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1 Upper/lower bounds for the optimal in maximization/mini-
mization problems

Suppose we have an optimization problem (such as that of computing a minimum sized vertex
cover or a maximum cardinality stable set) where a certain quantity or parameter must be mini-
mized or maximised. If OPT is the value of the optimal soution and we can compute a solution of
value v in polynomial time using an algorithm A, then we say that v

OPT is the approximation ratio
for the algorithm A. Assume that this is a minimization problem. This ratio is at least one for such
minimization problems. If we do not know OPT but we know a lower bound m≤ OPT for OPT ,
then we can say that the approximation ratio v

OPT is at most v
m . So, even not knowing OPT , we

can estimate an upper bound v
m on the approximation ratio v

OPT for algorithm A, if we know just
any lower bound for OPT such as m. [Knowing OPT could be difficult because computing the
value of OPT may require exponential time for NP-hard problems.] The tighter the lower bound
m, the better is our approximation ratio estimate for the minimization problem. Therefore, estab-
lishing higher (tighter) lower bounds for OPT is crucial in developing approximation algorithms
with smaller approximation ratios. Note that in the case of a maximization problem, we can in a
similar manner define the approximation ratio as v

OPT , which can never exceed unity, and the lower
the upper bound estimate for OPT , the better would be the lower bound on the approximation ratio
for the algorithm A.

1.1 DAG subgraphs of directed graphs
We know that DAGs (directed acyclic graphs) do not have directed cycles. We wish compute a
large DAG subgraph of a given directed graph G. If OPT is the number of edges in the maximum
size DAG in G, then we know that OPT ≤ e, where e is the number of directed edges in G. If we
can partition the set of e edges into two sets and then choose the bigger one then we are ensured
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at least e
2 ≥

OPT
2 edges. Naturally both the sets in the partition must induce DAGs. How do we

achieve this requirement? We use the total ordering property of integers; we simply number the n
vertices of G from 1 through n arbitrarily. Then we take all forward edges in one set and backward
edges in the other set. An edge (i, j) is a forward edge if i < j and backward if j < i. Clearly, both
these sets are DAGS and we can select the larger one. See Problem 1.9 on page 7 in [8].

1.2 Large cuts for undirected graphs
We know that the size of a cut in a graph cannot exceed e, where e is the number of edges in the
graph. If OPT is the size of the maximum sized cut in G then OPT ≤ e. We can start with just
about any cut and then keep improving it as much as we can. We can stop when our incremental
step cannot increase the cut size. This incremental step could be moving one vertex across the
cut only if it has a larger number of neighbours in its own current side of the cut compared to the
number of neighbours on the other side of the cut. When we stop, we find that each vertex has
more neighbours on the opposite side, that is, at least half its degree is exhausted across the cut.
Therefore, we have total vertex degree across the cut at least half the sum of degrees of all vertices,
which is at least 2e

2 = e. However, this count is just twice the number of edges across the cut as
each edge counts once in the degree of its two vertices. So, we conclude that at least e

2 edges are
across the cut, which is more than OPT

2 .

1.3 Minimum maximal matchings
See Problem 1.2 on page 8 in [8]. Consider an undirected graph G(V,E). Let M be a maximal
matching of m edges and let OPT be the size of a maximum cardinality matching M′. We wish
to show that m ≥ OPT

2 . To this effect we first observe that all the OPT edges of the maximum
matching M′ are incident on the 2m vertices of M because these vertices also cover all edges in M′.
In other words, the 2m vertices of M hit all edges in M′ and thus form a vertex cover for M. Since
no two edges of M′ can be incident on the same vertex, we have at most 2m edges in M′, that is,
OPT ≤ 2m. The approximation ratio is therefore |M||M′| =

m
OPT ≥

m
2m = 1

2 .

1.4 Vertex cover using DFS tree: Ratio factor two
Note that internal vertices of any DFS tree of a connected undirected graph G form a vertex cover
of G. Why? So, this vertex cover can be computed in polynomial time. See Problem 1.3 on page
8 in [8].

If the number of internal vertices is m then we can show that there is a matching of size dm
2 e, a

lower bound on vertex cover size. So, the size OPT of the minimum vertex cover is no lesser than
this lower bound. So, m≤ 2×OPT .

1.5 Vertex cover from matching: Ratio factor two
In the next section 2, we observe that the size of any maximal matching in an undirected graph is
a lower bound for the size of the minimum vertex cover.
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1.6 Vertex covering using a large cut
The following problem is due to Vishnoi, given as Exercise 2.5 on page 23 of [8]. If we compute a
large cutset H of cardinality at least half the size of the maximum cutset in an undirected graph G
then G\H has maximum degree ∆

2 if G has maximum degree ∆. Then, by induction we can show
that a factor log∆ algorithm for computing a vertex cover of G can be designed. The set of edges in
H can be viewed as a bipartite graph on incident vertices across the large cut. We can also compute
the exact vertex cover for this bipartite graph in polynomial time. The vertex cover for G \H is
computed recursively to within a factor log ∆

2 of the size of its minimum vertex cover. So, a vertex
cover for G of (i) size OPTH for H, and (ii) (recursively) for G\H of size (log∆

2 )OPTG\H gives a
vertex cover of size at most OPTH +(log ∆

2 )OPTG\H ≤ OPTG +(log∆−1)OPTG= (log∆)OPTG.

