X|, ) = 1 \/— exp [—E(Xn — ) } o [A /% exp (— 5 )] exp l*#-zxn — 5 an]
n=1 n=1 n=1

A
27

o Let's choose the following joint distribution as the prior (compare its form with p(X|u, \))

VAN I 20\ . 2
plpe, A) o !Al/zexp (— g )] exp [Apc — Ad] =exp [— h; (pe — C/K0)2:| AFo/2 exp !— (d — 26— A
Ko

L.

'
prop. to a Gaussian prop. to a gamma

o The above is known as the Normal-gamma (NG) distribution (product of a Normal and a gamma)

p(ies A) = N (1] o, (£0N) ™) Gamma(A| v, Bo) = NG(pe, Al jo, ko, cvo, Bo) (note: 1 and A are coupled in the Gaussian part)

where [0 = ¢/Kg, g = 1+ Ko/2, Bo = d — c?/2kq are prior's hyperparameters

o NG is conjugate to Gaussian when both mean & precision are unknown



Gaussian Model: Mean and Variance

o Due to conjugacy, p(sz, A|X) will also be NG: p(p, A\|X) o< p(X| gz, AN)p(pe, A)

p(p- AIX) = NG(pn, kn, an. Bn) = N (p|pn. (H-N/\)_I)Gamma(/\h;}-;\;, Bn)

where the updated posterior hyperparameters are given by!

Koo + Nx
N = ————, Eny=ko+ N
Ko + N
HoN()? — .,-‘.1.0)2

2(r0 + N)

N
1
N = ap + N/2.. Bn = Po + 5 Z(Xn — )?)2 -+
n=1
Posterior Predictive Distribution:

Bn(kn + 1
PO X) = [ s 1. 3) P11 AIX) dpdh =ty (e, 24512
. v N " J (:);NHN
Gaussian Normal-Gamma




Multivariate Gaussian

o The (multivariate) Gaussian with mean p and cov. matrix X

N(x|wE) = \/(zjﬁ| oxp |~ 50— E 7 (x— )}
— L | exp{ — %trace [Z_ls} } where S = (x — p)(x — ,u,)T

V@ P[E

o An alternate representation: The “information form”

N(xl€.N) = (2m) =P/ A2 exp { - %(ﬂ/\x FeTATE - 2Te) )

where A = X1 and ¢ = ¥ ' are the “natural parameters” (more when we discuss exp. family).



Multivariate Gaussians
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Covariance Matrix

Spherical covariances Diagonal covariances Full covariances

0.3 0.0]
0.0 1.8

[00] 4 _[+0 00]
(00" |00 18




Multivariate Gaussians: Grouped Variables

o Given x having multivariate Gaussian distribution AV/(x|u, X) with A = X', Suppose

_ -Xa _ | Ha
el I
-zaa Zab A?a Aab
2 = A =
2, be] L\ba f\bJ

o The marginal distribution of one block, say x,, is a Gaussian

p(x,) = /p(xa.xb)dxb = N(x5|p,. X,,)

o The conditional distribution of x, given x;, is Gaussian, i.e., p(Xa|xp) = N (Xa|tt,p, Xajp) where

.o = N = X —X,X'T (“smaller” than ..; makes sense intuitively)

Moy = Zapp {Naapr, — Nap(xp — p1,)}
= g, — N Aas(xs — )
e, + ZapXpy (X6 — py)



Conditional Distributions

P(yaly1. X) o exp (—%(yg — ;,;,.*)Z*_l(yQ — ;_L*))

pre = Wy,



Conditional Distributions
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Multivariate Gaussian

o The parameters are now the mean vector and the covariance/precision matrix
o Posterior updates for these have forms similar to that in the univariate case

o For the mean, commonly a multivariate Gaussian prior is used

o Posterior is also Gaussian due to conjugacy

o For the covariance matrix (with mean fixed), commonly an inverse-Wishart prior is used

o Posterior is also inverse-Wishart due to conjugacy

o For the precision matrix (with mean fixed), commonly a Wishart prior is used

o Posterior is also Wishart due to conjugacy

o When both parameters are unknown, there still exist conjugate joint priors

o Normal-Inverse Wishart for mean + cov matrix, Normal-Wishart for mean + precision matrix

