
Contents

Approximation and online algorithms: CS60023: Spring
2024

Instructor: Sudebkumar Prasant Pal

IIT Kharagpur

email: spp@cse.iitkgp.ac.in

April 14, 2024

1 / 141

Contents

1 Contents
2 Preliminaries: Upper/Lower bounds for OPT in Max/Min Problems

Lower bounds for OPT in minimization problems
3 Examples of elementary approximation bounds

DAG subgraphs of directed graphs
Large cuts for undirected graphs
Minimum maximal matchings
Vertex cover using DFS tree: Ratio factor two
Vertex cover from matching: Ratio factor two
Vertex covering using a large cut

4 Scheduling on identical parallel machines: Minimizing makespan
5 The notion of prices for the primal integral solution being fully and paid

up by the dual solution
6 The generic primal-dual scheme for covering-packing programs written

in the standard form
7 The approximation algorithm with ratio factor two for vertex covering
8 Improvement of the approximation guarantee

Tight example for the vertex cover algorithm
1 / 141

Contents

Maximal matchings lower bound cannot yield better approximation
guarantees for vertex covering
Total weight of all edges cannot yield better approximation
guarantees for weighted cut
Tight example for the greedy weighted set cover algorithm

9 Dual fitting for the constrained set multicover problem
Integer program and the primal relaxation LP for the constrained problem
The dual LP for the primal LP relaxation of the integer program
The greedy set cover algorithm for choosing alive elements repeatedly
Multiple prices for elements in different selections
The dual solution
Scaling and dual-fitting for satisfying the dual constraints
The final analysis of the factor Hk ratio bound

10 The k-centre problem

11 Multiway cut
The computational lower bounds on the sizes of cuts in the optimal
solution

12 The k-cut problem
The Gomory-Hu tree and minimum weight cuts

1 / 141

Contents

Properties of any optimal k-cut A and the approximation algorithm
for computing a k-cut
Establishing the novel lower bound

13 The K -server problem
14 Uncapacitated facilities location

Integer programming formulation and its linear programing relaxation
Lower bounding using dual linear programs
The 3-factor algorithm: Phase I
Summarizing Phase I
The 3-factor algorithm: Phase II
The analysis
Further interpretations using relaxed complementary slackness
conditions

15 Amortized bound for the competitive ratio for paging using a potential
function

16 Online deterministic paging algorithms and their competitive ratio
bounds

17 Randomized paging
18 Algorithms for the list update problem

1 / 141

Preliminaries: Upper/Lower bounds for OPT in Max/Min
Problems

19 Algorirthms for MAXSAT

20 Hardness of approximating MAX3SAT (MAXkSAT)

21 Hardness of approximation
Definitions and notation
The k-centre problem
The travelling salesman problem (TSP)
The bin-packing problem

22 Epsilon nets and their applications
2 / 141

Preliminaries: Upper/Lower bounds for OPT in Max/Min
Problems

Preliminary Background

Suppose we have an optimization problem (i.e. computing a
minimum sized vertex cover or a maximum cardinality stable set)
where a certain parameter must be minimized or maximised.

Say OPT is the value of the optimal solution and we can compute a
solution of value v in polynomial time using an algorithm A, then we
say that v

OPT is the approximation ratio for the algorithm A.

In a minimization problem v
OPT ≥ 1

2 / 141

Preliminaries: Upper/Lower bounds for OPT in Max/Min
Problems Lower bounds for OPT in minimization problems

Minimization problems

OPT is generally not known but we may know a lower bound m,
where m ≤ OPT , yielding an upper bound for the approximation ratio

v
OPT ≤

v
m .

Thus we can estimate an upper bound i.e. v
m on the approximation

ration v
OPT for Algorithm A if we know the lower bound m; this

bound is better if we have tighter value for m.

Note that in maximization problems, we can in a similar manner
define the approximation ratio as v

OPT ≤ 1.

The smaller the upper bound estimate for OPT , the better would the
lower bound on the approximation ratio.

3 / 141

Examples of elementary approximation bounds DAG subgraphs of directed graphs

Large DAG subgraphs of directed graphs

Let us consider the problem of computing a large directed acyclic
subgraph in a given directed graph G (V ,E).

If OPT is number of edges in the maximum size DAG, then
OPT ≤ e.

If we partition the set E of edges into two sets so that each set
induces a DAG, then we can choose the bigger one, ensuring at least
e
2 ≥

OPT
2 edges are selected in the large DAG.

Naturally each set in the partition must induce a DAG. To achieve
this requirement, we use the total ordering of integers after arbitrarily
numbering the vertices from 1 through n = |V |.
Then we take the forward edges (i < j) in one set and the backward
edges (i > j) in the other set. Observe that both these sets of edges
constitutes DAGS; so we can pick the larger one.1

1See Problem 1.9 in page 7 in [6].
4 / 141

Examples of elementary approximation bounds Large cuts for undirected graphs

Large cuts for undirected graphs

The size of a cut in a graph G (V ,E) cannot exceed e = |E |. If OPT
is the size of the max sized cut then OPT ≤ e

We can start with just about any cut and then keep improving it and
stop this incremental step when we cannot increase the cut size
anymore.

This incremental step could be moving one vertex across the cut only
if it has a larger number of neighbours in its own current side of the
cut compared to the number of neighbours on the other side of the
cut.

When we stop, we find that each vertex has more neighbours on the
opposite side, that is, at least half its degree is exhausted across the
cut.

Therefore, we have total vertex degree across the cut at least half the
sum of degrees of all vertices, which is at least 2e

2 = e.

5 / 141

Examples of elementary approximation bounds Large cuts for undirected graphs

Large cuts for undirected graphs (cont.)

However, this count is just twice the number of edges across the cut
as each edge counts once in the degree of its two vertices. So, we
conclude that at least e

2 edges are across the cut, which is more than
OPT

2 .

6 / 141

Examples of elementary approximation bounds Minimum maximal matchings

Minimum maximal matchings

See Problem 1.2 on page 8 in [6]

Consider an undirected graph G (V ,E). Let M be a maximal
matching of m edges and let OPT be the size of a maximum
cardinality matching M ′.

We wish to show that m ≥ OPT
2 . To this effect we first observe that

all the OPT edges of the maximum matching M ′ are incident on the
2m vertices of M; that is, the 2m vertices of M hit all edges in M ′.

Since no two edges of M ′ can be incident on the same vertex, we
have at most 2m edges in M ′, that is, OPT ≤ 2m. The
approximation ratio is therefore |M||M′| = m

OPT ≥
m

2m = 1
2 .

7 / 141

Examples of elementary approximation bounds Vertex cover using DFS tree: Ratio factor two

Vertex cover using DFS tree: Ratio factor two

Note that internal vertices of any DFS tree of a connected undirected
graph G form a vertex cover of G . Why?

So, this vertex cover can be computed in polynomial time. See
Problem 1.3 on page 8 in [6].

If the number of internal vertices is m then we can show that there is
a matching of size dm2 e, a lower bound on vertex cover size. Why?

So, the size OPT of the minimum vertex cover is no lesser than this
lower bound. So, m ≤ 2× OPT .

8 / 141

Examples of elementary approximation bounds Vertex cover using DFS tree: Ratio factor two

Vertex cover from matching: Ratio factor two

In the next section 7, we observe that the size of any maximal
matching in an undirected graph is a lower bound for the size of the
minimum vertex cover.

9 / 141

Examples of elementary approximation bounds Vertex covering using a large cut

Vertex covering using a large cut

The following problem is due to Vishnoi, given as Exercise 2.5 on
page 23 of [6]. If we compute a large cutset H of cardinality at least
half the size of the maximum cutset in an undirected graph G then
G \ H has maximum degree ∆

2 if G has maximum degree ∆.

Then, by induction we can show that a factor log ∆ algorithm for
computing a vertex cover of G can be designed.

The set of edges in H can be viewed as a bipartite graph on incident
vertices across the large cut. We can therefore compute the exact
vertex cover for this bipartite graph in polynomial time. How? (Recall
the Konig-Egervary theorem for bipartite graphs.)

The vertex cover for G \ H is computed recursively to within a factor
log ∆

2 of the size of its minimum vertex cover as follows.

10 / 141

Examples of elementary approximation bounds Vertex covering using a large cut

Vertex covering using a large cut (cont.)

So, a vertex cover for G of (i) size OPTH for H, and (ii) (recursively)
for G \ H of size (log ∆

2)OPTG\H gives a vertex cover of size at most

OPTH + (log ∆
2)OPTG\H ≤ OPTG + (log∆− 1)OPTG=

(log ∆)OPTG for the whole of G .

Section 2.4 Exercises 2.1, 2.2, 2.3 and 2.6 from pages 22-24 in [6]

11 / 141

Scheduling on identical parallel machines: Minimizing makespan

The machines and jobs: A trivial lower bound

We schedule n jobs in arbitrary arrival order on m identical machines.

For the next arrival (in the arbitrarily selected sequence of arrivals of
the n jobs), we assign the job to the least so far loaded machine.

We know that the completion time or makespan can never be less
than the processing time of the job with the largest processing time.

So, OPT is at least maxni=1{pi}, where pi is the processing time of
the job i , 1 ≤ i ≤ n.

12 / 141

Scheduling on identical parallel machines: Minimizing makespan

The second (non-trivial) lower bound for OPT

Additionally, let us assume for the sake of contradiction that OPT is
strictly less than the average processing time 1

m

∑n
i=1 pi .

Then, we can complete all the n jobs in a sequential simulation on
only one machine, spending a total time of OPT ×m <

∑n
i=1 pi ,

which is less than that required to complete all the jobs sequentially
on a single machine, a contradiction.

So, we conclude that OPT ≥ 1
m

∑n
i=1 pi .

Therefore, OPT is at least the larger of 1
m

∑n
i=1 pi and maxni=1{pi}.

13 / 141

Scheduling on identical parallel machines: Minimizing makespan

Upperbounding the makespan by bounding the start time
of the last ending job.

We certainly use both these lower bound for OPT in our analysis of
the factor two algorithm.

We must focus on the job pj that ends last but may have started
quite early.

However, when pj was scheduled on (say) machine Mi , all the other
m − 1 machines must have been busy.

This is due to the assignment rule that we must assign the next
arrival to a machine that is least loaded at the time startj of arrival
(and assignment to machine Mi).

So, as we mentioned already, startj must be quite small, and we now
argue that it is indeed not too large.

14 / 141

Scheduling on identical parallel machines: Minimizing makespan

The ratio factor two bound for makespan: Bounding the
start time (contd.)

Suppose, for the sake of contradiction, we assume that startj is
strictly greater than the average processing time 1

m

∑n
i=1 pi .

So, since all the machines were busy just until startj , and therefore
fully utilized, we have m × startj >

∑n
i=1 pi , and so a simulation on a

single machine would complete all jobs, a contradiction because we
have a pj -sized job yet to be processed, a contradiction.

Therefore, startj ≤ 1
m

∑n
i=1 pi ≤ OPT .

We have pj ≤ OPT as well.

Therefore, the makespan computed by Algorithm 10.2 in [6] is at
most 2.OPT . Why?

15 / 141

Scheduling on identical parallel machines: Minimizing makespan

The “local search” offline version of makespan

Assume that we have all the n jobs’ data pj , and that we have already
made an arbitrary assignment of the jobs to the m processors.

We can improve by reassigning jobs to processors carefully.

One such reassignment strategy is to reassign the currently last
ending job b to a machine M if that helps finish job b earlier than
time Cb = startb + pb.

This improvement is therefore possible if the “total duration” of the
machine M in the current schedule is smaller than startb = Cb − pb.

16 / 141

Scheduling on identical parallel machines: Minimizing makespan

Offline makespan (contd.)

The two lower bounds for OPT hold just as they hold for the online
version or the incremental version.

Also, if no improvement is possible, then we take the current
Cb = startb + pb as our upper estimate for OPT , yielding again the
same upper bound of at most 2.OPT for Cb.

How can we improve this approximation ratio to 2− 1
m?

17 / 141

The notion of prices for the primal integral solution being fully and
paid up by the dual solution

The notion of prices in the primal integral solution

Observe that using the linear programming relaxation of the integer
program and the dual LP of the (primal) LP relaxation, we saw how
the (primal) integral solution computed by the algorithm is fully paid
for by the computed dual variables.

The objective function value of the primal integral solution is matched
by the objective function value of the dual variables computed.

However, further in the analysis, we divide the dual variables by a
suitable factor and show that the scaled down dual solution is feasible.

