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Heuristics for vertex cover for

graph G(E, V )
• Select (and delete) an arbitrary vertex v ∈ V for inclusion

in vertex cover C and drop all edges incident on v. Repeat.
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Heuristics for vertex cover for

graph G(E, V )
• Select (and delete) an arbitrary vertex v ∈ V for inclusion

in vertex cover C and drop all edges incident on v. Repeat.

• Select an arbitrary edge {u, v} ∈ E and include u and v in

C. Drop all edges incident on u and v. Repeat.
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Heuristics for vertex cover for

graph G(E, V )
• Select (and delete) an arbitrary vertex v ∈ V for inclusion

in vertex cover C and drop all edges incident on v. Repeat.

• Select an arbitrary edge {u, v} ∈ E and include u and v in

C. Drop all edges incident on u and v. Repeat.

• For a straight line graph, the first method find a vertex cover

of size n− 1, within twice the optimal. Does it work well

also for other classes of graphs like trees, planar graphs,

and general graphs?
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Heuristics for vertex cover for

graph G(E, V )
• Select (and delete) an arbitrary vertex v ∈ V for inclusion

in vertex cover C and drop all edges incident on v. Repeat.

• Select an arbitrary edge {u, v} ∈ E and include u and v in

C. Drop all edges incident on u and v. Repeat.

• For a straight line graph, the first method find a vertex cover

of size n− 1, within twice the optimal. Does it work well

also for other classes of graphs like trees, planar graphs,

and general graphs?

• The second one chooses both vertices of all edges in a

maximal matching S.
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The factor two ratio bound
• Let S be any maximal matching. Our computed vertex

cover has the 2|S| vertices defining these edges of S.
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The factor two ratio bound
• Let S be any maximal matching. Our computed vertex

cover has the 2|S| vertices defining these edges of S.

• These vertices for a vertex cover because any uncovered

edge would have given rise to another matching edge

contradicting the maximality of S.
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The factor two ratio bound
• Let S be any maximal matching. Our computed vertex

cover has the 2|S| vertices defining these edges of S.

• These vertices for a vertex cover because any uncovered

edge would have given rise to another matching edge

contradicting the maximality of S.

• If C∗ is any minimum vertex cover then |S| ≤ |C ∗ |. Why?

Algorithms Analysis and Design: Approximation algorithms: Autumn 2013: S P Pal Copyrights reserved – p.3/45



The factor two ratio bound
• Let S be any maximal matching. Our computed vertex

cover has the 2|S| vertices defining these edges of S.

• These vertices for a vertex cover because any uncovered

edge would have given rise to another matching edge

contradicting the maximality of S.

• If C∗ is any minimum vertex cover then |S| ≤ |C ∗ |. Why?

• Vertices in C∗ have to cover each edge in the matching S.

So, C∗ must include at least one vertex from each of the S

edges.

Algorithms Analysis and Design: Approximation algorithms: Autumn 2013: S P Pal Copyrights reserved – p.3/45



The factor two ratio bound
• Let S be any maximal matching. Our computed vertex

cover has the 2|S| vertices defining these edges of S.

• These vertices for a vertex cover because any uncovered

edge would have given rise to another matching edge

contradicting the maximality of S.

• If C∗ is any minimum vertex cover then |S| ≤ |C ∗ |. Why?

• Vertices in C∗ have to cover each edge in the matching S.

So, C∗ must include at least one vertex from each of the S

edges.

• The 2|S| vertices comprise C, the computed approximate

vertex cover, where |C ∗ | ≤ |C| = 2|S| ≤ 2|C ∗ |.
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The factor two ratio bound
• Let S be any maximal matching. Our computed vertex

cover has the 2|S| vertices defining these edges of S.

• These vertices for a vertex cover because any uncovered

edge would have given rise to another matching edge

contradicting the maximality of S.

• If C∗ is any minimum vertex cover then |S| ≤ |C ∗ |. Why?

• Vertices in C∗ have to cover each edge in the matching S.

So, C∗ must include at least one vertex from each of the S

edges.

• The 2|S| vertices comprise C, the computed approximate

vertex cover, where |C ∗ | ≤ |C| = 2|S| ≤ 2|C ∗ |.

• This yields a vertex cover that is certainly at most twice the

size of the minimum vertex cover.
Algorithms Analysis and Design: Approximation algorithms: Autumn 2013: S P Pal Copyrights reserved – p.3/45



The NP-completeness reduction
• The NP-complete reduction from 3-SAT to vertex cover

constructs a graph Gf(Vf , Ef ) for each 3-SAT CNF

formula f , such that f is satisfiable if and only if Gf has a

vertex cover of size exactly k = 2|Vf |/3.
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The NP-completeness reduction
• The NP-complete reduction from 3-SAT to vertex cover

constructs a graph Gf(Vf , Ef ) for each 3-SAT CNF

formula f , such that f is satisfiable if and only if Gf has a

vertex cover of size exactly k = 2|Vf |/3.

• Here Vf is the set of vertices, one for each of the 3m literals

from the m clauses in f .
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The NP-completeness reduction
• The NP-complete reduction from 3-SAT to vertex cover

constructs a graph Gf(Vf , Ef ) for each 3-SAT CNF

formula f , such that f is satisfiable if and only if Gf has a

vertex cover of size exactly k = 2|Vf |/3.

• Here Vf is the set of vertices, one for each of the 3m literals

from the m clauses in f .

• The edges form triangles for each clause; three edges

between pairs of literals in each clause.
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The NP-completeness reduction
• The NP-complete reduction from 3-SAT to vertex cover

constructs a graph Gf(Vf , Ef ) for each 3-SAT CNF

formula f , such that f is satisfiable if and only if Gf has a

vertex cover of size exactly k = 2|Vf |/3.

• Here Vf is the set of vertices, one for each of the 3m literals

from the m clauses in f .

• The edges form triangles for each clause; three edges

between pairs of literals in each clause.

• More edges join inconsistent pairs of literals across the

clause triangles, like xi with x′
i.
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The NP-completeness reduction
• The NP-complete reduction from 3-SAT to vertex cover

constructs a graph Gf(Vf , Ef ) for each 3-SAT CNF

formula f , such that f is satisfiable if and only if Gf has a

vertex cover of size exactly k = 2|Vf |/3.

• Here Vf is the set of vertices, one for each of the 3m literals

from the m clauses in f .

• The edges form triangles for each clause; three edges

between pairs of literals in each clause.

• More edges join inconsistent pairs of literals across the

clause triangles, like xi with x′
i.

• Note that the minimum vertex cover must have size at least

2/3|Vf |.
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The NP-completeness reduction
• Suppose f is a satisfiable formula. We show that

every minimum vertex cover of Gf will have

exactly 2/3|Vf | = 2m vertices.
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The NP-completeness reduction
• Suppose f is a satisfiable formula. We show that

every minimum vertex cover of Gf will have

exactly 2/3|Vf | = 2m vertices.

• In other words, we show that 2m vertices are both
necessary and sufficient for making the minimum
cardimality vertex cover; we need at least 2m
vertices to cover all the 3m edges of m triangles.
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The NP-completeness reduction
• Suppose f is a satisfiable formula. We show that

every minimum vertex cover of Gf will have

exactly 2/3|Vf | = 2m vertices.

• In other words, we show that 2m vertices are both
necessary and sufficient for making the minimum
cardimality vertex cover; we need at least 2m
vertices to cover all the 3m edges of m triangles.

• Let us consider any truth assignment U for f .
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The NP-completeness reduction
• Suppose f is a satisfiable formula. We show that

every minimum vertex cover of Gf will have

exactly 2/3|Vf | = 2m vertices.

