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The method of random sam-
pling

• Take any set system (hypergraph) G(V, S) where

V = {v1, · · · , vn} and S = {e1, · · · , em}; here,
ei ⊆ V for all 1 ≤ i ≤ m.
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• Take any set system (hypergraph) G(V, S) where

V = {v1, · · · , vn} and S = {e1, · · · , em}; here,
ei ⊆ V for all 1 ≤ i ≤ m.

• Given any integer 1 ≤ r ≤ n, we wish to find a
subset N ⊆ V that intersects every ei of size
greater than n

r
.
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The method of random sam-
pling

• Take any set system (hypergraph) G(V, S) where

V = {v1, · · · , vn} and S = {e1, · · · , em}; here,
ei ⊆ V for all 1 ≤ i ≤ m.

• Given any integer 1 ≤ r ≤ n, we wish to find a
subset N ⊆ V that intersects every ei of size
greater than n

r
.

• We can assume that |ei| >
n
r
, for any i, and

m > 1.
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Binomial random sampling of
the set of vertices

• Let p = cr(logm)
n

, for some large enough constant
c.
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Binomial random sampling of
the set of vertices

• Let p = cr(logm)
n

, for some large enough constant
c.

• Sample the set V by Binomial distribution, that
is, construct the set N by including in it vi with
probability p.
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Binomial random sampling of
the set of vertices

• Let p = cr(logm)
n

, for some large enough constant
c.

• Sample the set V by Binomial distribution, that
is, construct the set N by including in it vi with
probability p.

• Then, N ∩ ei = φ with probability less than

(1− p)
n

r for a single value of i.
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Binomial random sampling of
the set of vertices

• Let p = cr(logm)
n

, for some large enough constant
c.

• Sample the set V by Binomial distribution, that
is, construct the set N by including in it vi with
probability p.

• Then, N ∩ ei = φ with probability less than

(1− p)
n

r for a single value of i.

• The probability that N does not intersect some ei
is less than m(1− p)

n

r .
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Binomial random sampling of
the set of vertices

• We can make this probability smaller than any
constant. Why?
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Binomial random sampling of
the set of vertices

• We can make this probability smaller than any
constant. Why?

• The probability can be shown to be bounded by
1

mc−1 , which can be made smaller than any given

limiting constant as m grows beyond a certain
value for each valid choice of the constant c.
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Binomial random sampling of
the set of vertices

• We can make this probability smaller than any
constant. Why?

• The probability can be shown to be bounded by
1

mc−1 , which can be made smaller than any given

limiting constant as m grows beyond a certain
value for each valid choice of the constant c.

• So, the sample N of expected size np = cr logm
intersects every set ei of size n

r
; note also that the

random sample N is of size O(r logm) with high
probability.
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Binomial random sampling of
the set of vertices

• We can make this probability smaller than any
constant. Why?

• The probability can be shown to be bounded by
1

mc−1 , which can be made smaller than any given

limiting constant as m grows beyond a certain
value for each valid choice of the constant c.

• So, the sample N of expected size np = cr logm
intersects every set ei of size n

r
; note also that the

random sample N is of size O(r logm) with high
probability.

• Therefore, we have a way of getting random

samples such as N of size O(r logm) with high
probability, so that N intersects all the sets ei of
size greater than n

r
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Binomial random sampling of
the set of vertices

• This was a simple randomized construction of
such a set N (with high probability), that
intersects all the sets of size not lesser than n

r
.
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Binomial random sampling of
the set of vertices

• This was a simple randomized construction of
such a set N (with high probability), that
intersects all the sets of size not lesser than n

r
.

• Can we construct such a set N by a deterministic
method?
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Binomial random sampling of
the set of vertices

• This was a simple randomized construction of
such a set N (with high probability), that
intersects all the sets of size not lesser than n

r
.

• Can we construct such a set N by a deterministic
method?

• We discuss a greedy deterministic method, and
later we consider another method, which is a
derandomization of the above randomized
sampling technique.
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• Can we construct such a set N by a deterministic
method?
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later we consider another method, which is a
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Deterministic construction of ǫ-
nets

• We state a greedy and deterministic way of
generating an ǫ-net N as follows.
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Deterministic construction of ǫ-
nets

• We state a greedy and deterministic way of
generating an ǫ-net N as follows.

• Find a vertex vi contained in most sets ej ⊆ S.
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Deterministic construction of ǫ-
nets

• We state a greedy and deterministic way of
generating an ǫ-net N as follows.

• Find a vertex vi contained in most sets ej ⊆ S.

• Remove this vertex from further consideration
and add it to N .
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Deterministic construction of ǫ-
nets

• We state a greedy and deterministic way of
generating an ǫ-net N as follows.

• Find a vertex vi contained in most sets ej ⊆ S.