1.7 Exercises
Section 2.4 Exercises 2.1, 2.2, 2.3 and 2.6 from pages 22-24 in [8].

2 The approximation algorithm with ratio factor two for vertex
covering

For an undirected simple graph G(V,E), a set W ⊆ V is a vertex cover if, for every edge {u,v} ∈
E, either u or v or both are in W . We wish to find a minimum cardinality vertex cover for the
graph G(V,E). This being an NP-hard problem, it is worthwhile searching for polynomial time
approximation algorithms.

We can try several heuristics. We may select (and delete) an arbitrary vertex v∈V for inclusion
in vertex cover C and drop all edges incident on v. This step can be repeated until the graph
becomes empty (of edges). Alternatively, we may use another rule, where we select an arbitrary
edge {u,v} ∈ E and include both u and v in C; we drop all edges incident on u and v and repeat the
process until the graph becomes empty.

For a straight line graph (that is, a simple path of n vertices and n−1 edges), the first method
finds a vertex cover of size n− 1, which is within twice the size of the optimal vertex cover of
size bn/2c. Why? Does it work well also for other classes of graphs like trees, planar graphs, and
general graphs?

The second one chooses both vertices of all edges in a maximal matching S to be included in
the computed vertex cover C. [A matching is a set S of edges where no two edges in M share any
vertex. A matching S is called a maximal matching if we cannot add an additional edge to M to
get a larger matching.] We analyze the second heuristic, following the exposition in [2]. How well
does this second heuristic work for straight line graphs? If C∗ is any minimum vertex cover then
|S| ≤ |C∗|, where S is any maximal matching. Why? Vertices in C∗ have to cover each edge in
the (maximal) matching S. So, C∗ must include at least one vertex from each of the S edges. The
2|S| vertices comprise the computed approximate vertex cover C. So, |C| = 2|S| ≤ 2|C∗|, since
|S| ≤ |C∗|. This gives a polynomial time algorithm yielding a vertex cover that is certainly at most
twice the size of the minimum vertex cover.

[It is interesting to note that any matching in a graph would force at least as many vertices
in the vertex cover as twice the number of edges in the matching. Thus, the cardinality of the
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maximum matching gives a lower bound on the cardinality of any vertex cover. Do these two
cardinalities ever coincide for any classes of graphs?]

From the algorithmic angle, we have already noted that the vertices of edges forming a maximal
matching cover all edges, and a maximal matching can be computed using the greedy approach as
in the second heuristic stated above (see [8]). [As mentioned earler, the maximal matching is such
that none of its supersets enjoys the same property.] So, observe that a vertex cover generated by
our approximation algorithm might as well be smaller than twice the cardinality of the maximum
matching. In such cases, where the discovered maximal matching is smaller than the maximum
matching, we indeed have some saving.

3 The cardinality (unweighted) set cover problem
We now generalize the ‘cover’ problem to general sets of objects from a universal set U . Let S be
a collection of subsets S⊂U such that the collection S of sets covers the entire set of objects in U ,
that is ∪S∈S (S) =U . We wish to find the smallest cardinality collection C ∗ ⊆ S of sets so that C ∗
covers all the elements in U , that is ∪S∈C ∗(S) =U .

[For vertex covering, S corresponds to the set of all vertices in the graph; the set of all edges
incident at a vertex forms a subset S ∈ S . So, the cardinality of S=|V |. The elements in U are the
edges of the graph. The vertex cover problem is a special case of the set cover problem. Can we
then conclude that the set cover problem is also NP-hard, given that the vetex cover problem is
known to be NP-hard?]

For the general set cover problem, we wish to find a good (small) cover C ⊆ S of U such
that ∪S∈C (S) = U . We show that such a cover C can be found in polynomial time with ratio
bound O(log |U |), that is, |C |= O(|C ∗| log |U |). We follow the exposition as in Cormen et al. [2].
Surprisingly, a simple heuristic works; we choose sets S ∈ S in decreasing order of the cardinality
of the set of new elements covered by the remaining sets, until all elements of U are covered. The
sets thus selected constitute the collection C ⊆ S .

3.1 The logarithmic approximation ratio on the cardinality of the greedy set
cover

In order to establish the approximation ratio, we need a charging scheme for elements of U . We
add one set at a time to the set cover. Whenever we select the next set from S to be included in the
the set cover C in our approximation algorithm, we assign some prices to (only) the new elements
of S as follows. If the i−1 sets selected so far are S1, S2, ..., Si−1, then we have already assigned
some prices to the elements of these sets. When the subsequent set Si is selected, some more
elements from Si are introduced in to the set cover that were not covered by the previous i−1 sets.
The set Si is selected because it has the largest number |Si \ (S1∪S2∪·· ·∪Si−1)| of new elements
amongst all the sets in S \{S1,S2, · · · ,Si−1}. The price applied on each new element is

1
|Si \ (S1∪S2∪·· ·Si−1)|

Each element is charged with a price only once; let the price assigned to an element x ∈U be cx.
Observe that the sum of all weights charged is
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|C |= ∑
x∈U

cx (1)

[Each new element is charged (only once) with a price that is the inverse of the number of new
elements introduced by the new set containing them. So, the sum total of all weights is equal to the
number |C |, of sets selected by the approximation algorithm.]