• In other words, we show that 2m vertices are both
necessary and sufficient for making the minimum
cardimality vertex cover; we need at least 2m
vertices to cover all the 3m edges of m triangles.

• Let us consider any truth assignment U for f .

• The function U assigns a value ‘T’ or ‘F’ to each
variable of f , thereby assigning true or false
value to each literal in each clause.

Algorithms Analysis and Design: Approximation algorithms: Autumn 2013: S P Pal Copyrights reserved – p.5/45



The NP-completeness reduction
• Suppose f is a satisfiable formula. We show that

every minimum vertex cover of Gf will have

exactly 2/3|Vf | = 2m vertices.

• In other words, we show that 2m vertices are both
necessary and sufficient for making the minimum
cardimality vertex cover; we need at least 2m
vertices to cover all the 3m edges of m triangles.

• Let us consider any truth assignment U for f .

• The function U assigns a value ‘T’ or ‘F’ to each
variable of f , thereby assigning true or false
value to each literal in each clause.

• In Gf , we have one vertex for each literal of each

clause, totalling to 3m vertices in all.
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The NP-completeness reduction
• We know that U falsifies at most two literals in

each clause, leaving at least one literal in each
clause satisfied.
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The NP-completeness reduction
• We know that U falsifies at most two literals in

each clause, leaving at least one literal in each
clause satisfied.

• Consider the cross edges in Gf that run between

the triangles.
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The NP-completeness reduction
• We know that U falsifies at most two literals in

each clause, leaving at least one literal in each
clause satisfied.

• Consider the cross edges in Gf that run between

the triangles.

• We must choose two vertices from each triangle
so that all these cross edges are also covered; two
vertices per triangle will in any case cover the
edges of the triangles.

Algorithms Analysis and Design: Approximation algorithms: Autumn 2013: S P Pal Copyrights reserved – p.6/45



The NP-completeness reduction
• We know that U falsifies at most two literals in

each clause, leaving at least one literal in each
clause satisfied.

• Consider the cross edges in Gf that run between

the triangles.

• We must choose two vertices from each triangle
so that all these cross edges are also covered; two
vertices per triangle will in any case cover the
edges of the triangles.

• Since each cross edge can be covered from either
end, we choose the end vertex whose
corresponding literal is falsified by the truth
assignment U .
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The NP-completeness reduction
• We know that U falsifies at most two literals in

each clause, leaving at least one literal in each
clause satisfied.

• Consider the cross edges in Gf that run between

the triangles.

• We must choose two vertices from each triangle
so that all these cross edges are also covered; two
vertices per triangle will in any case cover the
edges of the triangles.

• Since each cross edge can be covered from either
end, we choose the end vertex whose
corresponding literal is falsified by the truth
assignment U .
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The NP-completeness reduction
• We thus cover all cross edges by choosing at most

two vertices per triangle because each clause
corresponding to any triangle has at most two
falsified literals.
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The NP-completeness reduction
• We thus cover all cross edges by choosing at most

two vertices per triangle because each clause
corresponding to any triangle has at most two
falsified literals.

• If we have selected no vertex (or only a single
vertex) from some triangle then we simply select
two (or one) additional vertex from the traingle
arbitrarily, so that a total of two vertices are
selected from each triangle.
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The NP-completeness reduction
• We thus cover all cross edges by choosing at most

two vertices per triangle because each clause
corresponding to any triangle has at most two
falsified literals.

• If we have selected no vertex (or only a single
vertex) from some triangle then we simply select
two (or one) additional vertex from the traingle
arbitrarily, so that a total of two vertices are
selected from each triangle.

• This shows the existence of a vertex cover of
minimal cardinality 2m in Gf .
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The NP-completeness reduction
• We thus cover all cross edges by choosing at most

two vertices per triangle because each clause
corresponding to any triangle has at most two
falsified literals.

• If we have selected no vertex (or only a single
vertex) from some triangle then we simply select
two (or one) additional vertex from the traingle
arbitrarily, so that a total of two vertices are
selected from each triangle.

• This shows the existence of a vertex cover of
minimal cardinality 2m in Gf .
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The NP-completeness reduction
• We thus cover all cross edges by choosing at most

two vertices per triangle because each clause
corresponding to any triangle has at most two
falsified literals.

• If we have selected no vertex (or only a single
vertex) from some triangle then we simply select
two (or one) additional vertex from the traingle
arbitrarily, so that a total of two vertices are
selected from each triangle.

• This shows the existence of a vertex cover of
minimal cardinality 2m in Gf .
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The NP-completeness reduction
• Conversely, suppose Gf has a minimum vertex

cover C of size exactly 2/3|Vf | = 2m.
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The NP-completeness reduction
• Conversely, suppose Gf has a minimum vertex

cover C of size exactly 2/3|Vf | = 2m.

• We show that f must be satisfiable; we generate a
truth assignment U that satisfies at least one
literal in each clause.
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The NP-completeness reduction
• Conversely, suppose Gf has a minimum vertex

cover C of size exactly 2/3|Vf | = 2m.

• We show that f must be satisfiable; we generate a
truth assignment U that satisfies at least one
literal in each clause.

• The vertex cover C has exactly two vertices in
each triangle and certainly covers each cross
edge.
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The NP-completeness reduction
• Conversely, suppose Gf has a minimum vertex

cover C of size exactly 2/3|Vf | = 2m.

• We show that f must be satisfiable; we generate a
truth assignment U that satisfies at least one
literal in each clause.

• The vertex cover C has exactly two vertices in
each triangle and certainly covers each cross
edge.

• So, any cross edge e is covered at least at one of
its ends by some vertex in C.
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The NP-completeness reduction
• Conversely, suppose Gf has a minimum vertex

cover C of size exactly 2/3|Vf | = 2m.

• We show that f must be satisfiable; we generate a
truth assignment U that satisfies at least one
literal in each clause.

• The vertex cover C has exactly two vertices in
each triangle and certainly covers each cross
edge.

• So, any cross edge e is covered at least at one of
its ends by some vertex in C.

• If both ends are covered then we choose any one,
say vertex v arbitrarily.
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The NP-completeness reduction

• If x(v) is the boolean variable in the 3-CNF
formula corresponding to the vertex v, then we

assign x(v) = f if the literal corresponding to the
vertex v is the uncomplemented literal for

boolean variable x(v), and we assign x(v) = t,
otherwise.

Algorithms Analysis and Design: Approximation algorithms: Autumn 2013: S P Pal Copyrights reserved – p.9/45



The NP-completeness reduction

• If x(v) is the boolean variable in the 3-CNF
formula corresponding to the vertex v, then we

assign x(v) = f if the literal corresponding to the
vertex v is the uncomplemented literal for

boolean variable x(v), and we assign x(v) = t,
otherwise.

• So, the literal at the other end of the cross edge e
is assigned ‘T’ in the truth assignment with x(v)
assigned as above.
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The NP-completeness reduction

• If x(v) is the boolean variable in the 3-CNF
formula corresponding to the vertex v, then we

assign x(v) = f if the literal corresponding to the
vertex v is the uncomplemented literal for

boolean variable x(v), and we assign x(v) = t,
otherwise.

• So, the literal at the other end of the cross edge e
is assigned ‘T’ in the truth assignment with x(v)
assigned as above.