18 / 141

The notion of prices for the primal integral solution being fully and
paid up by the dual solution

The dual solution objective function value as a lower bound

The scaling factor is the approximation guarantee of the algorithm
since the dual gives a lower bound on the optimal value of the linear
primal and dual linear programs, thereby giving a lower bound on also
the optimal objective function value of the integer linear program.

Indeed, the greedy algorithm defines dual variable values price(e), for
each element e. Observe that the cost of the selected sets in the set
cover picked by the algorithm is fully paid for (in this case exactly
equalled) by the dual solution.

However, this dual solution is not feasible. We therefore needed to
shrink the values by a factor of H(n), so that no set is overpacked (all
constraints of the dual LP are satisfied).

19 / 141

The generic primal-dual scheme for covering-packing programs
written in the standard form

As in Section 15.1 of [6], we focus on the standard form primal and
dual LPs, and define relaxed complementary slackness conditions with
parameters α and β, leading to the crucial Proposition 15.1 of [6].

Primal complementary slackness conditions: Let α ≥ 1.
For each 1 ≤ j ≤ n: either xj = 0 or

cj
α ≤

∑m
i=1 aijyi ≤ cj .

Dual complementary slackness conditions: Let β ≥ 1.
For each 1 ≤ i ≤ m: either yi = 0 or bi ≤

∑n
j=1 aijxj ≤ βbi .

The design of Algorithm 15.2 is based on Proposition 15.1 leading to
Theorem 15.3.

Proposition 15.1: If x and y are primal and dual feasible solutions
satisfying the conditions stated above then∑n

j=1 cjxj ≤ αβ
∑m

i=1 biyi .

Algorithm 15.2 starts with a primal infeasible solution and a dual
feasible solution; these are usually the trivial solutions x = 0 and
y = 0.

It iteratively improves the feasibility of the primal solution, and the
optimality of the dual solution, ensuring that in the end a primal

19 / 141

The generic primal-dual scheme for covering-packing programs
written in the standard form

feasible solution is obtained and all conditions, with a suitable choice
of α and β, are satisfied.

The primal solution is always extended integrally, thus ensuring that
the final solution is integral.

The current primal solution is used to determine the improvement to
the dual, and vice versa.

Finally, the cost of the dual solution is used as a lower bound on
OPT , and by Proposition 15.1, the approximation guarantee of the
algorithm is αβ.

For exercise 12.4 in the print version of [6] (absent in the e-version),
we use the paying mechanism for showing the equality of the
objective function values for the primal and dual LPs provided the
solutions for the primal and dual LPs obey the complememtary
slackness conditions.

To prove Proposition 15.1, we show that given a sufficient amount of
balance, the dual can pay enough from this balance through dual
variables yi for the primal variabes xj , so that the total payment done

19 / 141

The generic primal-dual scheme for covering-packing programs
written in the standard form

by the yi ’s, and collected by the xj ’s, is sufficient to meet the
objective function cost of the primal solution.

The upper bound (balance) for the total payment by the yi ’s is the
r.h.s. of Proposition 15.1 and the collection made by the primal xj ’s is
at least the lower bound l.h.s. of Proposition 15.1. The details as are
follows.

The payment from yi to xj is αyiaijxj .

The total payment to all the primal variables from yi is therefore
αyi
∑n

j=1 aijxj ≤ αβbiyi (due to the upper bounds in the relaxed dual
complementary slackness conditions).

So, the total payment from all dual variables to all primal variables is
at most the balance r.h.s. αβ

∑m
i=1 biyi of Proposition 15.1.

The total collection in xj is αxj
∑m

i=1 aijyi ≥ cjxj (due to the lower
bounds in the relaxed primal complementary slackness conditions.)

So, the total collection at all the primal variables is at least the l.h.s∑n
i=1 cjxj of Proposition 15.1.

Note that the total amount αyTAx sent by the dual and the total
amount αxTAT y received by the primal is the same quantity.

19 / 141

The approximation algorithm with ratio factor two for vertex
covering

The interesting example when α = 1 and β = f is that of the
weighted set cover problem where each element is in at most f sets.

We are guaranteed an f -factor algorithm if the post-condition
satisfied by the execution of the algorithm satisfies the relaxed
complementary slackness conditions, due to Proposition 15.1.

The algorithm picks sets in the set cover one by one by satisfying the
equality constraint due to the unit value of α in the dual inequalities.

20 / 141

The approximation algorithm with ratio factor two for vertex
covering

The approximation algorithm with ratio factor two for
vertex covering

For an undirected simple graph G (V ,E), a set W ⊆ V is a vertex
cover if, for every edge {u, v} ∈ E , either u or v or both are in W .

We wish to find a minimum cardinality vertex cover for the graph
G (V ,E).

This being an NP-hard problem, it is worthwhile searching for
polynomial time approximation algorithms.

We can try several heuristics. We may select (and delete) an arbitrary
vertex v ∈ V for inclusion in vertex cover C and drop all edges
incident on v .

This step can be repeated until the graph becomes empty (of edges).

20 / 141

The approximation algorithm with ratio factor two for vertex
covering

The approximation algorithm with ratio factor two for
vertex covering (cont.)

Alternatively, we may use another rule, where we select an arbitrary
edge {u, v} ∈ E and include both u and v in C ; we drop all edges
incident on u and v and repeat the process until the graph becomes
empty.

For a straight line graph (that is, a simple path of n vertices and n− 1
edges), the first method finds a vertex cover of size n − 1, which is
within twice the size of the optimal vertex cover of size bn/2c. Why?

Does it work well also for other classes of graphs like trees, planar
graphs, and general graphs?

The second one chooses both vertices of all edges in a maximal
matching S to be included in the computed vertex cover C .

21 / 141

The approximation algorithm with ratio factor two for vertex
covering

The approximation algorithm with ratio factor two for
vertex covering (cont.)

A matching is a set S of edges where no two edges in M share any
vertex. A matching S is called a maximal matching if we cannot add
an additional edge to M to get a larger matching.

We analyze the second heuristic, following the exposition in [2].

How well does this second heuristic work for straight line graphs?

If C ∗ is any minimum vertex cover then |S | ≤ |C ∗|, where S is any
maximal matching. Why?

Vertices in C ∗ have to cover each edge in the (maximal) matching S .
So, C ∗ must include at least one vertex from each of the S edges.

The 2|S | vertices comprise the computed approximate vertex cover C .
So, |C | = 2|S | ≤ 2|C ∗|, since |S | ≤ |C ∗|.
This gives a polynomial time algorithm yielding a vertex cover that is
certainly at most twice the size of the minimum vertex cover.

22 / 141

The approximation algorithm with ratio factor two for vertex
covering

The approximation algorithm with ratio factor two for
vertex covering (cont.)

It is interesting to note that any matching in a graph would force at
least as many vertices in the vertex cover as twice the number of
edges in the matching.

So, the cardinality of the maximum matching gives a lower bound on
the cardinality of any vertex cover. Do these two cardinalities ever
coincide for any classes of graphs?

From the algorithmic angle, we have already noted that the vertices
of edges forming a maximal matching cover all edges, and a maximal
matching can be computed using the greedy approach as in the
second heuristic stated above (see [6]).

As mentioned earlier, the maximal matching is such that none of its
supersets enjoys the same property.

23 / 141

The approximation algorithm with ratio factor two for vertex
covering

The approximation algorithm with ratio factor two for
vertex covering (cont.)

So, observe that a vertex cover generated by our approximation
algorithm might as well be smaller than twice the cardinality of the
maximum matching.

In such cases, where the discovered maximal matching is smaller than
the maximum matching, we can indeed have some savings.

24 / 141

Improvement of the approximation guarantee

Improvement of the approximation guarantee

A natural question about improving the approximation guarantee is
whether a better analysis of the algorithm being considered, can
improve the approximation guarantee any further. Essentially, we
must show that the analysis already provided for the algorithm is
tight.

25 / 141

Improvement of the approximation guarantee Tight example for the vertex cover algorithm

Tight example for the vertex cover algorithm

In the case of the factor two algorithm using maximal matchings for
vertex covering (in Section 7), we note that on Kn,n the algorithm
produces a solution that is twice the optimal in cardinality.

Since Kn,n is the complete bipartite graph on 2n vertices with n2

edges, our algorithm would certainly choose a matching of size n, and
therefore a vertex cover of size 2n, thereby showing that we cannot
get a factor better than 2 for such graphs for any integer n (see [6]),
for this algorithm.

This is despite the fact that the lower bound of the size of a maximal
matching is n as well as the size of an optimal vertex cover is n.

26 / 141

Improvement of the approximation guarantee Tight example for the vertex cover algorithm

Tight example for the vertex cover algorithm (cont.)

So, this family of infinite graphs provides what we call a tight
(asymptotic) example for the specific algorithm. Tight examples often
give critical insights into the functioning of an algorithm and often
lead to ideas for the design of other algorithms that can achieve
improved guarantees.

However, we do have vertex covers of size n in Kn,n !!! A smarter
algorithm might be able to tackle special cases where smaller than
2n-sized vertex covers can be discovered.

27 / 141

Improvement of the approximation guarantee
Maximal matchings lower bound cannot yield better

approximation guarantees for vertex covering

Maximal matchings lower bound cannot yield better
approximation guarantees for vertex covering

Now consider another question: can a better approximation algorithm
be designed that achieves a better guarantee but still uses the the
same lower bounding scheme as our current algorithm of Section 7.
For addressing this second question, consider the complete graph Kn

of n vertices where n is an odd integer.

Note that it has a minimum vertex cover of size n − 1; dropping any
two vertices would leave an edge uncovered. Also, n being odd, we
observe the maximum matching has cardinality n−1

2 . For this
example, no algorithm can achieve a ratio factor of approximation
better than 2 for any odd integer n (see [6]).

So, we observe that by simply using the lower bounding scheme of
maximal matchings, we cannot improve the approximation ratio.

28 / 141

Improvement of the approximation guarantee
Total weight of all edges cannot yield better approximation

guarantees for weighted cut

Total weight of all edges cannot yield better approximation
guarantees for weighted cut

As in the case of vertex cover in Section 7, we can also make a similar
observation for the maximum weighted cut problem.

A polynomial time algorithm exists that ensures a cut of weighted
capacity at least 1

2w(E), where w(E) is the sum of weights of the
edges. We now show here that for all n, we cannot have a better
ratio factor for graphs K2n, if we use the (obvious) upper bound of
w(E) for the maximum cut. The graph K2n has exactly n(2n − 1)
edges and a maximum cut of size n2, giving an approximation ratio at
most 1

2 for such graphs for all integers n.

Observe that the cut is maximised when it separates any set of n
vertices form the rest of the n vertices So, we observe that by simply
using the upper bounding scheme provided by w(E), we cannot
improve the approximation ratio.

29 / 141

Improvement of the approximation guarantee Tight example for the greedy weighted set cover algorithm

Tight example for the greedy weighted set cover algorithm

Suppose, n sets each have a singleton element and the set weights are
respectively, 1

n ,
1

n−1 , · · · , 1, and the last set has all these n elements
with set weight 1 + ε.

The optimal cover has weight 1 + ε but the greedy algorithm
computes a set cover with weight H(n); in each iteration, the cost
effectiveness of the last set is higher than those of the previous sets
and lower than those of the sets not yet selected. This is an example
where the H(n) upper bound is approached as ε approaches zero.

In Section 13.1 of [6] we can see the Example 13.4 which reveals that
the Hn bound is essentially tight, irrespective of the algorithm used.
For this purpose, we must see the LP relaxation 13.2 on page 109 of
[6].

See Sections 29.7 and 29.9 of [6] for seeing why the obvious greedy
algorithm is the best one can hope for.

30 / 141

Dual fitting for the constrained set multicover problem

Dual fitting for the constrained set multicover problem

The discussion here on the constrained set multicover problem is from
Section 13.2.1 in [6]. Here, each element e needs to be covered a
specific integer number re of times. We also use the constraint that
each set can be picked up at most once. A set S if picked up k times
yields cost k × c(S). Such permissible picking of a set multiple times
is allowed in the less constrained problem set multicover.

31 / 141

Dual fitting for the constrained set multicover problem

Integer program and the primal relaxation LP for the
constrained problem

Now we propose the integer programming formulation as
min

∑
S∈S c(S)xS subject to

∑
S :e∈S xS ≥ re , for all e ∈ U, given

that xS ∈ {0, 1}, for all S ∈ S. Here, re ∈ Z+.

The LP-relaxation is tricky because we must now constrain each set
to be selected at most once. So, we need to realize the constraint
xS ≤ 1 as well.