We now define a quantity
∑

S∈C ∗
∑
x∈S

cx

for an (unknown) optimal set cover C ∗. Observe that

|C |= ∑
x∈U

cx ≤ ∑
S∈C ∗

∑
x∈S

cx. (2)

The reason is that the sets in the optimal cover C ∗ might intersect. So, an element of x may
be counted several times on the right hand side of inequality 2, whereas each element is counted
exactly once on the left hand side.

Now that we have an upper bound on the cardinality of the approximate set cover, we assume
(as shown in [2]), that

∑
x∈S

cx ≤ H(|S|),S ∈ S (3)

Here, H(n) = O(logn) is the harmonic sum

∑
1≤i≤n

1
i

The proof of the inequality 3 is postponed to Section 3.2.
We can now see from inequalities 2 and 3 that

|C | ≤ ∑
S∈C ∗

H(|S|)≤ |C ∗|.H(max{|S| : S ∈ S}) (4)

The right hand side of inequality 4 leads to the desired upper bound on the approximation ratio
required. The technique used in this section was a scheme for charging the elements x ∈U with
weights cx as we execute the approximation algorithm and compute the approximate set cover C.
These charges as assigned by the greedy algorithm to the elements of U are then used to sum the
charges of elements cx ∈ S, summed up over the sets S in the optimal set cover C∗. This sum turns
out to be proportional to the cardinality of the optimal set cover; constant of proportionality exceeds
unity and deterines the logarithmic approximation ratio. For the complete proof and derivation of
the crucial inequality 3, as applicable to all sets S in the collection S , see pages 1036-37 of Cormen
et al. [2] and Section 3.2.
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3.2 The crucial inequality
Supporting the top level analysis of Section 3.1, we now establish the crucial inequality 3 as fol-
lows. See details in pages 1036-37 in Cormen et al. [2].

3.3 A simpler alternative analysis
Given a collection S of subsets of U , we wish to find a minimum cardinality collection C such that,
∪S∈C S = U . We initizlize C = ∅. All elements of U are initially uncovered. As long as uncov-
ered elements exist, we repeatedly pick a set S that contains the maximum number of uncovered
elements and we set C = C ∪{S}. When all elemets of U are covered, we declare the collection
C ⊆ S the approximate minimum set cover of U from the collection S . We say that |U |=n=n0. Let
ni be the number of elements in U uncovered after iteration i. Let OPT be the minimum number
of sets from S required to cover all the elements in U . We establish the following claims.

Claim I: ni+1 ≤ ni
(
1− 1

OPT

)
Claim II: |C | ≤ OPT lnn
We establish the claims as follows. We know that OPT sets can cover all elements in U .

Suppose Ci is the collection of sets already selected so far by the greedy algorithm in the first i
iterations. Some sets (possibly none) of the optimal set cover C∗ might have already been selected
in the collection Ci. Let the number of sets of C∗ that do not belong to Ci be p. Clearly p 6= 0. If
p= 0 then we would have covered all elements in U and the algorithm would have to be terminated.
These p sets can however cover the |U \∪iCi| remaining elements where clearly p ≤ OPT . So,
these p≤ OPT sets cover the remaining ni elements, and also possibly some more elements from
Ci. Each of these p remaining sets of the optimal set cover also possibly cover some elements of
Ci. We claim that at least one of these p sets covers at least ni

OPT elements of U \Ci. If each of these
sets had less than ni

OPT elements of the ni remaining elements then it would not have be possible for
these p ≤ OPT sets to cover all these remianing ni elements. The number of elements remaining
uncovered after the (i+1)th iteration is therefore 6 ni− ni

OPT = ni
(
1− 1

OPT

)
; the greedy heuristic

chooses a set with at least ni
OPT elements.

Suppose the algorithm runs for t iterations until all elements of U are covered. Then, |C | = t.
We have, nt 6 nt−1

(
1− 1

OPT

)
6 n0

(
1− 1

OPT

)t
= n

(
1− 1

OPT

)t
. Now, 1−x < e−x, for x 6= 0. Thus,

nt < ne−
t

OPT . Let t = OPT lnn. Then, nt < ne−
t

OPT = ne
−OPT lnn

OPT = ne− lnn = 1, or nt = 0. This
means after t iterations all the elements of U have been covered. This happens if t = OPT lnn or
|C |= OPT lnn. The exposition in this subsection is based on Prof. Abhiram Ranade’s lectures.