• In this way, the truth value ‘F’ is assigned for
exactly two literals of the formula in every clause,
corrresponding to the two vertices of the vertex
cover C of the corresponding triangle.
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The NP-completeness reduction
• If the literal of the third vertex in any triangle is

not assigned any truth value in this manner, then
we know that this literal does not appear
complimented in any other clause; we can
therefore do truth assignment to its boolean
variable accordingly, so that this literal is
satisfied, thereby satisfying the clause.
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The NP-completeness reduction
• If the literal of the third vertex in any triangle is

not assigned any truth value in this manner, then
we know that this literal does not appear
complimented in any other clause; we can
therefore do truth assignment to its boolean
variable accordingly, so that this literal is
satisfied, thereby satisfying the clause.

• This completes the truth assignment for every
literal in the formula where no clause has more
than two literals falsified.
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The NP-completeness reduction
• If the literal of the third vertex in any triangle is

not assigned any truth value in this manner, then
we know that this literal does not appear
complimented in any other clause; we can
therefore do truth assignment to its boolean
variable accordingly, so that this literal is
satisfied, thereby satisfying the clause.

• This completes the truth assignment for every
literal in the formula where no clause has more
than two literals falsified.

• Therefore the truth assignment thus designed
must be a satisfying truth assignment for the
boolean 3-CNF formula.
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The construction of Gf from 3-CNF

formula f

(X1 OR X2’ OR X3)

(X1’ OR X3 OR X4)

(X2 OR X3’ OR X4’)

X1

X2’ X3

X1’

X3 X4

X2

X3’ X4’
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The Art Gallery Problem
• Greedy triangulation of a simple polygon of n

vertices into triangles with vertices coinciding
with polygonal vertices.
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The Art Gallery Problem
• Greedy triangulation of a simple polygon of n

vertices into triangles with vertices coinciding
with polygonal vertices.

• The existence of several triangulations of a
simple polygon or a convex polygon; the greedy
algorithm has choices at each stage.
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The Art Gallery Problem
• Greedy triangulation of a simple polygon of n

vertices into triangles with vertices coinciding
with polygonal vertices.

• The existence of several triangulations of a
simple polygon or a convex polygon; the greedy
algorithm has choices at each stage.

• There may be an exponential number of
triangulations.
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The Art Gallery Problem
• Greedy triangulation of a simple polygon of n

vertices into triangles with vertices coinciding
with polygonal vertices.

• The existence of several triangulations of a
simple polygon or a convex polygon; the greedy
algorithm has choices at each stage.

• There may be an exponential number of
triangulations.

• There is a greedy 3-colouring of the vertices of
the polygon with respect to the triangulation
graph.
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The Art Gallery Problem
• Greedy triangulation of a simple polygon of n

vertices into triangles with vertices coinciding
with polygonal vertices.

• The existence of several triangulations of a
simple polygon or a convex polygon; the greedy
algorithm has choices at each stage.

• There may be an exponential number of
triangulations.

• There is a greedy 3-colouring of the vertices of
the polygon with respect to the triangulation
graph.

• The vertices getting the colour which colours the

smallest number of vertices are at most ⌊n/3⌋ in
number. Algorithms Analysis and Design: Approximation algorithms: Autumn 2013: S P Pal Copyrights reserved – p.12/45



The Art Gallery Problem
• They cover all triangles because each triangle has

a vertex with each of the three colours.
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The Art Gallery Problem
• They cover all triangles because each triangle has

a vertex with each of the three colours.

• The similarity with vertex cover for graphs is that
vertices covered edges for graphs, whereas
vertices cover regions (triangles) of the polygon
for the art gallery problem.
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The Art Gallery Problem
• They cover all triangles because each triangle has

a vertex with each of the three colours.

• The similarity with vertex cover for graphs is that
vertices covered edges for graphs, whereas
vertices cover regions (triangles) of the polygon
for the art gallery problem.

• Savings in the number of vertex guards is
possible if we note that several guards see
common regions, beyond their own triangles. The
art gallery problem of minimizing vertex guards
is NP-hard.
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The general set cover problem
• We now generalize the ‘cover’ problem to general

sets of objects from a universal set U .
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The general set cover problem
• We now generalize the ‘cover’ problem to general

sets of objects from a universal set U .

• Let S be a collection of subsets S ⊆ U such that
S covers U , that is ∪S∈S(S) = U .
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The general set cover problem
• We now generalize the ‘cover’ problem to general

sets of objects from a universal set U .

• Let S be a collection of subsets S ⊆ U such that
S covers U , that is ∪S∈S(S) = U .

• We wish to find the smallest cardinality collection
C∗ ⊆ S of sets so that C∗ covers U , that is
∪S∈C∗(S) = U .
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The general set cover problem
• We now generalize the ‘cover’ problem to general

sets of objects from a universal set U .

• Let S be a collection of subsets S ⊆ U such that
S covers U , that is ∪S∈S(S) = U .

• We wish to find the smallest cardinality collection
C∗ ⊆ S of sets so that C∗ covers U , that is
∪S∈C∗(S) = U .

• For vertex covering, S corresponds to the set of
all vertices in the graph; the set of all edges
incident at a vertex forms a subset S ∈ S .
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The general set cover problem
• We now generalize the ‘cover’ problem to general

sets of objects from a universal set U .

• Let S be a collection of subsets S ⊆ U such that
S covers U , that is ∪S∈S(S) = U .

• We wish to find the smallest cardinality collection
C∗ ⊆ S of sets so that C∗ covers U , that is
∪S∈C∗(S) = U .

• For vertex covering, S corresponds to the set of
all vertices in the graph; the set of all edges
incident at a vertex forms a subset S ∈ S .

• So, the cardinality of S=|V |. The elements in U
are the edges of the graph.
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The general set cover problem
• The vertex cover problem is a special case of the

set cover problem.
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The general set cover problem
• The vertex cover problem is a special case of the

set cover problem.

• For the general set cover problem, we wish to
find a good (small) cover C ⊆ S of U such that

∪S∈C(S) = U .
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The general set cover problem
• The vertex cover problem is a special case of the

set cover problem.

• For the general set cover problem, we wish to
find a good (small) cover C ⊆ S of U such that

∪S∈C(S) = U .

• We show that such a cover C can be found in
polynomial time with ratio bound O(log |V |),
that is, |C| = O(|C∗| log |V |).
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The general set cover problem
• The vertex cover problem is a special case of the

set cover problem.

• For the general set cover problem, we wish to
find a good (small) cover C ⊆ S of U such that

∪S∈C(S) = U .

• We show that such a cover C can be found in
polynomial time with ratio bound O(log |V |),
that is, |C| = O(|C∗| log |V |).

• Surprisingly, a simple heuristic works; we choose
sets S ∈ S in decreasing order of the number of
new elements covered, until all elements of U are
covered. The sets thus selected constitute the
collection C ⊆ S .
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The logarithmic approximation ra-

tio
• In order to establish the approximation ratio, we

need a charging scheme for already covered
elements.
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The logarithmic approximation ra-

tio
• In order to establish the approximation ratio, we

need a charging scheme for already covered
elements.

• We add one set at a time to the set cover.
Whenever we select the next set to be included in
the the set cover in our approximation algorithm,
we assign some ‘prices’ to (only) the new
elements of the new set as follows.
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The logarithmic approximation ra-

tio
• In order to establish the approximation ratio, we

need a charging scheme for already covered
elements.

• We add one set at a time to the set cover.
Whenever we select the next set to be included in
the the set cover in our approximation algorithm,
we assign some ‘prices’ to (only) the new
elements of the new set as follows.

• If the i− 1 sets selected so far are S1, S2, ...,Si−1,
then we have already assigned some ‘prices’ to
the elements of these sets.
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The logarithmic approximation ra-

tio
• When the subsequent set Si is selected, some

more elements from Si are introduced in to the
set cover that were not covered by the previous
i− 1 sets.
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The logarithmic approximation ra-

tio
• When the subsequent set Si is selected, some

more elements from Si are introduced in to the
set cover that were not covered by the previous
i− 1 sets.