Therefore, replacing the integer program constraint on xS taking on
values 0 and 1 only, we now use the following constraints in the
LP-relaxation: −xS ≥ −1 and xS ≥ 0, for all S ∈ S.

32 / 141

Dual fitting for the constrained set multicover problem

The dual LP for the primal LP relaxation of the integer
program

The dual linear program for the LP-relaxation is therefore complex,
with a few more variables because we do not have what we call a
primal covering linear program.

There are some negative elements in the matrices and vectors in the
primal-dual linear program formulation).

The additional constraints have new variables zS in the dual. The
dual LP is no more a packing program.

The primal LP has one constraint for each element in U as well as a
constraint for each set in S; there are as many variables in the dual
LP, the ye variables as well as the zS variables.

Now, a set S can be overpacked with the ye variables.

This can be done only provided we raise zS to ensure feasibility.

33 / 141

Dual fitting for the constrained set multicover problem

The dual LP for the primal LP relaxation of the integer
program (cont.)

The objective function value can then decrease. However, overall,
overpacking may still be advantageous, since the ye appear with
coefficients of re in the objective function.

max
∑

e∈U reye −
∑

S∈S zS
subject to
(
∑

e:e∈S ye)− zS ≤ c(S), for all S ∈ S
ye ≥ 0, for all e ∈ U
zS ≥ 0, for all S ∈ S

34 / 141

Dual fitting for the constrained set multicover problem

The greedy set cover algorithm for choosing alive elements
repeatedly

The greedy algorithm is as follows. We say that element e is alive if it
occurs in less than re of the sets already selected.

The algorithm picks a hitherto unpicked set which is the most
cost-effective set; the cost-effectiveness of a set is defined as the
average cost at which the set covers its currently alive elements.

The algorithm halts when there are no more alive elements.

35 / 141

Dual fitting for the constrained set multicover problem

Multiple prices for elements in different selections

On picking a set S , its cost c(S) is distributed equally amongst the
alive elements it covers. If S covers e for the jth time, price(e, j) is
set to the current cost-effectiveness of S as defined above.

It is easy to see that the cost-effectiveness of sets picked is
non-decreasing.

Since cost-effectiveness is non-decreasing over iterations of selection
of sets in the set cover, we have, for each element e,
price(e, 1) ≤ price(e, 2)... ≤ price(e, re).

36 / 141

Dual fitting for the constrained set multicover problem

The dual solution

The variables of the dual are set as follows at the end of the
algorithm’s execution.

For each e ∈ U, we set (after scaling by Hn)
ye = αe

Hn
= 1

Hn
.price(e, re).

For each S ∈ S picked up by the algorithm in the set cover, we set
(after scaling down by Hn)
zS = βS

Hn
= 1

Hn
.[
∑

e−covered−by−S(price(e, re)− price(e, je))], where je
is the copy of e covered by S.

Note that since price(e, je) ≤ price(e, re), so βS is non-negative.

If S is not picked by the algorithm, then βS is defined to be 0.

Now observe that the objective value of the primal is∑
e∈U

∑re
j=1 price(e, j). Indeed, this is identical to the objective

function value of the dual variables (α, β) since∑
e∈U reαe −

∑
S∈S βS=

∑
e∈U

∑re
j=1 price(e, j).

37 / 141

Dual fitting for the constrained set multicover problem

The dual solution (cont.)

After scaling down (α, β) by a factor of Hn we get the scaled dual LP
feasible solution (y , z), where ye = αe

Hn
and zS = βS

Hn
.

38 / 141

Dual fitting for the constrained set multicover problem

Scaling and dual-fitting for satisfying the dual constraints

For ascertaining that the (y , z) solution is a scaled but feasible dual
solution, we need to look at each set S .

Consider a set S ∈ S consisting of k elements. Order and enumerate
its elements in the order in which their multiple occurance
requirements were fulfilled.

This is the order in which they stopped being alive.

Let the ordered elements be e1, ..., ek .

Suppose S is not picked by the algorithm. When the algorithm is
about to cover the last copy of ei , S contains at least k − i + 1 alive
elements, so price(ei , rei) ≤

c(S)
k−i+1 .

Since zS is zero, we get
∑k

i=1 yei − zS = 1
Hn

∑k
i=1 price(ei , rei)

≤ c(S)
Hn

.(1
k + 1

k−1 + · · ·+ 1
1) ≤ c(S).

Next, we assume that S is picked by the algorithm.

39 / 141

Dual fitting for the constrained set multicover problem

Scaling and dual-fitting for satisfying the dual constraints
(cont.)

Also assume that just before S is picked up, k ′ ≥ 0 elements of S are
already completely covered.

Then, (
∑k

i=1 yei)− zS=
1
Hn

[
∑k

i=1 price(ei , rei)−
∑k

i=k ′+1(price(ei , rei)− price(ei , ji))]=
1
Hn

[
∑k ′

i=1 price(ei , rei) +
∑k

i=k ′+1 price(ei , ji)], where S covers the ji th
copy of ei , for each i ∈ {k ′ + 1, ..., k}.
But

∑k
i=k ′+1 price(ei , ji) = c(S), since the cost of S is equally

distributed among the copies it covers.

Finally consider elements ei , i ∈ {1, ..., k ′}.
When the last copy of ei is being covered, S is not yet picked and
covers at least k − i + 1 alive elements.

Thus, price(ei , rei) ≤
c(S)

k−i+1 .

Therefore, (
∑k

i=1 yei)− zS ≤ c(S)
Hn

(1
k + · · ·+ 1

k−k ′+1 + 1) ≤ c(S)).

40 / 141

Dual fitting for the constrained set multicover problem

The final analysis of the factor Hk ratio bound

The actual aprroximation ratio is as good as Hk , where k is the
cardinaity of the largest set in S. This fact is easily seen in the
derivations above.

41 / 141

The k-centre problem

The k-centre problem

The k-center problem is formally stated as follows. Let G = (V ,E) be
a complete graph having a non-negative cost dij associated with each
edge (vi , vj) of E . We assume that for every triple of vertices vi , vj ,
vl ∈ V , the distances satisfy the triangle inequality, i.e., dij ≤ dil + dlj .

Given a positive integer k , (i) chose a set (called cluster centers)
S ⊆ V of |S | = k , and (ii) assign each of the remaining vertices
V ⊆ S to its nearest cluster center. The objective is to minimize the
maximum distance of a vertex to its cluster center.

Geometrically, the goal is to find k different balls covering all points
so that the radius of the largest ball is as small as possible.

In other words, the goal is to find a set S of the centers of k different
balls of the same radius that cover all points in V \ S so that the
radius is as small as possible.

42 / 141

The k-centre problem

The k-centre problem (cont.)

First, we define the distance of a vertex i from a set S ⊆ V of
vertices to be d(i , S) = minj∈Sdij . Then the corresponding radius for
S is equal to maxi∈V d(i ,S), and the goal of the k-center problem is
to find a set of size k of minimum radius.

Again in this problem, we will use the triangle inequality. The n
points of a set V of points with pairwise distances obeying the
triangle inequality are given. We study the specific clustering problem
of choosing a set S of k out of n points as centres of clusters, so that
points closer to a centre in S than any other centres in S are grouped
into a cluster.

The cluster radius is the radius of the smallest ball (circle) centred at
each cluster centre and enclosing all points of that cluster. The
maximum of the k cluster radii has to be minimised. This is an
NP-hard problem; we present a factor two approximation algorithm as
given in [7]

43 / 141

The k-centre problem

The k-centre problem (cont.)

The approximation algorithm is simple: it selects an arbitrary point
initially as one cluster centre in the set S of cluster centres. Then, it
repeatedly chooses cluster centres for newer clusters till all k centres
are selected in S .

Every subsequent cluster centre is chosen by selecting a point
i ∈ V \ S whose distance d(i ,S) to the points in S is maximized.

For proving the factor two approximation bound, we again choose an
arbitrary optimal solution S∗ with r denoting the radius of the largest
cluster in the optimal solution S∗.

Due to triangle inequality, the distance between any two vertices
within any cluster of the optimal solution S∗ is bounded by 2r . The
solution S of k cluster centres, as identified by our approximation
algorithm may be different from S∗.

44 / 141

The k-centre problem

The k-centre problem (cont.)

Assume that the algorithm has chosen only one vertex u(B) ∈ S from
a cluster B with centre v(B) ∈ S∗ of the optimal solution S∗.

Furthermore, suppose only one vertex is selected in S from each
cluster of the optimal solution S∗.

Then vertices of S∗ are in any case within a distance r of some
cluster centre in S ! Why?

Now consider any vertex u ∈ V \ S∗.
Any u ∈ V \ S∗, within the radius r cluster B centred at its cluster
centre vertex v(B) ∈ S∗, is within a distance of 2r from the cluster
centre vertex u(B) ∈ S , due to triangle inequality.

Now consider the other situation where one vertex u(B) inside the
cluster B is already selected in S and the algorithm still chooses
another vertex w(B) inside the cluster B as a center point in S .

45 / 141

The k-centre problem

The k-centre problem (cont.)

Again, the distance between u(B) and w(B) is bounded by 2r .
Moreover, w(B) must have been the furthest point from all points in
S at the time it was selected in S , including u(B), by the choice of
the algorithm, and therefore, all the points are within a distance of 2r
of some center point already selected in S .

This argument holds even if the algorithm adds more points of B to S
subsequently.

46 / 141

Multiway cut

Multiway cut

Given a set S = {s1, s2, ..., sk} of terminals where S ⊆ V , a multiway
cut is a set of edges whose removal disconnects the terminals from
each other.

The multiway cut problem asks for such a minimum weight cut. This
presentation is from Section 4.1 of [6]. The problem of finding a
minimum weight multiway cut is NP-hard for any fixed k ≥ 3.

Observe that the case k = 2 is precisely the minimum (s, t)-cut
problem, solvable in polynomial time using network flows. We present
a 2− 2

k approximation algorithm for this problem as follows for k ≥ 3.

For each i = 1, ..., k do
1 identify the terminals in S \ {si} into a single vertex
2 compute a minimum weight cut Ci for (si ,S − {si}) using a network

flow algorithm, and

47 / 141

Multiway cut

Multiway cut (cont.)

3 discard the heaviest of these cuts. The output is the union of the rest,
say C .

Let A be an optimal multiway cut in G . A can be viewed as the union
of k cuts as follows. The removal of A from G creates k connected
components, each having one terminal.

Let Ai ⊆ A be the cut separating the component containing si from
the rest of the graph.

So, A = ∪ki=1Ai . Since each edge of A is incident at two of these
components, each edge belongs to two of the cuts. So,∑k

i=1 w(Ai) = 2w(A).

48 / 141

Multiway cut
The computational lower bounds on the sizes of cuts in the

optimal solution

Computational lower bounds on the sizes of cuts in the
optimal solution

Now the main lower bound argument is that Ci being a minimum
weight cut for si , we have w(Ci) ≤ w(Ai).

A similar lower bound argument is used also in the much more
complex proof of an approximation bound for the minimum weight
k-cut problem in Section 4.2 of [6].

Note that this already gives a 2-approximation algorithm, by taking
the union of all k cuts Ci .

This union step in the alorithm is reminiscent of the vertex cover
algorithm where for each matching edge we include vertices at both
ends of the edge.

Finally, since C is obtained by discarding the heaviest of the cuts Ci ,
we have
w(C) ≤ (1− 1

k)
∑k

i=1 w(Ci) ≤ (1− 1
k)
∑k

i=1 w(Ai) = 2(1− 1
k)w(A).

49 / 141

The k-cut problem

The k-cut problem

The k-cut problem is similar to the multiway cut problem but in this
case we do not provide any set of k terminals. This exposition is
based on Section 4.2 of [6]

This k-cut problem is a more general problem. The nice
approximation bound in this problem requires a complicated analysis
using Gomory-Hu trees.

A k-cut is a set of edges whose removal leaves k connected
components for a connected graph. For positive edge weights, we
wish to find a minimum weighted k-cut. We will address the
well-known result about the factor 2− 2

k approximation algorithm.

50 / 141

The k-cut problem The Gomory-Hu tree and minimum weight cuts

The Gomory-Hu tree and minimum weight cuts

We use the Gomory-Hu tree T defined on the same vertex set V as
that of the graph G (V ,E) with positive edge weights for edges in E .
The edges of T may not belong to E .

Suppose the removal of an edge eT of T gives two components of the
vertex set namely, S and V \ S .

Let E ′ ⊆ E be the edges of G whose removal from G partitions
vertex set of G into S and V \ S .