4 The weighted set cover problem
In this case, each set S⊆U , has a positive and rational weight c(S). Here, U is the universal set of n
elements and the collection of m sets S = {S1,S2, · · · ,Sm}. We need to find the minimum weighted
subset of S , that covers U , given that S covers U . We now show how the ratio approximation factor
of H(n) is attained following the exposition in [8].
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4.1 The main analysis of the logarithmic ratio factor
The greedy selection rule for the next set S is similar to the rule in the unweighted set cover
heuristic in Section 3. If the set of already covered elements is C, then |S\C| is the number of new
elements. Let c(S) be the total cost of the elements of S. Then the cost per element added afresh
is α = c(S)

|S\C| . This is called the cost effectiveness of the set S. In each greedy step, we select that
set S whose cost effectiveness is minimum; for each element e ∈ S, we assign price(e) = α. Now,
let e1,e2, · · · ,en be the sequence in which the selected sets covered the n elements. We have the
following non-trivial upper bound:

price(ek)≤
OPT

n− k+1

We establish this bound below; first we show how to use this bound. We know that summing
price(ek) over all ek ∈ U gives us the sum of weights of sets in the set cover computed by our
greedy algorithm. This is clearly H(n)×OPT , by the use of the above upper bound for price(ek).

We now proceed to establish the upper bound on price(ek) as given in [8]. At any stage during
the computation of the greedy (approximate) set cover, the elements covered constitute the set C.
Consider he set U \C of elements that remain to be covered. Each stage of the greedy algorithm
selects a set S to be added to the current cover C, and adds elements of S to C, in one batch. This
batch of elements e ∈ S \C are all assigned the same price(e) = c(S)

|S\C| . By definition, all the n
elements of U can be covered with OPT cost by (i) the already chosen sets of the optimal solution
C∗ in the cover C, and (ii) the leftover sets of the optimal solution C∗. Observe that it is therefore
also possible for the leftover sets of the optimal solution C∗ to cover the elements of U \C with cost
at most OPT. Let the leftover sets of C∗ be T1, T2, ..., Tp; these are not used to cover the elements
in C in the greedy algorithm so far. We can show that there is at least one set amongst these p sets
with cost effectiveness at most OPT

|U\C| . This follows from the fact that the ‘average’ cost of these
|U \C| elements in the cover of total cost at most OPT (with the sets T1, ..., Tp) is no more than
OPT
|U\C| . So, there must be at least one of these p sets with cost effectiveness at most OPT

|U\C| . [A more
detailed argument for this claim is included in Section 4.2.] So, the greedy heuristic chooses a set
S with no more cost effectiveness (may not be one of these p sets) to be added to C, assigning
prices to elements of the chosen set. If ek ∈ S then price(ek) is at most this cost effectiveness. If
k− 1 elements were in C before this set S was chosen, then price(ek) ≤ OPT

|U\C| =
OPT

n−k+1 . For any

subsequent element of S, prices(el) = price(ek) =
OPT

n−k+1 ≤
OPT

n−l+1 , where l > k. Our algorithm
(for the whole problem) will therefore greedily select some set covering the kth element with

price(ek)≤
OPT
|U \C|

≤ OPT
n− k+1

4.2 A few details in the proof of the upper bound on price
Suppose we have already selected k− 1 elements in the set C and assigned price(ei) ≤ OPT

n−i+1 for
elements ei, 1 ≤ i ≤ k− 1. While selecting ek, two cases arise. If the same set introduces both
ek−1 and ek into the set C, then price(ek) = price(ek−1) ≤ OPT

n−(k−1)+1 ≤
OPT

n−k+1 and we are done.
Otherwise, a new set is necessary for inclusion of ek in C; we analyze as follows.
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As mentioned in Section 4.1, the p leftover sets of the optimal cover C∗ are T1, T2, ..., Tp,
ordered arbitrarily. The cost effectivity of Ti is c(Ti)

|Ti\C| . Using elementary algebra (see Problem 3
in Tutorial 1), we can show that there must be at least one set amongst these p sets with cost
effectivity no more than

∑1≤i≤p c(Ti)

∑1≤i≤p |Ti \C|
The numerator is clearly upper bounded by OPT. The denominator is at least n− k+ 1 because
n−k+1 elements are left, which can be to be covered (starting with ek) by the p sets of the optimal
cover C∗; the p sets can share elements outside the set C. So, the set selected for introducing ek
into the set C must have cost effectivity no more than

price(ek)≤
OPT

n− k+1

as claimed.

5 Problem 14.5 (J. Cheriyan) from Vazirani’s text
Problem 14.5 from Vazirani’s text (J. Cheriyan): Design a polynomial time algorithm for the fol-
lowing problem.

“Given a graph G with non-negative vertex weights and a valid, though not necessarily optimal,
coloring of G, find a vertex cover of weight≤ (2− 2

k ) ·OPT , where k is the number of colors used.”

6 The maximun coverage problem
Given a universal set U of n elements, a collection of subsets of U , say C = {S1, . . . ,Sl}, and an
integer k, we need to pick k sets from the collection C so as to maximize the number of elements
covered. In order to obtain an approximate solution for this maximization problem, we apply a
greedy algorithm where we keep picking in each iteration the set from C that contains the largest
number of elements yet to be covered, until k sets have already been picked. We analyze the ap-
proximation ratio of this algorithm below.