• The set Si is selected because it has the largest

number |Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| of new
elements amongst all the sets in

S \ {S1, S2, · · · , Si−1}.
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The logarithmic approximation ra-

tio
• When the subsequent set Si is selected, some

more elements from Si are introduced in to the
set cover that were not covered by the previous
i− 1 sets.

• The set Si is selected because it has the largest

number |Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| of new
elements amongst all the sets in

S \ {S1, S2, · · · , Si−1}.

• The price applied on each new element is
1

|Si\(S1∪S2∪···Si−1)|
.
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The logarithmic approximation ra-

tio
• When the subsequent set Si is selected, some

more elements from Si are introduced in to the
set cover that were not covered by the previous
i− 1 sets.

• The set Si is selected because it has the largest

number |Si \ (S1 ∪ S2 ∪ · · · ∪ Si−1)| of new
elements amongst all the sets in

S \ {S1, S2, · · · , Si−1}.

• The price applied on each new element is
1

|Si\(S1∪S2∪···Si−1)|
.

• Each element is charged with a price only once;
let the price assigned to an element x ∈ U be cx.
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The upper bound
• Observe that the sum of all weights charged is

|C| =
∑

x∈U cx.
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The upper bound
• Observe that the sum of all weights charged is

|C| =
∑

x∈U cx.

• Each new element is charged (only once) with a
price that is the inverse of the number of new
elements introduced by the new set containing
them. So, the sum total of all weights is equal to

the number |C|, of sets selected by the
approximation algorithm.
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The upper bound
• Observe that the sum of all weights charged is

|C| =
∑

x∈U cx.

• Each new element is charged (only once) with a
price that is the inverse of the number of new
elements introduced by the new set containing
them. So, the sum total of all weights is equal to

the number |C|, of sets selected by the
approximation algorithm.

• We now define a quantity
∑

S∈C∗

∑
x∈S cx for an

(unknown) optimal set cover C∗. [We will
succeed in showing that this quantity is indeed an

upper bound on |C|.]
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The sandwiching upper bound

• Observe that |C| =
∑

x∈X cx ≤
∑

S∈C∗

∑
x∈S cx
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The sandwiching upper bound

• Observe that |C| =
∑

x∈X cx ≤
∑

S∈C∗

∑
x∈S cx

• The reason is that the sets in the optimal cover C∗

might intersect. So, an element of x may be
counted several times on the right hand side of
the inequality whereas each element is counted
exactly once on the left hand side.
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The sandwiching upper bound

• Observe that |C| =
∑

x∈X cx ≤
∑

S∈C∗

∑
x∈S cx

• The reason is that the sets in the optimal cover C∗

might intersect. So, an element of x may be
counted several times on the right hand side of
the inequality whereas each element is counted
exactly once on the left hand side.

• We assume (as shown in Cormen et al. pages

1036-37), that
∑

x∈S cx ≤ H(|S|)|S ∈ S
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The sandwiching upper bound

• Observe that |C| =
∑

x∈X cx ≤
∑

S∈C∗

∑
x∈S cx

• The reason is that the sets in the optimal cover C∗

might intersect. So, an element of x may be
counted several times on the right hand side of
the inequality whereas each element is counted
exactly once on the left hand side.

• We assume (as shown in Cormen et al. pages

1036-37), that
∑

x∈S cx ≤ H(|S|)|S ∈ S

• Here, H(n) = O(log n) is the harmonic sum∑
1≤i≤n

1
i
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The sandwiching upper bound

• Observe that |C| =
∑

x∈X cx ≤
∑

S∈C∗

∑
x∈S cx

• The reason is that the sets in the optimal cover C∗

might intersect. So, an element of x may be
counted several times on the right hand side of
the inequality whereas each element is counted
exactly once on the left hand side.

• We assume (as shown in Cormen et al. pages

1036-37), that
∑

x∈S cx ≤ H(|S|)|S ∈ S

• Here, H(n) = O(log n) is the harmonic sum∑
1≤i≤n

1
i

• We can now see that |C| ≤
∑

S∈C∗ H(|S|) ≤
|C∗|.H(max{|S| : S ∈ S})
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The general weighted set cover

problem
• In this case, each set S ⊆ U , has a positive and

rational weight c(S). Here, U is the universal set
of n elements and the collection of sets
S = {S1, S2, · · · , Sk}.
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The general weighted set cover

problem
• In this case, each set S ⊆ U , has a positive and

rational weight c(S). Here, U is the universal set
of n elements and the collection of sets
S = {S1, S2, · · · , Sk}.

• We need to find the weighted minimum subset of
S , that covers U , given that S covers U .
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The general weighted set cover

problem
• In this case, each set S ⊆ U , has a positive and

rational weight c(S). Here, U is the universal set
of n elements and the collection of sets
S = {S1, S2, · · · , Sk}.

• We need to find the weighted minimum subset of
S , that covers U , given that S covers U .

• We now show how the ratio approximation factor

of H(n) is attained.
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The general weighted set cover

problem
• In this case, each set S ⊆ U , has a positive and

rational weight c(S). Here, U is the universal set
of n elements and the collection of sets
S = {S1, S2, · · · , Sk}.

• We need to find the weighted minimum subset of
S , that covers U , given that S covers U .

• We now show how the ratio approximation factor

of H(n) is attained.

• The greedy selection rule for the next set S is
similar to the rule in the unweighted set cover
heuristic.
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The general weighted set cover

problem
• If the set of already covered elements is C, then

|S \ C| is the number of new elements.
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The general weighted set cover

problem
• If the set of already covered elements is C, then

|S \ C| is the number of new elements.

• Let c(S) be the cost of S. Then the cost per

element added afresh is α = c(S)
|S\C| .
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The general weighted set cover

problem
• If the set of already covered elements is C, then

|S \ C| is the number of new elements.

• Let c(S) be the cost of S. Then the cost per

element added afresh is α = c(S)
|S\C| .

• This is called the cost effectiveness of the set S.
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The general weighted set cover

problem
• If the set of already covered elements is C, then

|S \ C| is the number of new elements.

• Let c(S) be the cost of S. Then the cost per

element added afresh is α = c(S)
|S\C| .

• This is called the cost effectiveness of the set S.

• In each greedy step, we select that set S whose
cost effectiveness is minimum; for each element
e ∈ S, we say price(e) = α.
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The general weighted set cover

problem
• If the set of already covered elements is C, then

|S \ C| is the number of new elements.

• Let c(S) be the cost of S. Then the cost per

element added afresh is α = c(S)
|S\C| .

• This is called the cost effectiveness of the set S.

• In each greedy step, we select that set S whose
cost effectiveness is minimum; for each element
e ∈ S, we say price(e) = α.

• Now, let e1, e2, · · · , en be the sequence in which
the selected sets covered the n elements.
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The general weighted set cover

problem
• We have the following non-trivial upper bound:

price(ek) ≤
OPT

n− k + 1
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The general weighted set cover

problem
• We have the following non-trivial upper bound:

price(ek) ≤
OPT

n− k + 1

• We establish this bound below; first we show how
to use this bound.
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The general weighted set cover

problem
• We have the following non-trivial upper bound:

price(ek) ≤
OPT

n− k + 1

• We establish this bound below; first we show how
to use this bound.

• We know that summing price(e) over all e ∈ U
gives us the sum of weights of sets in the set
cover computed by our greedy algorithm.
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The general weighted set cover

problem
• We have the following non-trivial upper bound:

price(ek) ≤
OPT

n− k + 1

• We establish this bound below; first we show how
to use this bound.