In other words, E ′ is the cut-set for S and V \ S in G . Assign the
sum of weights on edges of E ′ on edge eT of T . So, edges of T have
weights corresponding to the minimum weight cut-sets in G .

Thus, out of
(n

2

)
minimum weight u − v cuts, only n − 1 minimum

weight cut sets in G are used as weights on edges of T .

51 / 141

The k-cut problem The Gomory-Hu tree and minimum weight cuts

The Gomory-Hu tree and minimum weight cuts (cont.)

Thus, the min-cut tree T (called the Gomory-Hu Tree) has the
property that the minimum cut between any two nodes vi and vj in G
is the smallest weight edge in the unique path that connects vi and vj
in T .

52 / 141

The k-cut problem
Properties of any optimal k-cut A and the approximation

algorithm for computing a k-cut

Properties of any optimal k-cut A and the approximation
algorithm for computing a k-cut

Let S be the union of minimum weights cuts in G associated with l
edges of T . Then, the removal of S from G leaves a graph with at
least l + 1 components.

The k-cut approximation algorithm we analyze is simple; the
algorithm first constructs the Gomory-Hu tree T for G in polynomial
time, and then constructs a k-cut set C by taking the union of cut
edges of G corresponding to the lightest k − 1 edges in T .

If more than k connected components result then we keep throwing
back cut edges till there are exactly k components.

Let A be an optimal k-cut in G , which can be viewed as the union of
k cuts. Let the removal of A from G create k connected components,
V1,V2, ...,Vk .

53 / 141

The k-cut problem
Properties of any optimal k-cut A and the approximation

algorithm for computing a k-cut

Properties of any optimal k-cut A and the approximation
algorithm for computing a k-cut (cont.)

Let Ai ⊆ A be the cut separating Vi from the rest of the graph. Then,
A = ∪ki=1Ai . Each edge of A is incident at two of these components.

So, each edge of A is in two of the cuts. So,
∑k

i=1 w(Ai) = 2w(A).

54 / 141

The k-cut problem Establishing the novel lower bound

Establishing the novel lower bound

Now we have to connect the properties of the output C of the
approximation algorithm with the properties of the arbitrary minimum
k-cut A, in order to establish the factor 2− 2

k ratio bound.

The main idea is to identify (show the existence of) k − 1 cuts
defined by the edges of T whose weights are dominated by the weight
of the cuts A1,A2, ...Ak−1 of the optimal k-cut A. This lower bound
argument is crucial. These k − 1 cuts are identified as follows.

Let B be the set of edges of T that connect across two of the sets
V1,V2, ...,Vk . Consider the graph on the vertex set V and the edge
set B. We shrink each of the sets V1,V2, ...,Vk to resective k single
super-vertices.

So, we have essentially superimposed the tree T over the k connected
components of an optimal k-cut A giving a possibly non-tree but
connected graph with edge set B on k super-vertices.

55 / 141

The k-cut problem Establishing the novel lower bound

Establishing the novel lower bound (cont.)

Observe that this graph must be connected since T is itself
connected.

Throw edges away from this graph until a tree survives. Let B ′ ⊆ B
be the leftover edges in T ′. Clearly, |B ′| = k − 1 as the tree leftover
has k vertices.

The edges of B ′ define the required k − 1 cuts which are dominated
by the k − 1 cuts from A.

Assuming that Ak is the heaviest cut amongst the cuts of A. Imagine
rooting tree of edges from B ′ at Vk .

We now define a correspondence between the edges in B ′ and the
sets V1,V2, ...,Vk−1: each edge corresponding to the set it comes out
of in the rooted tree, going towards the parent.

56 / 141

The k-cut problem Establishing the novel lower bound

Establishing the novel lower bound (cont.)

Suppose edge (u, v) ∈ B ′ corresponds to a set Vi in this manner
where Vj is the parent of Vi in T ′, u ∈ Vj and v ∈ Vi . The weight of
a minimum u − v cut in G is w ′(u, v).

Since Ai is also a u − v cut in G (but may not be the minimum such
cut!), we therefore have w(Ai) ≥ w ′(u, v) for all i , 1 ≤ i ≤ k − 1.

Since, the union of the lightest k − 1 cuts defined by T is C in our
approximation algorithm, we have w(C) ≤

∑
e∈B′ w

′(e) ≤∑k−1
i=1 w(Ai) ≤

∑k
i=1(1− 1

k)Ai = 2(1− 1
k)w(A).

57 / 141

The K -server problem

The K -server problem

Online algorithms for the K -server problem are considered.

K servers need to be moved around to service requests appearing
online at points of a metric space.

The total distance travelled by the K servers must be minimised,
where any request arising at a point of the metric space must be
serviced on site by moving a server to that site.

d(a1, a2) is defined as the distance between a1 and a2.

M represents the metric space where d is the metric which satisfies
the triangle inequality.

MK represents the set of configurations of the K points of M.

Given configurations C1 and C2, d(C1,C2) is the minimum possible
distance travelled by K servers that change configuration from C1 to
C2.

58 / 141

The K -server problem

C0 ∈ MK is the initial configuration.

Let r = (r1, r2, ...rm) be the sequence of request points in M.

The solution C1,C2, ...,Cm ∈ MK is such that rt ∈ Ct , ∀t = 1....m.

Serving r1, r2,rm by moving through C1,C2, ...,Cm entails solution
cost

∑m
t=1 d(Ct−1,Ct).

The online algorithm uses only r1, r2...rt and C0, ..,Ct−1 to compute
Ct .

The offline algorithm uses also rt+1, rt+2...rm.

59 / 141

The K -server problem

Given C0, r = (r1, r2, ...rm), costA(C0, r) is the cost of the online
algorithm A, and

opt(C0, r) is the cost of the optimal algorithm.

ρ is the competitive ratio.

Competitive ratio is used as costA(C0, r) < ρ ∗ opt(C0, r) + φ(C0) for
some ρ.

φ(C0) is independent of r .

ρM may be used for metric space M.

Conjecture: For every metric space with more than K distinct points
the competetive ratio for the K -server problem is exactly K .
ρ = infA supr

costA(C0,r)
opt(C0,r) , modulo a constant term.

60 / 141

The K -server problem

Theorem

In every metric space with at least K + 1 points, no online algorithm for
the K-server problem can have competitive ratio less than K.

We wish to show there are request sequences of arbitrary high cost for
A for which the online algorithm A has cost K times that of the
optimal offline algorithm. We prove this lower bound result later
below.

Now we consider the double coverage strategy, used for the online
algorithm A to achieve the competitive ratio K .

Let a1, a2, a3 be ordered left to right on a horizontal line with a2

closer to a1 than a2. Let servers s1 and s2 be at a1 and a3

respectively, initially, with no server at a2.

61 / 141

The K -server problem

Let serving requests come repeatedly alternating between a2 and a1.

If we move only the (closest) server s1 (which was intitally stationed
at a1) up and down between a1 and a2 for the sequence
a2, a1, a2, a1, · · · , we incur unbounded competive ratio for
asympopically large strings of requests a2, a1.

This is so because the offline algorithm would place servers s1 and s2

at a1 and a2 respectively, permanently, instead of fixing s2 at a3.

In the double coverage strategy instead, we move both s1 and s2

towards a2 by amount d(a1, a2) on serving request a2, and then move
s1 back to a1 on serving request a1. So we use travel cost at most 3
times of that used by the optimal offline algorithm, which moves s2

only once to a2 on the first serving request for a2.

62 / 141

The K -server problem

We continue to analyse the double coverage strategy whose suggested
ratio is 3 for K = 2 servers.

Note that consecutive configurations Ct ,Ct−1 differ only in rt i.e.,
Ct = Ct−1 ∪ rt .

63 / 141

The K -server problem

The scenario where servers are moved only to service requests directly
is called lazy. The double coverage algorithm in that sense is not lazy.

A non-lazy algorithm can however be memory-less like the double
coverage algorithm since decisions are based only on the current
configuration.

Let us use potential Φ(Ct ,C
′
t) where C stands for the online

algorithm and C ′ for the offline algorithm.

Let cost(t) and opt(t) be the costs to service rt by online and offline
methods at the instant t.

64 / 141

The K -server problem

We need to show that

cost(t)− K ∗ opt(t) ≤ Φ(Ct−1,C
′
t−1)− Φ(Ct ,C

′
t) (1)

Adding for m steps we have

m∑
t=1

cost(t)− K ∗
m∑
t=1

opt(t) ≤ Φ(C0,C
′
0)− Φ(Cm,C

′
m) (2)

We can drop Φ(Cm,C
′
m) without disturbing upper bounding so that

we have
m∑
t=1

cost(t)− K ∗
m∑
t=1

opt(t) ≤ Φ(C0,C
′
0) (3)

which gives the competitive ratio of at most K .

65 / 141

The K -server problem

Let us use the offline algorithm to respond to rt first and then the
online algorithm.

1 C ′t−1 =⇒ C ′t , whereas Ct−1 is unchanged.
2 Ct−1 =⇒ Ct where C ′t has already reached a server to location rt .

We define the potential function as

Φ(Ct ,C
′
t) = K ∗ d(Ct ,C

′
t) +

∑
ai ,aj∈Ct

d(ai , aj) (4)

d(Ct ,C
′
t) =⇒ weight of the minimum weight bipartite matching in

KCt ,C ′t
, the complete bipartite graph where servers of the offline and

online algorithm form the two vertex sets Ct and C ′t .

66 / 141

The K -server problem

To prove inequality (1) we do the two transitions of [1], the offline
algorithm, and then [2], the online algorithm.
cost(t)− K ∗ opt(t) ≤ Φ(Ct−1,C

′
t−1)− Φ(Ct ,C

′
t)

Wherever cost(t) is more than K ∗ opt(t), there is a balancing
payment from fall in the potential function.

67 / 141

The K -server problem

Observe that d(Ct ,C
′
t) is simply

∑K
i=1 d(si , ai) for the scenario of

straightline geometry.

Offline algorithm movement of servers for the request rt .

We have the following equations for potential functions for transition
[1].

Φ(Ct−1,C
′
t) = K ∗ d(Ct−1,C

′
t) +

∑
ai ,aj∈Ct−1

d(ai , aj) (5)

Φ(Ct−1,C
′
t−1) = K ∗ d(Ct−1,C

′
t−1) +

∑
ai ,aj∈Ct−1

d(ai , aj) (6)

68 / 141

The K -server problem

By the definition of Φ in Equation 4 and from Equations 5 and 6 we
deduce

Φ(Ct−1,C
′
t)−Φ(Ct−1,C

′
t−1) = K ∗ [d(Ct−1,C

′
t)−d(Ct−1,C

′
t−1)] (7)

Now by the triangle inequality
d(Ct−1,C

′
t) ≤ d(Ct−1,C

′
t−1) + d(C ′t−1,C

′
t)

and Equality 7 we have

Φ(Ct−1,C
′
t) ≤ Φ(Ct−1,C

′
t−1) + K ∗ d(C ′t−1,C

′
t) (8)

We will remember inequality 8 for future use to prove inequality (1).

69 / 141

The K -server problem

Suppose we show for the online movement that

Φ(Ct ,C
′
t) ≤ Φ(Ct−1,C

′
t)− d(Ct−1,Ct) (9)

Rewriting inequality 9 we get
Φ(Ct ,C

′
t) + d(Ct−1,Ct) ≤ Φ(Ct−1,C

′
t)

Substituting the RHS above from inequality 8, and moving the terms
in the inequality, we get
d(Ct−1,Ct)− K ∗ d(C ′t−1,C

′
t) ≤ Φ(Ct−1,C

′
t−1)− Φ(Ct ,C

′
t)

But d(Ct−1,Ct) = cost(t) and d(C ′t−1,C
′
t) = opt(t).

So we have established inequality (1)

Therefore, inequality (2) follows and we are done.

70 / 141

The K -server problem

Finally, to show inequality 9 for movement of online steps, we do as
follows.

Let us account the cost of the online algorithm for moving survers at
the request rt .

Again, by the definition of Φ, we have
Φ(Ct ,C

′
t) = K × d(Ct ,C

′
t) +

∑
ai ,aj∈Ct

d(ai , aj) and

Φ(Ct−1,C
′
t) = k × d(Ct−1,C

′
t) +

∑
ai ,aj∈Ct−1

d(ai , aj)

71 / 141

The K -server problem

Observe that if rt is a point between two online servers si and si+1,
then one of them moves towards its matching point of the offline
configuration and the other server may move away from its matching
offine server an equal distance.

So, their total contribution does not increase the matching, i.e.,
d(Ct ,C

′
t)− d(Ct−1,C

′
t) ≤ 0.