For the ease of presentation of the analysis, we establish the following notations:

• U∗ ⊆U denotes the subset of elements in U that are covered by an optimal solution to the
maximum coverage problem where C∗ ⊆ C is thebibliographycollection of sets selected in
that optimal solution,

• xi denotes the number of new elements from U being covered by the set chosen in the i-th
iteration of the greedy algorithm

• yi denotes the total number of elements from U that have been covered by all the sets chosen
from C up to (and including) the i-th iteration of the greedy algorithm. Observe that y0 = 0,
and yi = ∑

i
j=1 x j.

12



• zi denotes the target deficit with respect to the optimal solution, the targeted number of more
elements yet to be covered by all the sets chosen from C up to (and including) the i-th
iteration of the greedy algorithm. Observe that, for each i ∈ {1,2, . . . ,k}, zi = |U∗|− yi, and
zi+1 = zi− xi+1.

Recall that, at each step, our greedy algorithm selects a subset whose inclusion covers the
maximum number of uncovered elements. We also know that the optimal solution uses k sets
to cover |U∗| elements, where C∗ is the optimal collection of k sets from C that cover the OPT
elements of U in U∗ (as already mentioned above). By the time we have selected i sets in our
algorithm, we might have selected some sets from C∗ or (may be) no set from C∗. Certainly, we
would not have selected all sets from C∗ already because in that case we would have covered |U∗|
elements already. So, some collection C′ of the at most k sets of C∗ remain unselected so far where
we still have |U∗|− yi = zi elements to be covered. Out of the sets in C′ there must be a set that
covers at least zi

k of the so far uncovered elements which C∗ covers. So, our algorithm must pick
such set from C′ or a set from outside C′, in the (i+1)st selection where

xi+1 ≥
zi

k

Claim 1. For each i ∈ {1,2, . . . ,k}, we have zi ≤ (1− 1
k )

i · |U∗|.

Proof We prove the above claim by induction. Observe that z0 = |U∗|, since y0 = 0.
So, for the base case of i = 0, we have y1 = x1 ≥ z0

k = |U∗|
k , which implies z1 ≤ |U ∗ | − y1 ≤

(1− 1
k ) · |U

∗|.
Now let us assume inductively that z j ≤ (1− 1

k )
j · |U∗|.Then, we have:

z j+1 = z j− x j+1 ≤ z j−
z j

k
≤ (1− 1

k
) · z j ≤ (1− 1

k
) j+1 · |U∗|

Thus, the cost of the solution from our greedy algorithm is given by:

yk = |U∗|− zk ≥ |U∗|− (1− 1
k
)k · |U∗| ≥ (1− (1− 1

k
)k) · |U∗| ≥ (1− 1

e
) · |U∗|

7 Improvement of the approximation guarantee
A natural question about improving the approximation guarantee is whether a better analysis of the
algorithm being considered, can improve the approximation guarantee any further. Essentially, we
must show that the analysis already provided for the algorithm is tight.

7.1 Tight example for the vertex cover algorithm
In the case of the factor two algorithm using maximal matchings for vertex covering (in Section 2),
we note that on Kn,n the algorithm produces a solution that is twice the optimal in cardinality. Since
Kn,n is the complete bipartite graph on 2n vertices with n2 edges, our algorithm would certainly
choose a matching of size n, and therefore a vertex cover of size 2n, thereby showing that we
cannot get a factor better than 2 for such graphs for any integer n (see [8]), for this algorithm.

13



[This is despite the fact that the lower bound of the size of a maximal matching is n as well as
the size of an optimal vertex cover is n.] So, this family of infinite graphs provides what we call
a tight (asymptotic) example for the specific algorithm. Tight examples often give critical insight
into the functioning of an algorithm and often lead to ideas for the design of other algorithms that
can achieve improved guarantees.

7.2 Maximal matchings lower bound cannot yield better approximation guara-
tees for vertex covering

Now consider another question: can a better approximation algorithm be designed that achieves
a better guarantee but still uses the the same lower bounding scheme as our current algorithm of
Section 2. For addressing this second question, consider the complete graph Kn of n vertices where
n is an odd integer. Note that it has a minimum vertex cover of size n− 1; dropping any two
vertices would leave an edge uncovered. Also, n being odd, we observe the maximum matching
has cardinality n−1

2 . For this example, no algorithm can achieve a ratio factor of approximation
better than 2 for any odd integer n (see [8]).

[So, we observe that by simply using the lower bounding scheme of maximal matchings, we
cannot improve the approximation ratio.]

7.3 Total weight of all edges cannot yield better approximation guarantees
for weighted cut

As in the case of vertex cover in Section 2, we can also make a similar observation for the maximum
weighted cut problem. A polynomial time algorithm exists that ensures a cut of weighted capacity
at least 1

2w(E), where w(E) is the sum of weights of the edges. We now show here that for all n,
we cannot have a better ratio factor for graphs K2n, if we use the (obvious) upper bound of w(E)
for the maximum cut. The graph K2n has exactly n(2n−1) edges and a maximum cut of size n2,
giving an approximation ratio at most 1

2 for such graphs for all integers n. [Observe that the cut is
maximised when it separates any set of n vertices form the rest of the n vertices.]

