Advanced Machine Learning Class Test II Time: 1 hour. Marks: 30

1. Let a univariate random variable x be distributed according to a mixture of two Gaussian. The parameters (mixture weight, mean, variance) of the Gaussian are $(w_1 = 0.6, \mu_1 = -1, \sigma_1 = 2)$ and $(w_2 = 0.4, \mu_2 = 1, \sigma_2 = 3)$. We want to generate samples from this mixture distribution using the Metropolis-Hastings sampling algorithm. The proposal distribution used is also a Gaussian $\mathcal{N}(x, 0.1)$, that is centred at the current sample x and has a variance 0.1.

We list five random numbers generated from the zero-mean unit-variance Gaussian distribution $\mathcal{N}(0,1)$: $\{0.35,0.05,0.87,0.62,-0.69\}$. Also, five uniform random numbers in the range [0,1] are as follows: $\{0.81,0.09,0.15,0.14,0.65\}$.

Let the initial sample be $x_0 = 1$. Obtain the next two samples x_1, x_2 using the Metropolis-Hastings algorithm. Show the steps clearly.

[15]

2. A corpus has 3 documents and 5 words {hall, class, exam, recall, campus} and 2 topics. We want to perform Latent Dirichlet Allocation on the corpus. At certain iteration of the Gibbs sampling the documents have the following topic distribution:

Doc1: $recall^1$, $exam^1$, $campus^1$, $exam^1$, $recall^1$, $recall^1$, $campus^1$ Doc2: $recall^1$, $exam^1$, $exam^2$, $hall^2$, $campus^1$, $class^2$, $exam^1$, $recall^1$ Doc3: $hall^2$, $exam^2$, $class^2$, $exam^2$, $hall^2$, $hall^2$, $class^2$, $exam^2$

The superscripts 1 and 2 denote if currently the word is generated from Topic 1 or Topic 2. The topic-document Dirichlet distribution has parameter $\alpha = 0.1$, and the word-topic Dirichlet distribution has parameter $\eta = 0.3$.

- (a) Using the above data, estimate the parameter β_{recall}^1 , β_{recall}^2 , representing the probabilities of the word 'recall' being generated from each of the topics.
- (b) Estimate the topic proportion $\theta^{Doc2}_{Topic1}, \theta^{Doc2}_{Topic2}$ for Doc2.
- (c) In the next iteration of Gibbs sampling what topic would be assigned to the first word of Doc1. Show the steps.

[5+5+5]