Without loss of generality assume that d(si , rt) ≤ d(si+1, rt).

72 / 141

The K -server problem

Since si and si+1 move towards rt by the same distance,∑
ai ,aj∈Ct

d(ai , aj)−
∑

ai ,aj∈Ct−1
d(ai , aj) is reduced by 2d(si , rt).

So, Φ(Ct ,C
′
t)− Φ(Ct−1,C

′
t) ≤ 2d(si , rt), or

Φ(Ct ,C
′
t) ≤ Φ(Ct−1,C

′
t)− 2d(si , rt), or

Φ(Ct ,C
′
t) ≤ Φ(Ct−1,C

′
t)− d(Ct−1,Ct), where d(Ct−1,Ct) represents

the change in the distance between online servers.

This is the very Inequality 9 for this case.

73 / 141

The K -server problem

Now consider the other case where rt lies outside the interval of the
K servers, and only one server (say, s1) moves to rt .

Here, the first term of the potential decreases by K × d(s1, rt),
because s1 moves closer to its matching point a1.

The second term of the potential increases by (K − 1)× d(s1, rt) as
the distance to s1 from s2, s3, ... , sk increases by d(s1, rt).

The difference of these two terms is d(s1, rt), which is equal to
d(Ct−1,Ct).

So, in this second case too, Φ(Ct ,C
′
t) ≤ Φ(Ct−1,C−t)− d(Ct−1,Ct),

that is, Inequality 9

This completes the proof.

74 / 141

Uncapacitated facilities location

Facilities location

The uncapacitated facilities location problem and clustering problems
have been studied extensively, like the k-median problem and the
k-center problem.

Typically, in the given n-vertex graph, non-negative edge weights obey
the triangle inequality.

In the k-center problem we minimize the maximum distance from a
facility, whereas in the k-median problem we minimize the total sum
of distances from facilities.

In both these problems we do not consider and costs for the facilities,
unlike in the uncapacitated facilities location problem.

The uncapacitated facility location problem is a combinatorial
optimization problem. It has applications in setting up facility
distribution centres.

75 / 141

Uncapacitated facilities location

Facilities location (cont.)

In the uncapacitated facility location problem, we have a set of clients
or demands D and a set of facilities F.

For each client j ∈ D and facility i ∈ F , there is a cost cij of assigning
client j to facility i .

Furthermore, there is a cost fi associated with each facility i ∈ F .
The aim is to choose a subset T ′ ⊆ F so as to minimize the total
cost of the facilities in T ′ and the cost of assigning each client j ∈ D
to some facility in T ′.

In other words, we wish to find T ′ ⊆ F and a function f mapping
clients to facilties, such that the following cost is minimised,∑

i∈T ′
fi +

∑
j∈D,f (j)∈T ′

cf (j)j

where the first part is called facility cost and the second part is called
assignment cost or service cost.

76 / 141

Uncapacitated facilities location

Facilities location (cont.)

This is an NP-hard problem and therefore we need to design
approximation algorithms.

77 / 141

Uncapacitated facilities location
Integer programming formulation and its linear programing

relaxation

Integer programming formulation and its linear programing
relaxation

The integer programming formulation for this problem has decision
variables yi ∈ {0, 1} for each facility fi ∈ F .

If we decide to open facility i , then yi = 1, and yi = 0, otherwise.

We also introduce decision variables xij ∈ {0, 1} for all i ∈ F and all
j ∈ D.

If we assign client j to facility i , then xij = 1 while xij = 0, otherwise.

The objective function becomes

Minimize
∑
i∈F

fiyi +
∑

i∈F ,j∈D
cijxij

78 / 141

Uncapacitated facilities location
Integer programming formulation and its linear programing

relaxation

Integer programming formulation and its linear programing
relaxation (cont.)

We need to make sure that each client j ∈ D is assigned to exactly
one facility. This can be done by stating∑

i∈F
xij = 1

We also need to make sure that the client is assigned to a facility that
is open. This can be done by ensuring

xij ≤ yi

79 / 141

Uncapacitated facilities location
Integer programming formulation and its linear programing

relaxation

Integer programming formulation and its linear programing
relaxation (cont.)

Thus, the integer linear programming (ILP) formulation of the facility
location problem can be summarized as follows:

minimize
∑
i∈F

fiyi +
∑

i∈F ,j∈D
cijxij

subject to
∑
i∈F

xij = 1, ∀j ∈ D,

xij ≤ yi , ∀i ∈ F , j ∈ D,

xij ∈
{

0, 1}, ∀i ∈ F , j ∈ D,

yi ∈
{

0, 1}, i ∈ F .

80 / 141

Uncapacitated facilities location
Integer programming formulation and its linear programing

relaxation

Integer programming formulation and its linear programing
relaxation (cont.)

The linear programming relaxation (LPR) from the ILP can be
obtained by replacing the constraint xij ∈ {0, 1} and yi ∈ {0, 1} with
xij ≥ 0 and yi ≥ 0. Thus, the relaxed linear program (LPR) can be
summarized as follows:

minimize
∑

i∈F fiyi +
∑

i∈F ,j∈D cijxij (10)

subject to
∑

i∈F xij = 1, ∀j ∈ D, (11)

xij ≤ yi , ∀i ∈ F , j ∈ D, (12)

81 / 141

Uncapacitated facilities location
Integer programming formulation and its linear programing

relaxation

Integer programming formulation and its linear programing
relaxation (cont.)

xij ≥ 0, ∀i ∈ F , j ∈ D,

yi ≥ 0, i ∈ F .

82 / 141

Uncapacitated facilities location Lower bounding using dual linear programs

Lower bounding using dual linear programs

The dual maximizing LP, which we will call DLP (corresponding to
the minimizing primal LPR), is used to achieve as high lower bounds
as possible for the primal ILP objective function.

Typically, we may start any algorithm for computing a feasible solution
for the ILP by initializing all primal ILP and DLP variables to zeros.

In the course of the algorithm, primal ILP variables can be assigned
only integral values whereas DLP variables can be assigned rational
values.

The respective values of the objectives functions for the ILP and the
DLP is the approximation ratio achieved in the developing solution.

We now discuss the formulation of a dual linear program (DLP)
corresponding the relaxed linear program (LPR) as in [7].

83 / 141

Uncapacitated facilities location Lower bounding using dual linear programs

Lower bounding using dual linear programs (cont.)

If we ignore costs of facilities by setting fi = 0 for all i ∈ F , the best
strategy would be to open all the facilities and assign each client to
its nearest facility. We introduce a variable vj and set it as
vj = min i∈F cij to denote the cost of connecting client j to its
nearest facility.

Observe that a lower bound for the primal integer program’s objective
function cost in an integral solution (of the ILP), is

∑
j∈D vj

therefore; we certainly cannot have a better assignment of facilities.

We can improve this lower bound estimate by considering non-zero
facility costs as well, as follows.

Each facility may be viewed as distributing its cost fi , sharing it
apportioned amongst the clients it provides service to, that is,
fi =

∑
j∈D wij , where each wij ≥ 0.

84 / 141

Uncapacitated facilities location Lower bounding using dual linear programs

Lower bounding using dual linear programs (cont.)

A client j needs to pay this share only if it uses facility i . So, we can
now set vj = min i∈F (cij + wij).

This can be enforced in a linear programming formulation with
constraints vj ≤ cij + wij (see inequality 15), for each client j (where i
ranges over all facilities), with the objective function maximizing∑

j∈D vj , subject to further inequality 14.

Observe that any feasible solution to this dual linear program
therefore has objective function value lower bounding the cost of
optimal primal objective function value for the (integral) facility
location problem ILP.

85 / 141

Uncapacitated facilities location Lower bounding using dual linear programs

Lower bounding using dual linear programs (cont.)

We summarize the dual linear program (DLP) for the primal linear
program relaxation (LPR) as:

maximize
∑

j∈D vj (13)

subject to∑
j∈D wij ≤ fi , ∀i ,∈ F (14)

vj − wij ≤ cij , ∀i ∈ F , j ∈ D (15)

wij ≥ 0, ∀i ∈ F , j ∈ D (16)

vj ≥ 0, ∀j ∈ D (17)

86 / 141

Uncapacitated facilities location The 3-factor algorithm: Phase I

The design of the algorithm: Phase I

In Phase I of the algorithm, we first compute (i) a maximal dual
solution, (ii) a tentative set T of facilities to be opened, and (iii) a
temporary facilities mapping for clients, assigning a connecting
witness facility for each client.

In the second Phase II, we restrict the facilities allocated to a subset
T ′ of T , reworking some assignments of facilites to clients, albeit
some additional cost of connectivity, but well within the 3-factor limit
(by virtue of triangle inequality).

A maximal dual solution (v∗,w∗) is such that we cannot further
enhance the value of any v∗j and still work out a feasible assignment
to variables w∗ij .

87 / 141

Uncapacitated facilities location The 3-factor algorithm: Phase I

The design of the algorithm: Phase I (cont.)

For such maximal dual LP solutions, consider the definitions
(a) of a client j neighbouring a facility i when v∗j ≥ cij (edges (i , j) are
called tight edges, and i and j are mutually neighbours of each other),
(b) a saturated dual constraint Inequality 14 obeying equality when a
facility i becomes tight or paid up, and
(c) when it is said that a client j contributes to a facility i , or wij > 0;
such edges (i , j) are called special edges.

Furthermore, recall that the neighbours of a facility i are in the set
N(i) of clients, and the neighbours of a client j are in the set N(j) of
facilities.

We sketch the algorithm below as in [7].

The algorithmic issues are as follows, providing intuition about its
design, correctness and performance bound.

88 / 141

Uncapacitated facilities location The 3-factor algorithm: Phase I

The design of the algorithm: Phase I (cont.)

Suppose the largest w∗ij satisfying the dual inequality 15 with equality,
for some i ∈ F and some j ∈ D, is non-zero.

If such a w∗ij is non-zero, we have v∗j > cij . [So, (i , j) is both special
as well as tight, as per the above definitions.]

Due to the maximality of w∗ij , we can set v∗j to cij + w∗ij , for the
smallest such value over all i ∈ F , keeping the solution feasible for the
dual LP.

Such an i ∈ F is called saturated, and is included in the set T of
tentatively opened facilities if inequality 14 is satisfied.

For such a set T we now argue, as in [7], that every client neighbours
a facility in T .

89 / 141

Uncapacitated facilities location The 3-factor algorithm: Phase I

Every client neighbours a facility in T

First we note that the dual solution being maximal, it must be that
v∗j = mini∈F (cij + w∗ij), for some i ∈ F .

Otherwise, we must have v∗j < mini∈F (cij + w∗ij) for all i ∈ F , in
which case we can enhance v∗j , contradicting that we have a maximal
dual solution.

So, now suppose client j has no neighbour in T , that is, vj < cij for
all i ∈ T .

However, the dual solution being maximal, we must have v∗j as the
smallest of cij + w∗ij for some i , and if all such clients i are outside T
then it must have been the case that for all such i ∈ T ∩ F ,∑

k∈D w∗ij < fi .

So, i was not selected to be in T .

90 / 141

Uncapacitated facilities location The 3-factor algorithm: Phase I

Every client neighbours a facility in T (cont.)

In this case however, we can enhance v∗j and w∗ij , without violating
dual constraint inequalities 14 and 15. This contradicts that we had a
maximal dual solution.

We therefore conclude that all clients will have a neighbour in T once
we have computed a dual maximal feasible solution at the termination
of Phase I.

91 / 141

Uncapacitated facilities location Summarizing Phase I

Summarizing Phase I

In this phase we maintain feasibility in the dual solution and devleop a
maximal dual solution (v∗,w∗) as already defined.

We set S = D, the set of clients, and T = φ, the set of temporarily
selected facilities.

We raise vj ’s and wij ’s uniformly until either (Case 1) some client
j ∈ D neighbours some facility i ∈ T , or (Case 2) some facility i ∈ F
becomes tight, or paid for, or saturated.

Such clients j ∈ S as in Case 1, that neighbour some facility i ∈ T
(vj ≥ cij), are removed from S .

Such saturated facilities i as in Case 2 (
∑

j∈D wij = fi) are moved
into the set T .

Whenever a facility i is added to T , we remove all clients in the
neighbouring set N(i) of facility i from the set S .

92 / 141

Uncapacitated facilities location Summarizing Phase I

Summarizing Phase I (cont.)

When the set S becomes empty and each client neighbours some
facility, and Phase I is terminated.

More precisely, vj are increased uniformly for all j ∈ S .