• We know that summing price(e) over all e ∈ U
gives us the sum of weights of sets in the set
cover computed by our greedy algorithm.

• This is clearly H(n)×OPT , by the use of the

above upper bound for price(e), which we now
proceed to establish below.
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The general weighted set cover

problem

• We now establish the upper bound on price(e).
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The general weighted set cover

problem

• We now establish the upper bound on price(e).

• At any stage of our greedy algorithm, consider
the leftover sets T1, T2, ..., Tp of the optimal

solution and the remaining elements to be
covered.
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The general weighted set cover

problem

• We now establish the upper bound on price(e).

• At any stage of our greedy algorithm, consider
the leftover sets T1, T2, ..., Tp of the optimal

solution and the remaining elements to be
covered.

• Since all the n elements can be covered with OPT
cost by the already chosen sets of the optimal
solution C∗ and the leftover sets of the optimal
solution, it is also possible for the leftover sets of
the optimal solution to cover the remaining
elements with cost at most OPT.
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The general weighted set cover

problem

• We now establish the upper bound on price(e).

• At any stage of our greedy algorithm, consider
the leftover sets T1, T2, ..., Tp of the optimal

solution and the remaining elements to be
covered.

• Since all the n elements can be covered with OPT
cost by the already chosen sets of the optimal
solution C∗ and the leftover sets of the optimal
solution, it is also possible for the leftover sets of
the optimal solution to cover the remaining
elements with cost at most OPT.

• The sum of costs of all remaining sets of the
optimal cover is no more than OPT.

Algorithms Analysis and Design: Approximation algorithms: Autumn 2013: S P Pal Copyrights reserved – p.23/45



The general weighted set cover

problem
• The number of elements remaining to be covered is |U \C|.
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The general weighted set cover

problem
• The number of elements remaining to be covered is |U \C|.

• The cost of covering these elements is no more than OPT .
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The general weighted set cover

problem
• The number of elements remaining to be covered is |U \C|.

• The cost of covering these elements is no more than OPT .

• There must be one such set with cost effectiveness at most

the upper bound of

OPT

|U \ C|

(see Problem 2 in Tutorial 2).

Algorithms Analysis and Design: Approximation algorithms: Autumn 2013: S P Pal Copyrights reserved – p.24/45



The general weighted set cover

problem
• The number of elements remaining to be covered is |U \C|.

• The cost of covering these elements is no more than OPT .

• There must be one such set with cost effectiveness at most

the upper bound of

OPT

|U \ C|

(see Problem 2 in Tutorial 2).

• Therefore, our algorithm will greedily select some set

covering the kth element with at most

price(ek) ≤
OPT

|U \ C|
≤

OPT

n− k + 1
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Linear programming duality
• The linear program with m linear inequalities

representing constraints for minimizing a linear
objective function for an n-dimensional
non-negative vector is as follows.
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Linear programming duality
• The linear program with m linear inequalities

representing constraints for minimizing a linear
objective function for an n-dimensional
non-negative vector is as follows.

• minimize
∑n

j=1 cjxj[c
Tx]

given
∑n

j=1 aijxj ≥ bi, i = 1, · · · ,m[Ax ≥ b]

xj ≥ 0, j = 1, · · · , n[x ≥ 0] where aij, bi, cj are
given rational numbers.
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Linear programming duality
• The linear program with m linear inequalities

representing constraints for minimizing a linear
objective function for an n-dimensional
non-negative vector is as follows.

• minimize
∑n

j=1 cjxj[c
Tx]

given
∑n

j=1 aijxj ≥ bi, i = 1, · · · ,m[Ax ≥ b]

xj ≥ 0, j = 1, · · · , n[x ≥ 0] where aij, bi, cj are
given rational numbers.

• Here, A is an m× n matrix, b is an m× 1 matrix,
and x and c are an n× 1 matrices. Note that b is a
lower bound on Ax, whereas we cannot
indefinitely inflate x since we wish to minimize

cTx.
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Decision version for testing the up-

per bound
• The optimization (minimization) problem yields

an optimal solution x∗.
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Decision version for testing the up-

per bound
• The optimization (minimization) problem yields

an optimal solution x∗.

• If we wish to address the question of membership
in P or NP , it helps to formulate decision
versions of the linear programming problem.
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Decision version for testing the up-

per bound
• The optimization (minimization) problem yields

an optimal solution x∗.

• If we wish to address the question of membership
in P or NP , it helps to formulate decision
versions of the linear programming problem.

• Instead of computing x∗, we may ask whether

z∗ = cTx∗ is at most α, where α is a real number.
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Decision version for testing the up-

per bound
• The optimization (minimization) problem yields

an optimal solution x∗.

• If we wish to address the question of membership
in P or NP , it helps to formulate decision
versions of the linear programming problem.

• Instead of computing x∗, we may ask whether

z∗ = cTx∗ is at most α, where α is a real number.

• Note that we do not know z∗ when we are given
the decision version instance, denoted by
matrices A, b, c and α. Nevertheless, we pose the
decision version question “whether z∗ ≤ α”.
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Decision version for testing the up-

per bound
• In other words, we may ask whether the optimal

value of the objective function is upper bounded
by some not too large constant.
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Decision version for testing the up-

per bound
• In other words, we may ask whether the optimal

value of the objective function is upper bounded
by some not too large constant.

• Supppose we have a ‘yes’ instance. Then, we are
assured that indeed z∗ ≤ α.
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Decision version for testing the up-

per bound
• In other words, we may ask whether the optimal

value of the objective function is upper bounded
by some not too large constant.

• Supppose we have a ‘yes’ instance. Then, we are
assured that indeed z∗ ≤ α.

• In that case, there must be some x = a > 0 that

satisfies Aa ≥ b, and z∗ ≤ cTa = d ≤ α.
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Decision version for testing the up-

per bound
• In other words, we may ask whether the optimal

value of the objective function is upper bounded
by some not too large constant.

• Supppose we have a ‘yes’ instance. Then, we are
assured that indeed z∗ ≤ α.

• In that case, there must be some x = a > 0 that

satisfies Aa ≥ b, and z∗ ≤ cTa = d ≤ α.

• Such an a is a feasible (possibly non-optimal)
solution which is a ‘witness’ that this is a ‘yes’
instance.
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Decision version for testing the up-

per bound
• In other words, we may ask whether the optimal

value of the objective function is upper bounded
by some not too large constant.

• Supppose we have a ‘yes’ instance. Then, we are
assured that indeed z∗ ≤ α.

• In that case, there must be some x = a > 0 that

satisfies Aa ≥ b, and z∗ ≤ cTa = d ≤ α.

• Such an a is a feasible (possibly non-optimal)
solution which is a ‘witness’ that this is a ‘yes’
instance.

• The moment we know such a ‘witness’ a, we set d = cTa,

and we can easily check whether Aa ≥ b and cTa ≤ α,

confirming and verifying that z∗ is also at most α, that is,

z∗ ≤ cTa = d ≤ α.Algorithms Analysis and Design: Approximation algorithms: Autumn 2013: S P Pal Copyrights reserved – p.27/45



Decision version is in the class NP
• In other words, we can verify efficiently that α is

indeed an upper bound on z∗, even though we do
not know z∗, simply by checking a ‘witness’ for
the given ‘yes’ instance.
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Decision version is in the class NP
• In other words, we can verify efficiently that α is

indeed an upper bound on z∗, even though we do
not know z∗, simply by checking a ‘witness’ for
the given ‘yes’ instance.