[So, we observe that by simply using the upper bounding scheme provided by w(E), we cannot
improve the approximation ratio.]

7.4 Tight example for the greedy weighted set cover algorithm
Suppose, n sets each have a singleton element and the set weights are respectively, 1

n ,
1

n−1 , · · · ,1,
and the last set has all these n elements with set weight 1+ ε. The optimal cover has weight 1+ ε

and the algorithm in Section 4 computes a set cover with weight H(n). In each iteration, the cost
effectiveness of the last set is higher than those of the other sets. This is an example where the
H(n) upper bound is approached as ε approaches zero.

In Section 13.1 of [8] we can see the Example 13.4 which reveals that the Hn bound is essen-
tially tight, irrespective of the algorithm used. For this purpose, we must see the LP relaxation 13.2
on page 109 of [8], as discussed here in Section 9.4.

See Sections 29.7 and 29.9 of [8] for seeing why the obvious greedy algorithm is the best one
can hope for.
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8 Rounding linear programs for designing approximation al-
gorithms

We can develop approximation algorithms based on linear programming. The example to begin
with is the weighted version of the vertex cover problem on (vertex) weighted undirected graphs
as illustrated in [4]. A linear program has a system Ax ≥ b of inequalities called constraints, and
an objective function cT x. We need to minimize cT x over all positive vectors x ≥ 0, satisfying the
given set of constraints. The set of constraints represents the intersection of half-spaces, which
is a convex region of multi-dimensional space. It therefore represents a convex region called the
feasible region. Optima of linear objective functions like cT x can occur only at vertices of this
convex feasible region. However, the number of vertices can grow exponentially in the number of
inequalities. So, we need efficient algorithms for linear programming that run in polynomial time.
Being more precise, the problem we define is as follows.

Given an m× n matrix A, and vectors b ∈ R m and c ∈ R n, find a vector x ∈ R n solving the
optimization problem min{cT x such that x≥ 0 and Ax≥ b}.

For the weigthed vertex cover problem each vertex i has a positive weight wi, we say that the
weight of a set of vertices is the sum of weights of its vertices. We wish to show that a vertex cover
with at most twice the weight of the optimal (minimum) weighted vertex cover can be computed
in polynomial time. We use an indicator or decision variable xi for inclusion of the ith vertex in
the vertex cover. Such an integral variable can take values 1 or 0, based on whether it is present or
absent in the vertex cover. The minimum weighted vertex cover will minimize

∑
i∈V

wixi

such that
xi + x j ≥ 1,(i, j) ∈ E

and
xi ∈ {0,1}, i ∈V

We can rewrite the problem formally, relaxing the integrality restriction on xi, as

Ax≥ 1

1≥ x≥ 0

where the integer 0-1 matrix A has one row for each edge and one column for each vertex and
A[e, i] = 1 whenever vertex i is in edge e and 0, otherwise. We need to solve the optimization prob-
lem min{wT x such that 1≥ x≥ 0} and Ax≥ 1. Observe that we have reduced the discrete (integral)
optimization version of the minimum weighted vertex cover problem to the linear programming
problem where the solutions (for xi) can be real rational numbers. [The discrete optimization
problem for minimum weighted vertex cover is called the 0-1 integer programming problem. Why
is the decision version of this 0-1 integer programming problem also in the class NP? Is it also
NP-complete?]

Let wLP be the optimal weight for the relaxed linear programming optimization problem where
the (optimal) solution for the variables xi can be rationals. For such an optimal solution vector
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x∗, the components x∗i may very well be non-integral. So, we cannot directly get a solution to the
integer programming problem stated above, which was the actual problem to be solved.

One way to get an integer solution is to round off the fractional solutions to 0’s and 1’s. Note
that the fractional solutions are in the range [0,1], as we can see in the formulation of the con-
straints. We include i in S if and only if x∗i ≥ 1

2 , for all 1 ≤ i ≤ n. This way we indeed get an
(approximate) vertex cover, whose total weight will now be shown to be at most twice that of the
optimal weighted vertex cover.

Why is this set S a vertex cover? Each edge of the graph is covered by at least one vertex in S
because the linear program solution satisfies the constraint for each edge; this is because at least
one vertex in each equation must be having its fractional solution equal to or greater than 1

2 . We
thus make sure that we select at least one vertex from each edge in the set S, a vertex which has
fractional solution equal to or more than 1

2 .
First observe that wLP ≤w(S∗), where S∗ is any optimal weighted vertex cover. This is because

the optimal vertex cover is a special case where the solutions are integral and relaxing this restric-
tion cannot worsen the solution. Also, w(S∗) ≥ wLP = wT x∗ = ∑i wix∗i ≥ ∑i∈S wix∗i ≥ 1

2 ∑i∈S wi =
1
2w(S). So, we have w(S)≤ 2wLP ≤ 2w(S∗).