Once vj = cij for some i , we increase wij and vj uniformly so that the
complemetary slackness condition (i) 18, that is, vj − wij = cij ,
resulting from dual constraint 15 will continue to hold.

However, this raising of wij will not be necessary when the facility i is
already paid up or saturated or tight, as per dual inequality 14 and
complementary slackness condition (ii) 19.

In this case, all client neighbours j ∈ N(i) are also removed from S .
Consequently, we also stop raising wi ′j for any i ′ ∈ F , where i ′ 6= i for
clients j removed from S .

93 / 141

Uncapacitated facilities location Summarizing Phase I

Summarizing Phase I (cont.)

We observe that the maximality of the dual solution ensures that all
clients have finally got tight edges to some facility, thereby acquiring
a connecting witness as that facility.

Some client j may have a connecting witness i with wij = 0. Other
edges (i , j) will have wij non-zero, which we have already named as
special edges.

94 / 141

Uncapacitated facilities location The 3-factor algorithm: Phase II

Phase II

Once the whole set S is exhausted and we have computed a maximal
feasible DLP solution (v∗,w∗), we assign facilities from a set T ′ ⊆ T
to clients.

Note one important point that each client has a neighbouring facility
in T .

This is due to the maximality of (v∗,w∗) in the Phase I process. We
refer to the proof of this fact to section 7.6 of [7], as also elaborated
in the above discussion.

Once T is computed in Phase I, a subset T ′ ⊆ T of facilities is
opened by selecting one facility at a time to cover a number of clients.

Whenever any such facility i is moved into T ′, all other facilities
h ∈ T are also removed from T if both h and i are contributed to by
some common client j , that is, if both wij and whj are positive.

95 / 141

Uncapacitated facilities location The 3-factor algorithm: Phase II

Phase II (cont.)

Therefore, finally opening up only the facilities surviving in T ′ will
ensure contribution from each client to its respective assigned facility,
the only facility to which that client contributes (see the genesis of
the dual inequality 14).

Finally, opened facilities from T ′ are assigned to all clients as follows.

If a client j ∈ D neighbours a facility i ∈ T ′ then j is assigned to i
and has connection cost cij , lower bounding v∗j , that is, v∗j ≥ cij .

Otherwise, we see due to Lemma 7.13 in [7] (and also as we discuss
below) that although j does not have a neighbour in T ′, there is a
facility i ∈ T ′ such that v∗j ≥

cij
3 .

96 / 141

Uncapacitated facilities location The analysis

The analysis: Relaxed complementary slackness

The 3-factor approximation result of Theorem 7.14 of [7] follows from
Lemma 7.13 of [7]; we explain these results in more detail now.

We know that even if client j ∈ D neighbours no facility in T ′, it does
neighbour a facility in T , as argued above, by virtue of the method
used to construct the set T .

It turns out that such a client j neighbours some saturated facility
h /∈ T ′ such that some other client contributed to both h and some
facility i ∈ T ′.

The client j must have neighboured some h ∈ T \ T ′ in the
algorithm’s execution when increasing vj was stopped; it is known
that j does not neighbour any facility in T ′.

How was h ∈ T excluded from being in T ′? Another client k was
there that contributes to both h and another facility i ∈ T ′.

97 / 141

Uncapacitated facilities location The analysis

The analysis: Relaxed complementary slackness (cont.)

It is now our goal to show that the cost cij of assigning j to i is at
most 3vj .

In this context, view the client-facility pairs (j , h),(k, h) and (k , i),
and the path along these three edges from client j to facility i ,
through facility h and client k.

Clearly the cost of connecting j to i is cij ≤ chj + chk + cik , by
triangle inequality.

To show vj ≥
cij
3 , it is enough to show the vj is at least as large as

each of chj , chk , and cik .

First, we note that vj ≥ chj as j neighbours h.

Second, we also show below that vj ≥ vk . Therefore, vk being at least
as large as both of cik and chk (since k contributes to and thus also
neighbours both h and i), we conclude that vj at least as large as all
the three of chj , chk , and cik .

98 / 141

Uncapacitated facilities location The analysis

The analysis: Relaxed complementary slackness (cont.)

Now we show that vj ≥ vk . We know that vj stopped increasing when
it neighboured a facility in T .

Since j neighbours h ∈ T , we understand that h must have already
been in T or must have been included in T when vj stopped
increasing.

Now since k contributes to h, and therefore also neighbours h, vk too
must have stopped increasing before or when vj stopped increasing.

Furthermore, since dual variables are increased uniformly in the
algorithm, we have vj ≥ vk .

Now that we have explained how vj ≥
cij
3 (Lemma 7.13 of [7]), we

establish the 3-factor bound of Theorem 7.14 of [7] as follows.

99 / 141

Uncapacitated facilities location The analysis

The analysis: Relaxed complementary slackness (cont.)

The cost
∑

i∈T ′ fi of opening facilities has now been shown to be
apportioned to clients j that contribute to the respective finally
opened facilities f (j) in T ′ to which j is connected; note that i ∈ T ′

means saturating inequality 14 is satisfied as an equality for facility i .

So, the total facility opening cost
∑

i∈T ′ fi =
∑

i∈T ′
∑

j∈A(i) wij , is

apportioned to neighbouring clients assigned to facilities i ∈ T ′,
where A(i) is the set of these clients.

The connection costs for these clients is
∑

i∈T ′
∑

j∈A(i) cij .

Summing these two costs for neighbouring clients of facilities in T ′

gives
∑

i∈T ′
∑

j∈A(i)(wij + cij) =
∑

i∈T ′
∑

j∈A(i) vj , because the dual

inequalities 15 for all i ∈ T ′ attain equality.

100 / 141

Uncapacitated facilities location The analysis

The analysis: Relaxed complementary slackness (cont.)

Clients j ∈ D, not neighbouring facilities in T ′ have connection costs
assigned to respective facilities f (j) ∈ T ′ such that cf (j)j ≤ 3vj , as
established already, resulting in a total cost of at most∑

j∈D\∪i∈T ′A(i) cf (j)j ≤ 3
∑

j∈D\∪i∈T ′A(i) vj .

So, the total cost including costs apportioned to neighbouring clients
of T ′ and connection costs of clients not neighbouring facilities in T ′

add up to 3
∑

j∈D vj ≤ 3× OPT .

The 3-factor bound thus follows.

Note that even if we took three times the cost∑
i∈T ′

∑
j∈A(i)(wij + cij) =

∑
i∈T ′

∑
j∈A(i) vj , of directly connected

clients, we still get the same bound of 3
∑

j∈D vj for the total cost
(Exercise 7.8 in [7]).

101 / 141

Uncapacitated facilities location
Further interpretations using relaxed complementary slackness

conditions

More on relaxed complementary slackness

We will now view the same algorithm (giving 3-factor approximation)
using relaxed complementary slacknesss conditions as in [6].

See inequalities 14 and 15. We continue with the same notations.

Consider the primal and dual complementary slackness conditions
(implications) (i)-(iv) here.

(i) xij > 0→ vj − wij = cij , (18)

(ii) yi > 0→
∑
j∈D

wij = fi , (19)

(iii) ∀j ∈ D yj > 0→
∑
i∈F

xij = 1 (20)

(iv) ∀i ∈ F ∀j ∈ D wij > 0→ yi = xij (21)

102 / 141

Uncapacitated facilities location
Further interpretations using relaxed complementary slackness

conditions

More on relaxed complementary slackness (cont.)

Suppose the optimal LPR solution is integral. Then, each open
facility is tight, that is, its cost is fully paid up as per primal slackness
condition (ii), Implication 19.

Now consider the (dual) slackness condition (iv) wij > 0→ yi = xij
(Implication 21); given that a client j ∈ D is not connected to open
facility i ∈ F , that is yi = 1 6= xij , it follows that wij = 0, indicating j
does not contribute to any facility apart from the one to which it is
connected.

Also, by primal slackness condition (i), Implication18, for any cient j
connected to an open facility i , we have vj = cij + wij .

So, we interpret the total price vj paid by client j as cij as going to
the connection from j to i , and wij as the contribution of j to i .

103 / 141

Uncapacitated facilities location
Further interpretations using relaxed complementary slackness

conditions

More on relaxed complementary slackness (cont.)

Now we observe that by relaxing the primal complementary slackness
conditions suitably, we may limit the objective function value of the
ILP solution to within thrice that of the DLP as follows.

Assume that f (j) ∈ F is the facility to which client j ∈ D is
connected. The cost in the ILP is

∑
j∈D cf (j)j +

∑
i∈T ′ fi , where

T ′ ⊆ F is the final set of opened facilities.

So, by altering the primal slackness conditions (i) and (ii) respectively,
as
(I) 1

3cf (j)j ≤ vj − wf (j)j ≤ cf (j)j for all j ∈ D, and

(II) 1
3 fi ≤

∑
j :f (j)=i wij ≤ fi ,

we can ensure factor three approximation because the wij terms would
cancel out on summing the primal objective function as seen in the
first inequalities in conditions (I) and (II).

104 / 141

Uncapacitated facilities location
Further interpretations using relaxed complementary slackness

conditions

More on relaxed complementary slackness (cont.)

We will however not use these slackness conditions. We will consider
two cases of assigning clients to facilities, and call them direct and
indirect assignments, as presented in [6].

This is done to improve the approximation factor though not in the
worst-case, as we present here in Theorem 5.

However, this analysis is important as we will use the same technique
for proving approximation bounds for another important optimization
problem, the k-median problem in Chapter ??.

For indirect assignment of a client j to a facility i , we have wij = 0,
whence the condition (I) becomes
(I’) 1

3cf (j)j ≤ vj ≤ cf (j)j .

105 / 141

Uncapacitated facilities location
Further interpretations using relaxed complementary slackness

conditions

More on relaxed complementary slackness (cont.)

Primary complementary slackness condition (i) is preserved for a
directly connected facility j such that xij > 0 implies
vj − wf (j)j = cf (j)j , and condition (ii) is maintained, rather than
condition (II), so that we have
(II’)

∑
j∈D wij = fi ,

where such clients pay for the facilities costs.

Our algorithm must achieve the raising of dual variables vj , paying for
costs of opening facilities as well as connecting clients to facilities
maintaining conditions (I’) and (II’).

So, let us view vj as v fj + v cj , where v fj is the facilities part of the cost
and v cj is the connection cost.

For an indirectly connected client j therefore, we wish to enforce
v fj = 0 and v cj = vj .

106 / 141

Uncapacitated facilities location
Further interpretations using relaxed complementary slackness

conditions

More on relaxed complementary slackness (cont.)

For a directly connected client j , we know from the complementary
slackness condition (i) that vj − wf (j)j = cf (j)j , where v fj = wf (j)j and
v cj = cij , and by the complementary slackness condition (ii) that∑

j∈D wij = fi .

In this context we have two observations.

Observation

Observation 2:∑
(i ,j):j∈N(i) v

f
j = fi .

Clearly, here j neighbours i or j ∈ N(i) and j contributes to i .

Note that v fj = wij for the case where j is directly connected to i and
zero, otherwise.

107 / 141

Uncapacitated facilities location
Further interpretations using relaxed complementary slackness

conditions

More on relaxed complementary slackness (cont.)

Furthermore, we can deduce

Observation

Observation 3:∑
i∈T ′ fi =

∑
j∈D v fj .

Here, T ′ is the set of finally opened facilities and D is the set of
clients.

Now we claim the following lemma.

Lemma

Lemma 4:
cij ≤ 3v cj for j ∈ D assigned indirectly to i ∈ T ′.

108 / 141

Uncapacitated facilities location
Further interpretations using relaxed complementary slackness

conditions

More on relaxed complementary slackness (cont.)

We have already discussed the proof of Lemma 4 in Subsection 6 of
Section 14. The theorem follows. This theorem is also established in
Subsection 6 of Section 14.

Theorem

Theorem 5:∑
j∈D,i∈F xijcij + 3

∑
i∈F fiyi ≤ 3

∑
j∈D vj , where the variables are from

the primal and dual solutions computed by the algorithm.

109 / 141

Uncapacitated facilities location
Further interpretations using relaxed complementary slackness

conditions

More on relaxed complementary slackness (cont.)

Proof.

For a directly connected client j , cij = v cj ≤ 3v cj , where j is assigned to
i = f (j). Lemma 4 further asserts

∑
j∈D,i∈F cijxij ≤ 3

∑
j∈D v cj , even

considering indirectly connected clients. Now adding
3
∑

i∈T ′ fi = 3
∑

j∈D v fj from Observation 3, concludes the proof of this

theorem since
∑

j∈D,i∈F cijxij ≤ 3
∑

j∈D v cj and 3
∑

i∈T ′ fi = 3
∑

j∈D v fj
imply

∑
j∈D,i∈F xijcij + 3

∑
i∈F fiyi ≤ 3

∑
j∈D(v cj + v fj) = 3

∑
j∈D vj .