• This means that the decision problem at hand is
indeed in the class NP .
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Decision version is in the class NP
• In other words, we can verify efficiently that α is

indeed an upper bound on z∗, even though we do
not know z∗, simply by checking a ‘witness’ for
the given ‘yes’ instance.

• This means that the decision problem at hand is
indeed in the class NP .

• We simply can check efficiently given such a
certificate a, that the given instance is indeed a
‘yes’ instance.
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Decision version is in the class NP
• In other words, we can verify efficiently that α is

indeed an upper bound on z∗, even though we do
not know z∗, simply by checking a ‘witness’ for
the given ‘yes’ instance.

• This means that the decision problem at hand is
indeed in the class NP .

• We simply can check efficiently given such a
certificate a, that the given instance is indeed a
‘yes’ instance.

• Is this decision question also in the class co-NP?
We will soon answer this question after we define
what is known as the dual problem of a given
(primal) linear program.
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Linear Programming: Duality
•

minimize
n∑

j=1

cjxj[c
Tx]

given

n∑

j=1

aijxj ≥ bi, i = 1, · · · ,m[Ax ≥ b]

xj ≥ 0, j = 1, · · · , n[x ≥ 0]
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Linear Programming: Duality
•

minimize
n∑

j=1

cjxj[c
Tx]

given

n∑

j=1

aijxj ≥ bi, i = 1, · · · ,m[Ax ≥ b]

xj ≥ 0, j = 1, · · · , n[x ≥ 0]

•

maxmize

m∑

i=1

biyi[b
Ty]

given
m∑

i=1

aijyi ≤ cj , j = 1, · · · , n[ATy ≤ c]

yi ≥ 0, i = 1, · · · ,m[y ≥ 0]

where a , b , c are given rational numbers.
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Linear Programming: Weak dual-

ity
• Here, the lower bounds bi in the constraints in the

primal program define the objective function for
maximization in the dual program.

Algorithms Analysis and Design: Approximation algorithms: Autumn 2013: S P Pal Copyrights reserved – p.30/45



Linear Programming: Weak dual-

ity
• Here, the lower bounds bi in the constraints in the

primal program define the objective function for
maximization in the dual program.

• Symmetrically, the upper bounds in the
constraints of the dual program define the
objective function in the primal program.

Algorithms Analysis and Design: Approximation algorithms: Autumn 2013: S P Pal Copyrights reserved – p.30/45



Linear Programming: Weak dual-

ity
• Here, the lower bounds bi in the constraints in the

primal program define the objective function for
maximization in the dual program.

• Symmetrically, the upper bounds in the
constraints of the dual program define the
objective function in the primal program.

• Observe further that the ‘variables’ in y ≥ 0, in
the dual linear program are multipliers of the
lower bounds in b of the primal linear program.
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Linear Programming: Weak dual-

ity
• Here, the lower bounds bi in the constraints in the

primal program define the objective function for
maximization in the dual program.

• Symmetrically, the upper bounds in the
constraints of the dual program define the
objective function in the primal program.

• Observe further that the ‘variables’ in y ≥ 0, in
the dual linear program are multipliers of the
lower bounds in b of the primal linear program.

• Even though we maximize the objective function
in the dual, which is the dot or inner product of b
with the weight- or price- or the variables- vector
y, we are well guarded by the upper bounds in

c ≥ ATy. Algorithms Analysis and Design: Approximation algorithms: Autumn 2013: S P Pal Copyrights reserved – p.30/45



Linear Programming: Weak dual-

ity
• So, we are ensured that the coefficients of each

primal variable xi, in all the m inequalities of the
primal, when weighted by the m multipliers or
variables in y of the dual, do not exceed the
corresponding cost ci of the primal.
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Linear Programming: Weak dual-

ity
• So, we are ensured that the coefficients of each

primal variable xi, in all the m inequalities of the
primal, when weighted by the m multipliers or
variables in y of the dual, do not exceed the
corresponding cost ci of the primal.

• This ensures that the objective function value in
the dual is always below that in the primal, for
any pair of feasible solution x and y of the primal
and dual, respectively.
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Linear Programming: Weak dual-

ity
• So, we are ensured that the coefficients of each

primal variable xi, in all the m inequalities of the
primal, when weighted by the m multipliers or
variables in y of the dual, do not exceed the
corresponding cost ci of the primal.

• This ensures that the objective function value in
the dual is always below that in the primal, for
any pair of feasible solution x and y of the primal
and dual, respectively.

• With this intuition, we now proceed to formally
establish the ‘weak duality’ result below.

Algorithms Analysis and Design: Approximation algorithms: Autumn 2013: S P Pal Copyrights reserved – p.31/45



Linear Programming: Weak dual-

ity
• For feasible solutions x and y to the primal and dual

respectively

n∑

j=1

cjxj ≥
m∑

i=1

biyi[c
Tx ≥ bTy]
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Linear Programming: Weak dual-

ity
• For feasible solutions x and y to the primal and dual

respectively

n∑

j=1

cjxj ≥
m∑

i=1

biyi[c
Tx ≥ bTy]

•
n∑

j=1

cjxj ≥

n∑

j=1

(

m∑

i=1

aijyi)xj [c
Tx ≥ xTATy]

Algorithms Analysis and Design: Approximation algorithms: Autumn 2013: S P Pal Copyrights reserved – p.32/45



Linear Programming: Weak dual-

ity
• For feasible solutions x and y to the primal and dual

respectively

n∑

j=1

cjxj ≥
m∑

i=1

biyi[c
Tx ≥ bTy]

•
n∑

j=1

cjxj ≥

n∑

j=1

(

m∑

i=1

aijyi)xj [c
Tx ≥ xTATy]

•
m∑

i=1

(
n∑

j=1

aijxj)yi ≥
m∑

i=1

biyi[y
TAx ≥ bTy]
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Primal-dual optimality and comple-

mentary slackness
•

xTATy = yTAx
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Primal-dual optimality and comple-

mentary slackness
•

xTATy = yTAx

• Feasible solutions x and y for the primal and dual

respectively, are both optimal if and only if the following

hold
n∑

j=1

cjxj =

m∑

i=1

biyi[c
Tx = bTy]

These are equivalent to the conjunction of the following

two conditions of complementary slackness.
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Primal-dual optimality and comple-

mentary slackness
•

xTATy = yTAx

• Feasible solutions x and y for the primal and dual

respectively, are both optimal if and only if the following

hold
n∑

j=1

cjxj =

m∑

i=1

biyi[c
Tx = bTy]

These are equivalent to the conjunction of the following

two conditions of complementary slackness.

• For each 1 ≤ j ≤ n either xj = 0 or
∑m

i=1 aijyi = cj
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Primal-dual optimality and comple-

mentary slackness
•

xTATy = yTAx

• Feasible solutions x and y for the primal and dual

respectively, are both optimal if and only if the following

hold
n∑

j=1

cjxj =

m∑

i=1

biyi[c
Tx = bTy]

These are equivalent to the conjunction of the following

two conditions of complementary slackness.

• For each 1 ≤ j ≤ n either xj = 0 or
∑m

i=1 aijyi = cj

• For each 1 ≤ i ≤ m either yi = 0 or
∑n

j=1 aijxj = bi
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Membership in the class co-NP
• Given a linear programming primal instance A, b,
c and α, whether z∗ ≥ α, that is, whether z∗ is at
least α.
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Membership in the class co-NP
• Given a linear programming primal instance A, b,
c and α, whether z∗ ≥ α, that is, whether z∗ is at
least α.