9 Linear programming duality and analysis of greedy approx-
imation algorithms

The linear program with m linear inequalities representing constraints for minimizing a linear
objective function for an n-dimensional non-negative vector is as follows.

minimize
n

∑
j=1

c jx j[cT x]

given
n

∑
j=1

ai jx j ≥ bi, i = 1, · · · ,m[Ax≥ b]

x j ≥ 0, j = 1, · · · ,n[x≥ 0]

where ai j,bi,c j are given rational numbers. Here, A is an m×n matrix, b is an m×1 matrix, and
x and c are an n×1 matrices. Note that b is a lower bound on Ax, whereas we cannot indefinitely
inflate x since we wish to minimize cT x.

The optimization (minimization) problem yields an optimal solution x∗. If we wish to address
the question of membership in P or NP, it helps to formulate decision versions of the linear pro-
gramming problem. Instead of computing x∗, we may ask whether z∗ = cT x∗ is at most α, where
α is a real number. [Note that we do not know z∗ when we are given the decision version instance,
denoted by matrices A, b, c and α. Nevertheless, we pose the decision version question “whether
z∗ ≤ α”.] In other words, we may ask whether the optimal value of the objective function is up-
per bounded by some not too large constant. Suppose we have a ‘yes’ instance. Then, we are
assured that indeed z∗ ≤ α. In that case, there must be some x = a > 0 that satisfies Aa ≥ b, and
z∗ ≤ cT a = d ≤ α. Why? Such an a is a feasible (possibly non-optimal) solution which is a ‘wit-
ness’ that this is a ‘yes’ instance. The moment we know such a ‘witness’ a, we set d = cT a, and we
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can easily check whether Aa ≥ b and cT a ≤ α, confirming and verifying that z∗ is also at most α,
that is, z∗ ≤ cT a = d ≤ α. In other words, we can verify efficiently that α is indeed an upper bound
on z∗, even though we do not know z∗, simply by checking a ‘witness’ for the given ‘yes’ instance.
This means that the decision problem at hand is indeed in the class NP. We simply can check
efficiently for a ‘yes’ instance given such a certificate a, that the instance is indeed a ‘yes’ instance.
This is however applicable only if the witness is ‘succinct’. The witness a must be bounded in
description length by a polynomial in the size of the input to the decision problem. How we do
establish the existence of such ‘succinct’ witnesses? In the classical text by Hopcroft and Ullman
[3], we find the elaborate proof of the fact that feasible solutions of polynomial description lengths
can indeed be shown to exist. The techniques used are from linear algebra, including Cramer’s
rule.

Is this decision question also in the class co-NP? We will soon answer this question after we
define what is known as the dual problem of a given (primal) linear program.

The dual linear program for the primal program given above is

maxmize
m

∑
i=1

biyi[bT y]

given
m

∑
i=1

ai jyi ≤ c j, j = 1, · · · ,n[AT y≤ c]

yi ≥ 0, i = 1, · · · ,m[y≥ 0]

Here, the lower bounds bi in the constraints in the primal program define the objective function for
maximization in the dual program. Symmetrically, the upper bounds in the constraints of the dual
program define the objective function in the primal program. Observe further that the ‘variables’
in y ≥ 0, in the dual linear program are multipliers of the lower bounds in b of the primal linear
program. Even though we maximize the objective function in the dual, which is the dot or inner
product of b with the weight- or price- of the variables- the vector y, we are well guarded by the
upper bounds in c ≥ AT y. Suppose we ensure that the coefficients of each primal variable xi (in
all the m inequalities of the primal), when weighted by the m multipliers or variables in y of the
dual, do not exceed the corresponding cost ci of the primal. This ensures that the objective function
value in the dual is always below that in the primal, for any pair of feasible solution pairs x and y
of the primal and dual, respectively. With this intuition, we now proceed to formally establish the
‘weak duality’ result below.

9.1 Weak duality
For feasible solutions x and y to the primal and dual programs respectively, we know that the
following inequality holds.

n

∑
j=1

c jx j ≥
m

∑
i=1

biyi[cT x≥ bT y]

This Weak LP-Duality result is easily establsihed; we replace upper bounds c j from the inequalities
of the dual problem getting

n

∑
j=1

c jx j ≥
n

∑
j=1

(
m

∑
i=1

ai jyi)x j[cT x≥ xT AT y]
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and symmetrically replace the lower bounds bi from the inequalities in the primal problem getting

m

∑
i=1

(
n

∑
j=1

ai jx j)yi ≥
m

∑
i=1

biyi[yT Ax≥ bT y]

finally observing that
xT AT y = yT Ax

9.2 Optimality and complementary slackness
It is known that the feasible solutions x∗ and y∗ for the primal and dual respectively, are both
optimal if and only if

n

∑
j=1

c jx∗j =
m

∑
i=1

biy∗i [c
T x∗ = bT y∗]

Now we state the complementary slackness conditions as

1. For each 1≤ j ≤ n either x∗j = 0 or ∑
m
i=1 ai jy∗i = c j

2. For each 1≤ i≤ m either y∗i = 0 or ∑
n
j=1 ai jx∗j = bi

These two conditions hold if and only if x∗ and y∗ are respective optima in the primal and dual
problems. Subsequently, in Section 7.7 we consider relaxed complementary slackness conditions
for non-optimal integral primal solutions and correspnding fractional dual solutions for the primal-
dual method of designing approximation algorithms.