Wishart Distribution: Multidimensional extension of Gamma distribution



Linear Transformation of Random Variables

o Suppose x = f(z) = Az + b be a linear function of an r.v. z (not necessarily Gaussian)
o Suppose E[z] = p and cov[z] = X

o Expectation of x
E[x] = E[Az+b]=Ap+b

o Covariance of x
cov[x] = cov[Az + b] = AXA’

o Likewise if x = f(z) = @’ z + b is a scalar-valued linear function of an r.v. z:
o Elx]=E[a’z+bl=a"u+b

o var[x] =var[a’z+ bl =a'Xa

o These properties are often helpful in obtaining the marginal distribution p(x) from p(z)



Linear Gaussian Model

o Consider linear transformation of a Gaussian r.v. z with p(z) = N(z|p. A1), plus Gaussian noise

x=Az+b+e where p(e) = N(€]0,L71)

o Easy to see that, conditioned on z, x too has a Gaussian distribution
p(x|z) = N(x|Az+b.L71)
o This is called a Linear Gaussian Model. Very commonly encountered in probabilistic modeling

o The following two distributions are of particular interest. Defining £ = (A + ATLA)™!, we have

p(z|x) = p(x\z)p))(z) = N(Z\Z{ATL(x—b)Jrl\u}.Z)

px) = [ plxl2)p(a)dz = N(xlAp+bANTAT +L7)



Exponential Family Distributions

o Defines a class of distributions. An Exponential Family distribution is of the form

p(x|6) = Z(lﬁ)h(x) expld T d(x)] = h(x)exp[d o(x)— A(8)]

o x € X is the random variable being modeled (where X denotes some space, e.g., R or {0.1})

o 6 € R?: Natural parameters or canonical parameters defining the distribution

o ¢(x) € R?: Sufficient statistics (another random variable)

o Why “sufficient”: p(x|6) as a function of # depends on x only via ¢(x)

o Z(#) = [ h(x)exp[f o(x)]dx: Partition function

o A(f) =log Z(#): Log-partition function (also called the cumulant function)

o h(x): A constant (doesn't depend on #)



Expressing a Distribution in Exp-family form

o Recall the form of exp-fam distribution: h(x)exp[f' o(x) — A(6)]

o To write any exp-fam dist p() in the above form, write it as exp(log p()), e.g., for Binomial
: : N X N —x
exp (log Binomial(x|N, 1)) = exp | log (1 (1— p)
X

— exp (Iog (’D + xlog 1 + (N = x) log(1 — ,u))

N [
— (X) exp (X log T Nlog(1l — ,u))

o Now compare the resulting expression with the exponential family form

p(x|6) = h(x) exp(6 " &(x) — A(8))



Gaussian as Exponential Form

o Let's try to write a univariate Gaussian in the exponential family form

p(x]6) = h(x)exp[t ' o(x) — A(6)]

- 2 1 (x — p)? 1 i H 1 > 1
N(x|p,o%) = —— exp | — o2 = Nex: exp sz — ﬁx ~oo2 log o
- - .
1 = L exp [ ;_Lzl } |:X2:| — (i—logn)]
o h(x) = Vo Vor o [lm5zl X 202 | °

o A(f) = 2“—;2 + log o = 1795 — T log(—26,) — 3 log(27)



o Many other distribution belong to the exponential family

Bernoulli
o Beta

(]

o Gamma
o Multinoulli/Multinomial
o Dirichlet

o Multivariate Gaussian

o .. and many more ( https://en.wikipedia.org/wiki/Exponential_family )

o Note: Not all distributions belong to the exponential family, e.g.,

o Uniform distribution (x ~ Unif(a, b))



VILE on Exponential Families

Q

Q

Q

Q

Suppose we have data D = {xq,..., xn} drawn i.i.d. from an exponential family distribution
p(x[6) = h(x)exp [47 6(x) — A(®)]

To do MLE, we need the overall likelihood. This is simply a product of the individual likelihoods

N

p(D|0) = Hp{x,|9 l]‘[ h(x; ] exp leTZ b(x;) — NA(G)]

ﬁ h(x; ] exp [HT@(D) - NA{H)]

To estimate # (as we'll see shortly), we only need (D) = va , ©(x;) and N

Size of (D) = Z:Nzl ¢(x;) does not grow with N (same as the size of each ¢(x;))