• This question being complementary to the
question in the original problem, establishing the
membership in NP for this question would place
the original problem in the class co-NP.
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Membership in the class co-NP
• Given a linear programming primal instance A, b,
c and α, whether z∗ ≥ α, that is, whether z∗ is at
least α.

• This question being complementary to the
question in the original problem, establishing the
membership in NP for this question would place
the original problem in the class co-NP.

• This is easy to show using a similar argument applied to

suitable feasible solutions of the dual linear program that

have lower bounded objective function values.
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Membership in the class co-NP
• Given a linear programming primal instance A, b,
c and α, whether z∗ ≥ α, that is, whether z∗ is at
least α.

• This question being complementary to the
question in the original problem, establishing the
membership in NP for this question would place
the original problem in the class co-NP.

• This is easy to show using a similar argument applied to

suitable feasible solutions of the dual linear program that

have lower bounded objective function values.

• Using such solutions of the dual as ‘certificates’ or

‘witnesses’, ‘yes’ instances of this new problem can be

shown to be checkable in polynomial time.
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Dual fitting analysis technique for

the greedy set cover
• The problem of minimum set cover is as follows.

minimize
∑

S∈S c(S)xS subject to∑
S:e∈S xS ≥ 1, e ∈ U

xS ∈ {0, 1}, S ∈ S .
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Dual fitting analysis technique for

the greedy set cover
• The problem of minimum set cover is as follows.

minimize
∑

S∈S c(S)xS subject to∑
S:e∈S xS ≥ 1, e ∈ U

xS ∈ {0, 1}, S ∈ S .

• This is a 0-1 integer program.
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Dual fitting analysis technique for

the greedy set cover
• The problem of minimum set cover is as follows.

minimize
∑

S∈S c(S)xS subject to∑
S:e∈S xS ≥ 1, e ∈ U

xS ∈ {0, 1}, S ∈ S .

• This is a 0-1 integer program.

• The LP-relaxation of this integer program is the
following primal linear program.

minimize
∑

S∈S c(S)xS subject to∑
S:e∈S xS ≥ 1, e ∈ U

xS ≥ 0, S ∈ S .
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Dual fitting analysis technique for

the greedy set cover
• The problem of minimum set cover is as follows.

minimize
∑

S∈S c(S)xS subject to∑
S:e∈S xS ≥ 1, e ∈ U

xS ∈ {0, 1}, S ∈ S .

• This is a 0-1 integer program.

• The LP-relaxation of this integer program is the
following primal linear program.

minimize
∑

S∈S c(S)xS subject to∑
S:e∈S xS ≥ 1, e ∈ U

xS ≥ 0, S ∈ S .

• The dual linear program is

maximize
∑

e∈U ye subject to∑
e:e∈S ye ≤ c(S), S ∈ S , ye ≥ 0, e ∈ U
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The dual lower bound
• We know that the optimal cost OPT of the set

cover is at least the optimal cost OPTf of the

primal linear program in the LP relaxation.
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The dual lower bound
• We know that the optimal cost OPT of the set

cover is at least the optimal cost OPTf of the

primal linear program in the LP relaxation.

• We also know that the cost of any feasible
solution to the dual linear program is no more
than OPTf , which in turn is no more than OPT .

Algorithms Analysis and Design: Approximation algorithms: Autumn 2013: S P Pal Copyrights reserved – p.36/45



The dual lower bound
• We know that the optimal cost OPT of the set

cover is at least the optimal cost OPTf of the

primal linear program in the LP relaxation.

• We also know that the cost of any feasible
solution to the dual linear program is no more
than OPTf , which in turn is no more than OPT .

• The optimal costs of the primal and dual linear
programs are both OPTf .
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The dual lower bound
• We know that the optimal cost OPT of the set

cover is at least the optimal cost OPTf of the

primal linear program in the LP relaxation.

• We also know that the cost of any feasible
solution to the dual linear program is no more
than OPTf , which in turn is no more than OPT .

• The optimal costs of the primal and dual linear
programs are both OPTf .

• When we choose the next element
ei ∈ S = {e1, e2, · · · , ek} of the k elements of a
set S in the greedy set cover heuristic, the

price(ei) is no more than
c(S)

k−i+1 , as we now

demonstrate.
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The greedy set cover prices
• The main argument is that the element ei may be

incorporated due to the inclusion of either the set
S itself or some other set.
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The greedy set cover prices
• The main argument is that the element ei may be

incorporated due to the inclusion of either the set
S itself or some other set.

• If S is itself chosen then there are k − i+ 1 new
elements ei, ..., ek to be included with cost

effectivity
c(S)

k−i+1 , the assigned value of price(ej),

i ≤ j ≤ k.
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The greedy set cover prices
• The main argument is that the element ei may be

incorporated due to the inclusion of either the set
S itself or some other set.

• If S is itself chosen then there are k − i+ 1 new
elements ei, ..., ek to be included with cost

effectivity
c(S)

k−i+1 , the assigned value of price(ej),

i ≤ j ≤ k.

• Clearly, price(ej) =
c(S)

k−i+1 ≤
c(S)

k−j+1 , i ≤ j ≤ k.
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The greedy set cover prices
• The main argument is that the element ei may be

incorporated due to the inclusion of either the set
S itself or some other set.

• If S is itself chosen then there are k − i+ 1 new
elements ei, ..., ek to be included with cost

effectivity
c(S)

k−i+1 , the assigned value of price(ej),

i ≤ j ≤ k.

• Clearly, price(ej) =
c(S)

k−i+1 ≤
c(S)

k−j+1 , i ≤ j ≤ k.

• Otherwise, some other set includes ei with lower

cost effectivity, such that price(ei) ≤
c(S)

k−i+1 , as

per the greedy algorithm.
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The greedy set cover prices
• Now setting the variable ye of the dual linear program for each e ∈ U to

price(e)
H(n)

, we

observe that

yei ≤
1

H(n)
.

c(S)

k − i+ 1

for each of the k elements ei ∈ S.
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The greedy set cover prices
• Now setting the variable ye of the dual linear program for each e ∈ U to

price(e)
H(n)

, we

observe that

yei ≤
1

H(n)
.

c(S)

k − i+ 1

for each of the k elements ei ∈ S.

• So,
k∑

i=1

yei ≤
c(S)

H(n)
.(
1

k
+

1

k − 1
+ · · ·+

1

1
) =

H(k)

H(n)
.c(S) ≤ c(S)
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The greedy set cover prices
• Now setting the variable ye of the dual linear program for each e ∈ U to

price(e)
H(n)

, we

observe that

yei ≤
1

H(n)
.

c(S)

k − i+ 1

for each of the k elements ei ∈ S.

• So,
k∑

i=1

yei ≤
c(S)

H(n)
.(
1

k
+

1

k − 1
+ · · ·+

1

1
) =

H(k)

H(n)
.c(S) ≤ c(S)

• So, the constraints in the dual linear program are satisfied establishing the feasibility of

the solution with ye values as assigned above. Now we further observe that

∑

e∈U

price(e) = H(n)(
∑

e∈U

ye) ≤ H(n).OPTf ≤ H(n).OPT
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Linear Programming and Weighted

Vertex Cover
• We develop approximation algorithms based on linear

programming.
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Linear Programming and Weighted

Vertex Cover
• We develop approximation algorithms based on linear

programming.

• Consider the weighted version of the vertex cover problem

on weighted undirected graphs.
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Linear Programming and Weighted

Vertex Cover
• We develop approximation algorithms based on linear

programming.

• Consider the weighted version of the vertex cover problem

on weighted undirected graphs.

• A linear program has a system Ax ≥ b of inequalities

called constraints, and an objective function cTx.
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Linear Programming and Weighted

Vertex Cover
• We develop approximation algorithms based on linear

programming.