• Remove this vertex from further consideration
and add it to N .

• Then, remove all sets containing vi from future
consideration.
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Deterministic construction of ǫ-
nets

• We state a greedy and deterministic way of
generating an ǫ-net N as follows.

• Find a vertex vi contained in most sets ej ⊆ S.

• Remove this vertex from further consideration
and add it to N .

• Then, remove all sets containing vi from future
consideration.

• Repeat these steps until all hyperedges from S
are removed.
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Deterministic construction of ǫ-
nets

• We state a greedy and deterministic way of
generating an ǫ-net N as follows.

• Find a vertex vi contained in most sets ej ⊆ S.

• Remove this vertex from further consideration
and add it to N .

• Then, remove all sets containing vi from future
consideration.

• Repeat these steps until all hyperedges from S
are removed.

• Show that this algorithm can be made to run in

O(mn) time.
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Deterministic construction of ǫ-
nets

• Does N turn out to be quite small as required?
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Deterministic construction of ǫ-
nets

• Does N turn out to be quite small as required?

• Let mk be the number of hyperedges remaining
after k iterations. Clearly, m0 = m.
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Deterministic construction of ǫ-
nets

• Does N turn out to be quite small as required?

• Let mk be the number of hyperedges remaining
after k iterations. Clearly, m0 = m.

• Sticking to the assumption that each set ei has at
least n

r
elements, we now have mk sets left after

the kth iteration with at least n
r

elements.
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Deterministic construction of ǫ-
nets

• Does N turn out to be quite small as required?

• Let mk be the number of hyperedges remaining
after k iterations. Clearly, m0 = m.

• Sticking to the assumption that each set ei has at
least n

r
elements, we now have mk sets left after

the kth iteration with at least n
r

elements.

• We can select any of the n− k remaining vertices
in the next iteration.
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Deterministic construction of ǫ-
nets

• Does N turn out to be quite small as required?

• Let mk be the number of hyperedges remaining
after k iterations. Clearly, m0 = m.

• Sticking to the assumption that each set ei has at
least n

r
elements, we now have mk sets left after

the kth iteration with at least n
r

elements.

• We can select any of the n− k remaining vertices
in the next iteration.

• We have a distribution of n− k distinct vertices
in at least mk ×

n
r

instances over the mk sets.
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Deterministic construction of ǫ-
nets

• Does N turn out to be quite small as required?

• Let mk be the number of hyperedges remaining
after k iterations. Clearly, m0 = m.

• Sticking to the assumption that each set ei has at
least n

r
elements, we now have mk sets left after

the kth iteration with at least n
r

elements.

• We can select any of the n− k remaining vertices
in the next iteration.

• We have a distribution of n− k distinct vertices
in at least mk ×

n
r

instances over the mk sets.

• So, the most frequent vertex of the mk sets must

be in at least
mk×

n

r

n−k
≥ mk

r
sets. Why?
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Deterministic construction of ǫ-
nets

• Hint: What is the expected number of vertices in
these sets?
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Deterministic construction of ǫ-
nets

• Hint: What is the expected number of vertices in
these sets?

• Thus, mk+1 ≤ mk(1−
1
r
).
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Deterministic construction of ǫ-
nets

• Hint: What is the expected number of vertices in
these sets?

• Thus, mk+1 ≤ mk(1−
1
r
).

• So, mk ≤ m(1− 1
r
)k.
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Deterministic construction of ǫ-
nets

• Hint: What is the expected number of vertices in
these sets?

• Thus, mk+1 ≤ mk(1−
1
r
).

• So, mk ≤ m(1− 1
r
)k.

• For a large enough constant c > 0, and any
k ≥ cr logm, we have mk < 1, and therefore
mk = 0.
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Deterministic construction of ǫ-
nets

• Hint: What is the expected number of vertices in
these sets?

• Thus, mk+1 ≤ mk(1−
1
r
).

• So, mk ≤ m(1− 1
r
)k.

• For a large enough constant c > 0, and any
k ≥ cr logm, we have mk < 1, and therefore
mk = 0.

• In other words, picking any sufficiently large
number k ≥ cr logm of vertices we can ensure
that we hit all the hyperedges that have at least n

r

vertices.
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Deterministic construction of ǫ-
nets

• Hint: What is the expected number of vertices in
these sets?

• Thus, mk+1 ≤ mk(1−
1
r
).

• So, mk ≤ m(1− 1
r
)k.

• For a large enough constant c > 0, and any
k ≥ cr logm, we have mk < 1, and therefore
mk = 0.

• In other words, picking any sufficiently large
number k ≥ cr logm of vertices we can ensure
that we hit all the hyperedges that have at least n

r

vertices.

• So, we can deterministically compute a 1
r
-net N

of size O(r logm), greedily as above.
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