Here, OPT ≥
∑

j∈D vj , thereby implying the 3-factor approximation
bound, based on Theorem 5.

110 / 141

Amortized bound for the competitive ratio for paging using a
potential function

Amortize analysis for paging

As usual let σ = σ(1), σ(2), ..., σ(m) be an arbitrary request sequence.

At any time let SLRU be the set of pages contained in LRUs fast
memory, and let SOPT be the set of pages contained in the fast
memory of OPT.

Set S = SLRU \ SOPT .

Assign integer weights from the range [1 : k] to the pages in SLRU
such that, for any two pages p, q ∈ SLRU , w(p) < w(q) if and only if
the last request to p occurred earlier than the last request to q.

Let the potential function φ =
∑

p∈S w(p).

Consider an arbitrary request σ(t) = p and assume without loss of
generality that OPT serves the request first and LRU serves second.

If OPT does not have a page fault on σ(t), then its cost is 0 and the
potential does not change immediately.

111 / 141

Amortized bound for the competitive ratio for paging using a
potential function

Amortize analysis for paging (cont.)

On the other hand, if OPT has a page fault, then its cost is 1. In that
case, OPT might evict a page (say, r) that is in LRUs fast memory, in
which case the potential increases by w(r) as r now becomes the
member of S .

Since w(r) can be at most k , the potential can increase by at most k
for evicting r from OPT’s fast memory.

Note that when LRU does not have a fault on σ(t), the cost is 0 and
the potential cannot change.

If LRU has a page fault, its cost on the request is 1. In that case, the
potential decreases by at least 1 as follows if OPT has not had a page
fault on this request.

Immediately before LRU serves σ(t), page p is only in OPTs fast
memory but not in LRU’s fast memory, so that that there is no page
fault of OPT.

112 / 141

Amortized bound for the competitive ratio for paging using a
potential function

Amortize analysis for paging (cont.)

By symmetry, there must be page(s) q only in LRUs fast memory, i.e,
q ∈ S = SLRU \ SOPT .

If q is evicted by LRU during the operation, then the potential
decreases by w(q) ≥ 1.

Otherwise, since p is loaded into fast memory, the weight of q must
decrease (why? because p gets weight k and the rest of the pages in
the fast memory of LRU reduce in weights by unity), and thus the
potential must decrease by at least 1.

In summary, every time OPT has a fault, the potential increases by at
most k . Every time LRU has a fault, the potential decreases by at
least 1.

Each CA(t) may not be at most c .COPT (t), where A is LRU and
OPT is the offline algorithm.

113 / 141

Amortized bound for the competitive ratio for paging using a
potential function

Amortize analysis for paging (cont.)

However, we show that the amortised cost CA(t) + φ(t)− φ(t − 1) is
at most c .COPT (t). How does this follow from the above discussion?

Thus the total amortised cost∑m
t=1 CA(t) + φ(m)− φ(0) ≤ c .

∑m
t=1 COPT (t).

As the potential φ(0) = 0 and φ is non-negative throughout, A is
c-competitive, where c = k .

114 / 141

Online deterministic paging algorithms and their competitive ratio
bounds

Deterministic paging

Theorem 1 from [1] claims that LRU and FIFO are k-competitive. For
arbitrary requests streams σ, we must show that
CLRU(σ) ≤ k .COPT (σ).

The phases P(0), P(1), ... in σ are substrings of page requests, where
in each substring some page requests raise page faults in the online
algorithm LRU, or in the deterministic offline algorithm OPT.

All we need to prove is that there is at least one fault in each of these
phases of page requests for OPT, whereas in LRU we already have at
most k faults in P(0) and exactly k faults in each phase P(i) for
i > 0.

Since LRU and OPT start with the same set of k pages in their
respective fast memories, OPT has a page fault on the first page
request on which LRU has a fault. So, P(0) has at least one page
request on which OPT has a page fault.

115 / 141

Online deterministic paging algorithms and their competitive ratio
bounds

Deterministic paging (cont.)

To show that the other phases too have at least one page fault for
OPT, we use Lemma 6.

Lemma

Let page p be the last requested page in phase P(i − 1) (at time ti − 1).
Then P(i) must contain requests to k distinct pages that are different
from p.

Before we prove Lemma 6, we show how this result is used to show
that OPT must have a page fault in P(i).

Since P(i) has requests to k distinct pages other than p but has p in
its fast memory at the end of P(i − 1), P(i) cannot have all the k
distinct pages in its fast memory.

116 / 141

Online deterministic paging algorithms and their competitive ratio
bounds

Deterministic paging (cont.)

So, P(i) must have a page fault for OPT.
(Page requests may lead to page faults. Lemma 6 states that there
are k page requests in P(i) for pages different from p, and all these k
requests are for distinct pages. Here p is the last requested page in
P(i − 1), just before time ti when P(i) starts.)

The proof of Lemma 6 goes case by case. LRU has k faults in P(i) by
construction. If all these page requests are for distinct pages and
these requests are not for page p then Lemma 6 holds.

So, we assume that LRU faults twice on some page q in P(i). Page q
is served and brought into fast memory at time s1 and then evicted
from fast memory at time t before time s2, when it is again served in
the phase P(i).

117 / 141

Online deterministic paging algorithms and their competitive ratio
bounds

Deterministic paging (cont.)

When q is evicted at time t, it is the least recently requested page in
the fast memory. So, the sequence σ(s1), ... , σ(t) must contain
requests to k + 1 distinct pages, at least k of which must be different
from p.
(After coming into fast memory at time s1, q remains in fast memory
till it is evicted at time t. So there must be k requests (after the time
s1 requests for page q and before time t when q is evicted) for non-q
pages, and at most one of these k requests can be for page p. If two
(or more) of these k requests (after the time s1 request for page q)
are for page p, then these k requests cannot be for k − 1 distinct
non-q pages leading to eviction of q at time t. So p can be requested
only at most once in the k distinct requests from time s1 + 1 till time
t, that witness the eviction of q at time t. The request at time s1 is
for q.)

118 / 141

Online deterministic paging algorithms and their competitive ratio
bounds

Deterministic paging (cont.)

(Page p is requested just before phase P(i) started and this phase has
exactly k faults in LRU.)

The only other case is when LRU faults (i) not on all distinct pages
different from p, or (ii) not twice on some page q, but (iii) faults once
for a page request to page p.

Let t ≤ ti be the time when page p is evicted so that page p was
there in fast memory right before time ti in the beginning of the
phase P(i) as it was the last requested page in phase P(i − 1).

So, the sequence σ(ti − 1) = p, σ(ti), ..., σ(t) has a request to the
page p in the beginning of the sequence. Since p is evicted at time t,
there must a sequence of k distinct page requests that cannot be
requests for p from time ti till t.

So, we have a set of k distinct non-p page requests in P(i).

This complete all the cases for the proof of Lemma 6.

119 / 141

Randomized paging

Randomized paging

If R is a randomized online paging method then its competitiveness is
at least Hk against any oblivious adversary. See Theorem 6 in [1].

We take k + 1 pages in a set S and choose a probability distribution
for choosing the request sequence.

The first request is chosen uniformly at random from S .

Each subsequent request is made for a page σ(t) that is chosen
uniformly at random from S \ {σ(t − 1)}.
Now we define a phase that has page requests from σ(i) to σ(j), for
the smallest j , such that the sequence has k + 1 distinct pages, so
that OPT has a fault on this sequence.

For a deterministic online paging algorithm, the expected cost of A in
a phase is 1

k for each request, with respect to the distribution as
above for the phase sequence.

120 / 141

Randomized paging

Randomized paging (cont.)

We can show using random walks that this sequence has an expected
length kHk .

The random walk on Kk+1 has expected number of steps kHk , for
visiting all vertices.

From this deterministic algorithm A and the distribution of inputs for
it, to any randomized online paging algorithm, we now apply Yao’s
minimax principal for establishing the lower bound for the expected
cost of that randomized algorithm. See Theorem 6 in [1].

Theorem 5 in [1] gives a 2Hk -competitive randomized online paging
algorithm against any oblivious adversary.

121 / 141

Algorithms for the list update problem

Move-To-Front algorithm for list update

MFT will follow the rules for access and movements to the front of
the list for each access.

We can show that access costs can subsume/simulate costs for
insertion at the end of the list or even deletions.

Also, OPT will suffer access costs, if not any other costs we cannot
know.

Let us look at all elements other than x = σ(i), where σ(i) is the i-th
access in the request string σ.

All other elements before x in the MFT list are either behind x in
OPT’s list or after it, and let these be k and l elements, respectively.

So, the cost of an access by MFT is CMFT (t) = k + l + 1.

122 / 141

Algorithms for the list update problem

Move-To-Front algorithm for list update (cont.)

The cost COPT (t) of OPT is no lesser than that of skipping k
elements in its access query for x plus may be a non-zero cost, and
thus at least k + 1, that is, COPT (t) ≥ k + 1.

The number of inversions beetween the two lists may be considered as
a non-negative potential function φ for amortizing costs of MFT.

Clerly, in MFT’s move after accessing x , reduces the number of
inversions by l .

How OPT will move its items is not known but surely MFT’s moves
cannot raise inversions by more than k.

So, CMFT (t) + φ(t)− φ(t − 1) ≤ CMFT (t) + k − l =
(k + l + 1) + k − l = 2k + 1 ≤ 2(COPT (t)− 1) + 1 = 2COPT (t)− 1

Adding up over all m steps of a request sequence of length m, we get
the 2-competitive upper bound thus.

123 / 141

Algorirthms for MAXSAT

MAXSAT

We know that MAXSAT is NP-hard even if we allow at most two
literals per clause (see Theorem 9.2 in [5]).

Suppose we have a set Φ of Boolean expressions φ1, φ2,..., φm on n
variables where each expression has “at most” k variables, where k is
a constant.

We wish to satisfy most expressions. So, we look at all possible 2n

truth assignments.

If we pick any one random truth assignment the 2n possibilities then
how many expressions in Φ would be satisfied?

We call this problem k-MAXGSAT (see [5]).

We can find the expected number p(Φ) of satisfied expressions as∑m
i=1 p(φi), where p(φi) = ti

2k
. Here, ti is the number of truth

assignments satisfying φi and we already assumed that each φi uses
“exactly” k variables.

124 / 141

Algorirthms for MAXSAT

MAXSAT (cont.)

Suppose (on the other hand) we have a deterministic polynomial time
algorithm that determines a truth assignment satisfying at least p(Φ)
expressions. This can be shown to hold using a derandomization
argument leading to Theorem 13.2 in [5].

Now we look at the optimal solution whose value OPT is no bigger
than the number of expressions with p(φi) > 0.

The approximation ratio is p(Φ)/OPT must be less than 1 and this
must be at least the smallest non-zero p(φi) ≥ 1

2k
. Why?

Now in MAXSAT, any clause with at least k literals has probability of
satisfaction 1− 1

2k
. So, the approximation ratio by the above result is

1− 1
2k

, though in the general case at least 1
2 approximation ratio is

trivial. Why?

125 / 141

Algorirthms for MAXSAT

MAXSAT (cont.)

Now we show how we compute deterministically, the truth assignment
that yields a guaranteed lower bounded number of satisfied
expressions, by fixing one variable at a time.

On setting the next variable to one of the two truth values, we get a
new set of expressions. That truth value is assigned to the variable
whose redefined set of expressions has higher expectation, no lesser
than the expectation of the initial/previous set of expectations.

Carrying on this process finally leads to a set of at least p(Φ)
expressions satisfied.

126 / 141

Hardness of approximating MAX3SAT (MAXkSAT)

Hardness of approximating MAX3SAT (MAXkSAT)

In MAX3SAT, we have CNF formulas with at most three literals per
clause and we wish to maximise the number of satisfied clauses by
some truth assignment of the Boolean variables.

Earlier, we saw that we can design a (1− 1
8)-approximate,

deterministic algorithm for MAX3SAT, where the input is a 3CNF
formula with each clause having at most 3 literals.

Also, in general, it is easy to see that such an algorithm that is 50%
approximate is possible.

For kCNF formulas, the MAXkSAT problem has a deterministic
(1− 1

2k
)-approximate solution.

127 / 141

Hardness of approximating MAX3SAT (MAXkSAT)

Hardness of approximating MAX3SAT (MAXkSAT) (cont.)