• Consider the weighted version of the vertex cover problem

on weighted undirected graphs.

• A linear program has a system Ax ≥ b of inequalities

called constraints, and an objective function cTx.

• We need to minimize cTx over all positive vectors x ≥ 0,

satisfying the set of constraints.
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Linear Programming and Weighted

Vertex Cover
• We develop approximation algorithms based on linear

programming.

• Consider the weighted version of the vertex cover problem

on weighted undirected graphs.

• A linear program has a system Ax ≥ b of inequalities

called constraints, and an objective function cTx.

• We need to minimize cTx over all positive vectors x ≥ 0,

satisfying the set of constraints.

• The set of constraints represents the intersection of

half-spaces, which is a convex region of multi-dimensional

space, called the feasible region.
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Linear Programming and Weighted

Vertex Cover
• We develop approximation algorithms based on linear

programming.

• Consider the weighted version of the vertex cover problem

on weighted undirected graphs.

• A linear program has a system Ax ≥ b of inequalities

called constraints, and an objective function cTx.

• We need to minimize cTx over all positive vectors x ≥ 0,

satisfying the set of constraints.

• The set of constraints represents the intersection of

half-spaces, which is a convex region of multi-dimensional

space, called the feasible region.

• Optima of linear objective functions like cTx can occur

only at vertices of this convex feasible region.
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Formulation with weights for ver-

tices
• Being more precise, the problem we define is as follows.

Given an m× n matrix A, and vectors b ∈ Rm and

c ∈ Rn, find a vector x ∈ Rn solving the optimization

problem min{cTx such that x ≥ 0 and Ax ≥ b}.
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Formulation with weights for ver-

tices
• Being more precise, the problem we define is as follows.

Given an m× n matrix A, and vectors b ∈ Rm and

c ∈ Rn, find a vector x ∈ Rn solving the optimization

problem min{cTx such that x ≥ 0 and Ax ≥ b}.

• Each vertex i has a positive weight wi. We say that the

weight of a set of vertices is the sum of weights of its

vertices.
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Formulation with weights for ver-

tices
• Being more precise, the problem we define is as follows.

Given an m× n matrix A, and vectors b ∈ Rm and

c ∈ Rn, find a vector x ∈ Rn solving the optimization

problem min{cTx such that x ≥ 0 and Ax ≥ b}.

• Each vertex i has a positive weight wi. We say that the

weight of a set of vertices is the sum of weights of its

vertices.

• We wish to compute a vertex cover with at most twice the

optimal weight in polynomial time.
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Use of indicator variables for vertex

cover
• We use an indicator or decision variable xi for inclusion of

the ith vertex in the vertex cover.
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Use of indicator variables for vertex

cover
• We use an indicator or decision variable xi for inclusion of

the ith vertex in the vertex cover.

• The minimum weighted vertex cover will minimize

∑

i∈V

wixi

such that

xi + xj ≥ 1, (i, j) ∈ E

and

xi ∈ {0, 1}, i ∈ V
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Discrete Integer Linear Program
• We can rewrite the problem formally as

Ax ≥ 1

1 ≥ x ≥ 0

where the integer 0-1 matrix A has one row for each edge

and one column for each vertex and A[e, i] = 1 whenever

vertex i is in edge e and 0, otherwise.
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Discrete Integer Linear Program
• We can rewrite the problem formally as

Ax ≥ 1

1 ≥ x ≥ 0

where the integer 0-1 matrix A has one row for each edge

and one column for each vertex and A[e, i] = 1 whenever

vertex i is in edge e and 0, otherwise.

• We need to solve the optimization problem min{wTx such

that 1 ≥ x ≥ 0 and Ax ≥ 1, x ∈ {0, 1}}.
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Discrete Integer Linear Program
• We can rewrite the problem formally as

Ax ≥ 1

1 ≥ x ≥ 0

where the integer 0-1 matrix A has one row for each edge

and one column for each vertex and A[e, i] = 1 whenever

vertex i is in edge e and 0, otherwise.

• We need to solve the optimization problem min{wTx such

that 1 ≥ x ≥ 0 and Ax ≥ 1, x ∈ {0, 1}}.

• We have reduced the optimization version of the minimum

weighted vertex cover problem to the linear programming

problem where we require the solutions (for xi) to be from

{0, 1}. Algorithms Analysis and Design: Approximation algorithms: Autumn 2013: S P Pal Copyrights reserved – p.42/45



NP-hardness of ILP and Weighted

Vertex Cover
• This problem is called 0-1 integer programming, and due to

the NP-hardness of the vertex cover problem, this problem

is also NP-hard.
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NP-hardness of ILP and Weighted

Vertex Cover
• This problem is called 0-1 integer programming, and due to

the NP-hardness of the vertex cover problem, this problem

is also NP-hard.

• Why is the decision version of this 0-1 integer

programming problem also in the class NP?
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Linear Programming relaxation for

the ILP
• Let wLP be the optimal weight for this optimization

problem. For the corresponding solution x∗, the

components x∗
i may be non-integral.
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Linear Programming relaxation for

the ILP
• Let wLP be the optimal weight for this optimization

problem. For the corresponding solution x∗, the

components x∗
i may be non-integral.

• One way to get an integer solution is to round the fractional

solutions which are in the range between 0 and 1.
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Linear Programming relaxation for

the ILP
• Let wLP be the optimal weight for this optimization

problem. For the corresponding solution x∗, the

components x∗
i may be non-integral.

• One way to get an integer solution is to round the fractional

solutions which are in the range between 0 and 1.

• If x∗
i ≥

1
2
, only then we include i in S. Why do we get a

vertex cover?
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Linear Programming relaxation for

the ILP
• Let wLP be the optimal weight for this optimization

problem. For the corresponding solution x∗, the

components x∗
i may be non-integral.

• One way to get an integer solution is to round the fractional

solutions which are in the range between 0 and 1.

• If x∗
i ≥

1
2
, only then we include i in S. Why do we get a

vertex cover?

• This way we get an approximate vertex cover, whose total

weight will now be shown to be at most twice the optimal.
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The lower bound and ensuing ap-

proximation cap
• First observe that wLP ≤ w(S∗), where S∗ is any optimal

weighted vertex cover.
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The lower bound and ensuing ap-

proximation cap
• First observe that wLP ≤ w(S∗), where S∗ is any optimal

weighted vertex cover.

• This is because the optimal vertex cover is a special case

where the solutions are integral and relaxing this restriction

cannot worsen the solution with respect to optimization.
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The lower bound and ensuing ap-

proximation cap
• First observe that wLP ≤ w(S∗), where S∗ is any optimal

weighted vertex cover.

• This is because the optimal vertex cover is a special case

where the solutions are integral and relaxing this restriction

cannot worsen the solution with respect to optimization.

• Also, w(S∗) ≥ wLP = wTx∗ =
∑

i wix
∗
i ≥

∑
i∈S wix

∗
i ≥

1
2

∑
i∈S wi =

1
2
w(S).
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The lower bound and ensuing ap-

proximation cap
• First observe that wLP ≤ w(S∗), where S∗ is any optimal

weighted vertex cover.

• This is because the optimal vertex cover is a special case

where the solutions are integral and relaxing this restriction

cannot worsen the solution with respect to optimization.

• Also, w(S∗) ≥ wLP = wTx∗ =
∑

i wix
∗
i ≥

∑
i∈S wix

∗
i ≥

1
2

∑
i∈S wi =

1
2
w(S).

• So, we have w(S) ≤ 2wLP ≤ 2w(S∗).
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