Only exponential family distributions have finite-sized sufficient statistics
o No need to store all the data; can simply store and recursively update the sufficient statistics



Q

Q

Q

o

The likelihood is of the form p(D|f) = {H:v:l h(x,—)} exp [0 &(D) — NA(H)]

The log-likelihood is (ignoring constant w.r.t. 8): log p(D]#) = 6" (D) — NA(H)

Note: This is concave in # (since —A(f) is concave). Maximization will yield a global maxima of ¢

MLE for exp-fam distributions can also be seen as doing moment-matching. To see this, note that

N
Vo [HT@(D)—NA(Q)] = (D)= NVH[A0)] = (D)= NEyupldo(x)] = > b(xi) — NEpg oy[6(x)]

=1

Therefore, at the “optimal” (i.e., MLE) é where the derivative is 0, the following must hold

1 N
Epixjoy[o(x)] = m ZC')(X:')

matching the expected moments of the distribution with empirical moments



Bayesian Estimate in Exponential Families

o We saw that the total likelihood given N i.i.d. observations D{xy.....xn}
N

p(D|6) ox exp [HT(;'J(D) — NA(S)} where ¢(D) = Z o(xi)
i=1
o Let's choose the following prior (note: it looks similar in terms of # within the exponent)

p(6lo. 7o) = h(8) exp |67 70 — 10A(0) — Ac(vo, 7o)

o Ignoring the prior's log-partition function Ac(vo, 7o) = log [, h(8) exp [6" 70 — 10A(8)] db

p(8]vo, T0) o h(6) exp [9% - ;;OA(H)}

o Comparing the prior's form with the likelihood, we notice that

o 11 is like the number of “pseudo-observations” coming from the prior

o 70 is the total sufficient statistics of these 1 pseudo-observations




Posterior Distribution

o As we saw, the likelihood is

N
p(D|0) o exp [07 $(D) — NA(0)|  where  4(D) = > o(xi)
o And the prior we chose is . -
(6|10, To) o h(6)exp [9 ro — f.eﬂA(a)}

o For this form of the prior, the posterior p(#|D) o p(8)p(D|F) will be

p(8ID) o h(8) exp [67 (70 + &(D)) — (v0 + N)A(®)]

o Note that the posterior has the same form as the prior; such a prior is called a conjugate prior
(note: all exponential family distributions have a conjugate prior having a form shown as above)

o Thus posterior hyperparams 14’. 79" are obtained

v' <~ vo+ N
T()’ — To—}—@(D)



Contd..

o Assuming the prior p(f|vo. 7o) o< h(#) exp [0 ' 70 — 110A(H)], the posterior was
p(6]D) o h(0) exp |07 (70 + 6(D)) — (vo + N)A(H)|
o Assuming 79 = /9Ty, we can also write the prior as p(f|vg, 7o) o< exp [HTVQ’?:D — MOA(HH

o Can think of Ty = 79/11 as the average sufficient statistics per pseudo-observation

o The posterior can be written as
oTo + C)(D)
vo + N

p(6|D) x h(#)exp lﬁT(;zg + N) — (vo + N)A(S)]

o Denoting ¢ = (-"'i)SVD) as the average suff-stats per real observation, the posterior updates are

o’ — 1+ N
b’g’i_'o -+ fo_)
g + N

=/
0



Posterior Predictive Distribution

o Assume some past (training) data D = {xy. ..., Xy} generated from an exp. family distribution
o Assme some test data D' = {xy...., Xy} from the same distribution (N' > 1)

o The posterior predictive distribution of D’ (probability distribution of new data given old data)

p(D'|D) = / p(D'|0)p(6]D)d

pD'D) = [ p(D10)p(0D)d0

= / [ﬁ h(fh)} exp [UT@(T{?"] — NIA(U)} h(6) exp FT(T{} + (D)) — (o + N)A(O) — Ac(ro + N, 7o + "’(D)J} do
S

“ J constant w.r.t. &

I

constant w.r.t. &



Summary of Single Node Models

* Likelihood, Prior, Posterior, Predictive, Model averaging

* Hyperparameters (Parametric/Non-parametric models)

e Conjugate priors and closed form expression

* Point estimates (MLE, MAP), Distribution Estimates (Bayesian)
* Generative models

e Bernoulli (coin)

* Multinomial (dice)

e Gaussians (continuous variables)
* Exponential families



Questions



