Advanced Machine Learning Class Test I Solutions

1. Let vector V_t denote the values of a set of stocks on the t-th day. The change of stock value is governed by the following model -

$$V_t = MV_{t-1} + \eta_t \text{ for } t > 1,$$

where M is a given matrix and η_t is a zero mean Gaussian noise vector with covariance $\sigma^2 I$. Also, $p(V_1) = \mathcal{N}(0, \Sigma)$ is a Gaussian. Further, let Y_t be an economic index with linear relation -

$$Y_t = NV_t + \epsilon_t$$

where N is known and ϵ_t is a zero mean Gaussian noise with covariance $\tau^2 I$. The τ and ϵ vectors are uncorrelated.

i. Show that V_1, V_2, \dots, V_t is Gaussian distributed.

Ans: Given V_1 is a Gaussian. Then, $V_2 = MV_1 + \eta_2$ is also a Gaussian since sum of two Gaussian variable is a Gaussian. Hence, $p(V_1, V_2) = p(V_2|V_1)p(V_1)$ is also a Gaussian (check by writing the algebraic form of the distribution). By repeating, V_1, V_2, \ldots, V_t is jointly Gaussian.

ii. Show that the covariance matrix of V_1, \ldots, V_t has elements of the form:

$$cov(V_t, V_t') = M^{t'-t}\Sigma$$
 if $t \neq t'$, and $M^t\Sigma(M^t)^T$ if $t = t'$.

Ans: By repeating,

$$V_t = M(MV_{t-2} + \eta_{t-1}) + \eta_t = M^2V_{t-2} + M\eta_{t-1} + \eta_t = M^{t-1} + \sum_{i=2}^t M^{t-i}\eta_i$$

Since, $Cov(V\eta_i) = 0$ (independent noise) and $Cov(\eta_i\eta_j) = \sigma^2 I\delta_{i,j}$ (given), we have -

$$Cov(V'_t, V_t) = Cov([M^{t'-1}V_1 + \sum_{i=2}^{t'} M^{t'-i}\eta_i] [M^{t-1}V_1 + \sum_{j=2}^{t} M^{t-j}\eta_j])$$

$$= M^{t'-1}\Sigma(M^{t-1})^T + \sigma^2 \sum_{i=2}^{t'} \sum_{j=2}^{t} \delta_{i,j} M^{t'-i} (M^{t-j})^T$$

$$= M^{t'-1}\Sigma(M^{t-1})^T + \sigma^2 \sum_{i=2}^{\min(t,t')} M^{t'-i} (M^{t-i})^T$$

The expression for covariance follows from the above equation.

iii. Explain if V_1, V_2, \dots, V_t is a Gaussian process.

Ans: Since joint distribution of V_1, V_2, \ldots, V_t has been shown to be a Gaussian, any subset of these variables (marginal) are also Gaussian. Hence, by definition it is a Gaussian process.

iv. Show that Y_1, Y_2, \dots, Y_t is a Gaussian process.

Ans: Since V is jointly Gaussian and Y_1,Y_2,\ldots,Y_t is linearly dependent on V_1,V_2,\ldots,V_t , then Y_1,Y_2,\ldots,Y_t is also jointly Gaussian. (See transformation rules of Gaussian distributions.) Thus, Y_1,Y_2,\ldots,Y_t is a Gaussian process.