We say for every ρ ≤ 1, an algorithm A is a ρ-approximation for
MAX3SAT if for every 3CNF formula φ with m clauses, A outputs a
truth assignment satisfying at least ρOPT (φ)m clauses of φ. Here,
OPT (φ) is the maximum number of clauses satisfied by some truth
assignment for φ.

Let L ∈ NP be a language in the class NP. Let x be a string of size n.

Suppose we design a polynomial time reduction that constructs a
3CNF formula f (x) from x such that (i) if x ∈ L then all SM clauses
in φ(x) are satisfiable, and (ii) if x /∈ L then less than SM − S

2 clauses
of φ(x) are satisfiable.

Here, S is a polynomial in n, the number of O(log n)-sized random
strings in the PCP(log n, 1) characterzation of L ∈ NP, and M is the
number of clauses in the 3CNF formula f (x).

128 / 141

Hardness of approximating MAX3SAT (MAXkSAT)

Hardness of approximating MAX3SAT (MAXkSAT) (cont.)

Further suppose that there is a (1− 1
2M)-approximate algorithm A

running in polynomial time for the MAX3SAT problem.

Given x ∈ L, φ(x) will have all SM clauses satisfied and thus
algorithm A will find more than (1− 1

2M)SM = SM − S
2 satisfied

clauses, thereby concluding x ∈ L.

Given x /∈ L, φ(x) will have at most SM − S
2 clauses satisfied and

thus algorithm A will conclude x /∈ L.

The gap we see in these two exhaustive cases helps us establish this
reduction, leading to a polynomial time decision algorithm for
L ∈ NP, thereby showing P = NP.

Here S is a polynomial in n, the number of random strings of
O(log n) bits.

129 / 141

Hardness of approximating MAX3SAT (MAXkSAT)

Hardness of approximating MAX3SAT (MAXkSAT) (cont.)

For each such string, the inspection of k bits in the “proof” y , will
lead to deciding “yes” if x ∈ L. So, for whatever k bit positions and
whatever bits 0/1 we have in these k places, we can view the decision
as being the result of a Boolean function of k variables with at most
2k clauses in CNF.

This will blow up to (k − 2)2k clauses in its equivalent 3CNF formula.

So, we have at most M = k2k clauses for each of the S random
choices.

See Lemma 10.12 and Theorem 10.7 as covered in class from [3],
Section 10.8.1. PCP theorem is stated in Theorem 10.6 [3].

130 / 141

Hardness of approximation

Hardness of approximation

For a minimization problem an α-approximation algorithm is a
polynomial time algorithm with a performance guarantee of α.

This guarantee is that of the delivery of a solution whose value is at
most α times the optimal value for the problem.

We know that the vertex cover problem has a performance gurantee
of α = 2.

From Theorem 2.4 in [7] we know that the k-centre problem has no
α-approximation algorithm for α < 2 unless P=NP.

The dominating set problem is used for proving this result.

A reduction from the dominating set problem shows that we can find
a dominating set of size at most k if and only if an instance of the
k-center problem (in which all distances are either 1 or 2), has
optimal value 1.

131 / 141

Hardness of approximation

Hardness of approximation (cont.)

Theorem 2.9 from [7] is interesting. For any α > 1, there does not
exist an α-approximation algorithm for the traveling salesman
problem (TSP) on n cities, provided P is not the same as NP.

In fact, the existence of an O(2n)- approximation algorithm for the
TSP would similarly imply P = NP.

This result follows from the hardness of the Hamiltonian cycle
problem.

If we had an α-approximation algorithm for the TSP problem for
some α > 1 then we could invoke this algorithm with weights 1 for all
edges and get a yes answer for such an input if and only if the graph
had a Hamiltonian cycle.

Given an integer T and integral weights in the range 0 through T
with a total sum of weights 2T , we wish to partition these weights
into two sets so that each set has a sum exactly T .

132 / 141

Hardness of approximation

Hardness of approximation (cont.)

This partition problem is a well known NP-hard problem.

Is there an α-approximation algorithm for the 2-bins bin-packing
problem for any α < 3

2 ?

Since the optimal value is 2 bins for a yes instance of this partition
problem, any such approximation algorithm would give a yes answer
for the number of required bins as strictly less than 3, that is, with 2
bins, solving the partition problem in polynomial time.

Now consider the general bin-packing problem.

133 / 141

Epsilon nets and their applications

Epsilon nets and their applications

We know that it is easier to hit larger sets by a transversal. For a
finite system (X ,F), a set N ⊆ X is called an ε-net if N ∩ S 6= φ for
all S ∈ F with |S | ≥ ε|X |.
Now suppose we have infinite sets but the probability measure µ is
concentrated on finitely many points, that is, a finite set Y ⊆ X has
a function w mapping Y to (0,1] with

∑
y∈Y w(y) = 1, and µ is such

that µ(A) =
∑

y∈A∩Y w(y).

The measure may or may not be uniform over Y .

Now if (X ,F) is a system of µ-measurable subsets of X , then a
subset N ⊆ X is called an ε-net for (X ,F), with respect to µ, if
N ∩ S 6= φ for all S ∈ F , with µ(S) ≥ ε.
How do we generate a random sample of s = Cdr ln r draws?

Here each element is drawn from X as per probability distribution µ.

134 / 141

Epsilon nets and their applications

Epsilon nets and their applications (cont.)

Theorem 10.2.4 [4] is about X with probability measure µ, but more
so F here is a system of µ-measurable sets. It claims that there is an
1
r -net for (X ,F) with respect to µ of size at most Cdr ln r , where C
is a constant.

To prove Theorem 10.2.4 from Matousek [4], we will require the
Lemma 10.2.6 [4] about binomial distributions, a small digression.
For the sum X of n independent 0/1 variables appearing with
probabilities p and 1− p, we have Prob[X ≥ 1

2np] ≥ 1
2 , given that

np ≥ 8, that is, Prob[X < 1
2np] ≤ 1

2 .

In the proof of Theorem 10.2.4, let E0 be the event that a random
sample N of s = Cdr ln r elements from the set X of the set system
(range space) (X ,F) is not a 1

r -net.

Here C is a constant and d is the VC-dimension of the space (X ,F).

135 / 141

Epsilon nets and their applications

Epsilon nets and their applications (cont.)

We show that Prob[E0]< 1 by showing that (i) Prob[E0]≤2.Prob[E1]
and (ii) Prob[E1]< 1

2 , where E1 is defined as below.

So, for the event E0, N not being a 1
r -net means it misses out a

certain set S ∈ F .

Let M be another random sample of s elements from X such that M
meets S in at least k = s

2r places/points, whereas we already
assumed that N misses S entirely.

Therefore, we define the event E1 that there is a set S ∈ F that
misses N but meets M in at least k points.

Now E1 requires E0 and something more. Therefore, Prob[E1]≤
Prob[E0]. However, we show below that Prob[E0] is no more than
twice Prob[E1], which in turn is shown to be less than 0.5.

136 / 141

Epsilon nets and their applications

Epsilon nets and their applications (cont.)

For (ii), we view the genesis of N and M in another equivalent way;
we first take a 2s-long random set A of independent draws from X .
Then we randomly choose s positions in A as N and the remaining in
M in a total of

(2s
s

)
ways.

Then we show for each fixed A that Prob[E1|A] is small, and thereby
Prob[E1] is small, and consequently Prob[E0] is small.

Now for a fixed A, consider the conditional probability
PS =Prob[N ∩ S = φ, |M ∩ S | ≥ k |A].

This probability PS is non-zero for |A ∩ S | ≥ k, where we bound it by
PS =Prob[N ∩ S = φ|A].

But this is the probability that a random sample of s positions out of
2s in A avoids at least k positions in S . An upper bound for this

probability is
(2s−k

s)
(2s
s)

.

137 / 141

Epsilon nets and their applications

Epsilon nets and their applications (cont.)

This is at most (1− k
2s)s ≤ e−k/2ss = ek/2 = e−Cd ln r/4 = r−Cd/4.

This was for a fixed S . The number of such S ’s that meet a fixed A is
the function φd(2s), where d is the VC-dimension of F .

Since A was also fixed to 2s vertices in X , we use the VC-dimension
of the 2s element subsystem of (X ,F), whose hyperedges cardinality
is thus bounded by

∑d
i=0

(2s
i

)
≤ (e.2sd)d .

We observe therefore that
Prob[E1|A]≤ (e.2sd)d r−Cd/4 = (2Cer ln r .r−C/4)d < 0.5, with a large
enough choice of C and assuming d and r are more than 2.

So, for any fixed A we have Prob[E1|A]< 0.5 and therefore
Prob[E1]< 0.5.

Now all we need to show that Prob[E0]< 1 is to show (i), that is
Prob[E0]≤2.Prob[E1].

Here we will use the binomial distribution properties as follows.

138 / 141

Epsilon nets and their applications

Epsilon nets and their applications (cont.)

We argue with N and M as in the beginning considering the
conditional probability Prob[E1|N].

Not being a 1
r -net, N therefore misses out entirely on some S ∈ F ,

which we call SN now.

We also know now that Prob[E1|N]≥ Prob[|M ∩ SN | ≥ k(= s
2r)].

Why?

Now view |M ∩ SN | as the sum of 0-1 random variables with n = s
independent draws with probability p = 1

r , conditional of course to N
not meeting S , where each of the s draws for elements in M is with
uniform probability 1

r , giving a random value 0 if it is not in SN and 1
if it is in SN .

So, Prob[|M ∩ SN | ≥ k]≥ 0.5, as in Theorem 10.2.6 in [4]. Here,
k = s

2r = 0.5np.

Thus, Prob[E1|N]≥ 0.5, for any N.

139 / 141

Epsilon nets and their applications

Epsilon nets and their applications (cont.)

But trivially, Prob[E0|N]≤ 1, and thus Prob[E0|n]≤ 2 Prob[E1|N], for
all N.

So, Prob[E0]≤ 2Prob[E1].

140 / 141

Epsilon nets and their applications

References

Sussane Albers. Competitive online algorithms. BRICS, 1996.

Thomas H Cormen et al. Introduction to algorithms. MIT press,
2009.

Dorit S. Hochbaum. Approximation algorithms for NP-hard problem.
Thomson Asia Pte Ltd., Singapore, First reprint 2003.

Jiri Matousek. Lectures on Discrete Geometry. Springer, 2002.

Christos H. Papadimitriou. Computational complexity.
Addison-Wesley, 1994.

Vijay V Vazirani. Approximation algorithms. Springer Science &
Business Media, 2013.

David P Williamson and David B Shmoys. The design of
approximation algorithms. Cambridge university press, 2011.

141 / 141

	Contents
	Preliminaries: Upper/Lower bounds for OPT in Max/Min Problems
	Lower bounds for OPT in minimization problems

	Examples of elementary approximation bounds
	DAG subgraphs of directed graphs
	Large cuts for undirected graphs
	Minimum maximal matchings
	Vertex cover using DFS tree: Ratio factor two
	Vertex cover from matching: Ratio factor two
	Vertex covering using a large cut

	Scheduling on identical parallel machines: Minimizing makespan
	The notion of prices for the primal integral solution being fully and paid up by the dual solution
	The generic primal-dual scheme for covering-packing programs written in the standard form
	The approximation algorithm with ratio factor two for vertex covering
	Improvement of the approximation guarantee
	Tight example for the vertex cover algorithm
	Maximal matchings lower bound cannot yield better approximation guarantees for vertex covering
	Total weight of all edges cannot yield better approximation guarantees for weighted cut
	Tight example for the greedy weighted set cover algorithm

	Dual fitting for the constrained set multicover problem
	The k-centre problem
	Multiway cut
	The computational lower bounds on the sizes of cuts in the optimal solution

	The k-cut problem
	The Gomory-Hu tree and minimum weight cuts
	Properties of any optimal k-cut A and the approximation algorithm for computing a k-cut
	Establishing the novel lower bound

	The K-server problem
	Uncapacitated facilities location
	Integer programming formulation and its linear programing relaxation
	Lower bounding using dual linear programs
	The 3-factor algorithm: Phase I
	Summarizing Phase I
	The 3-factor algorithm: Phase II
	The analysis
	Further interpretations using relaxed complementary slackness conditions

	Amortized bound for the competitive ratio for paging using a potential function
	Online deterministic paging algorithms and their competitive ratio bounds
	Randomized paging
	Algorithms for the list update problem
	Algorirthms for MAXSAT
	Hardness of approximating MAX3SAT (MAXkSAT)
	Hardness of approximation
	Epsilon nets and their applications
	References