9.3 Membership in the class co-NP
We are now in a position to show that linear programming belongs to the class co-NP. The question
we now ask given a linear programming primal instance A, b, c and α is whether z∗ ≥ α, that is
whether z∗ is at least α. This question being complementary to the question in the original problem,
establishing the membership in NP for this question would place the original problem in the class
co-NP, as much as we have already shown that the original problem is in the class NP. This is easy
to show using a similar argument applied to suitable feasible solutions of the dual linear program
that have lower bounded objective function values; using such solutions of the dual as ‘succinct’
‘certificates’ or ‘witnesses’, ‘yes’ instances of this new problem can be shown to be checkable
in polynomial time for feasibility and for being above the lower bound α, thereby verifying that
indeed z∗ ≥ α and therefore checking that the instance is indeed a ‘yes’ instance.

9.4 The dual fitting technique for the greedy algorithm of Section 4 for the
weighted set covering problem

Now we revisit the weighted set cover problem and use a linear programing dual fitting approach,
in order to analyze the same asymptotic approximation ratio bound of H(n). This exposition is
based on Chapter 13, pages 108-113 of [8]. We show the existence of a feasible dual solution y,
that can be used to get an upper bound on the cost of the greedy set cover.
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9.4.1 The integer program, its relaxation LP and the dual LP

The problem of minimum set cover is as follows.

minimize ∑
S∈S

c(S)xS

subject to
∑

S:e∈S
xS ≥ 1,e ∈U

xS ∈ {0,1},S ∈ S

This is a 0-1 integer program.
The LP-relaxation of this integer program is the following primal linear program.

minimize ∑
S∈S

c(S)xS

subject to
∑

S:e∈S
xS ≥ 1,e ∈U

xS ≥ 0,S ∈ S

In this formulation of the relaxation LP, we have one constraint for each element e ∈U and
one term in the objective function for each set. One very important point to note here is that
the variables xS are only required to be non-negative. We do not need any restriction/constraint
upperbounding xS because all these variables are non-negative, the costs c(S) are non-negative
and we have an objective function which is the dot product of such two non-negative component
vectors. The constraint xS ≤ 1 does not change the optimum, because a solution in which some xS
are bigger than 1 can be converted to a solution in which all variables are at most 1 while decreasing
the objective function, and so no variable is larger than 1 in an optimal solution, even if we do not
have the (explicit) constraint xS ≤ 1.

[Further, note that such a primal relaxation is also a covering linear program. We say that min
cT .x, subject to Ax≥ b, where x≥ 0, and all entries of A,b,c are non-negative, is called a covering
linear program.]

[An LP-relaxation of an integer linear program must satisfy two conditions: (i) every feasible
solution for the original integer program must be a feasible solution for the linear program, and
(ii) the value of any feaible solution of the integer program must have the same value in the linear
program.]

The dual linear program has one term ye for each element in the objective function and one
constraint for each set S, as follows.

maximize ∑
e∈U

ye

subject to
∑

e:e∈S
ye ≤ c(S),S ∈ S

ye ≥ 0,e ∈U
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We know that the optimal cost OPT of the set cover is at least the optimal cost OPTf of the
primal linear program in the LP relaxation. We also know that the cost of any feasible solution to
the dual linear program is no more than OPTf , which in turn is no more than OPT . [The optimal
costs of the primal and dual linear programs are both OPTf .]

9.4.2 The greedy algorithm

When we choose the next ist element ei ∈ S = {e1,e2, · · · ,ek} of the k elements of a set S in the
greedy set cover heuristic, the price(ei) is no more than c(S)

k−i+1 , as we now demonstrate. [This upper
bound is a straightforward ratio, unlike the analysis we did earlier in Section 4.] The main argument
is that the element ei may be incorporated due to the inclusion of either the set S itself or some
other set. If S is itself chosen then there are k− i+1 new elements ei, ...,ek to be included with cost
effectivity c(S)

k−i+1 , the assigned value of price(e j), i ≤ j ≤ k. Clearly, price(e j) =
c(S)

k−i+1 ≤
c(S)

k− j+1 ,

i ≤ j ≤ k. If not the set S but some other set includes ei with cost effectivity no more than c(S)
k−i+1 ,

as per the greedy algorithm, then we again have price(ei)≤ c(S)
k−i+1 .

9.4.3 Scaling for dual fitting

Now setting the variable ye of the dual linear program for each e ∈U to price(e)
H(n) , where H(n) =

∑
n
i=1

1
i , we observe that

yei ≤
1

H(n)
.

c(S)
k− i+1

for each of the k elements ei ∈ S. So,

k

∑
i=1

yei ≤
c(S)
H(n)

.(
1
k
+

1
k−1

+ · · ·+ 1
1
) =

H(k)
H(n)

.c(S)≤ c(S)

So, the constraints in the dual linear program are satisfied establishing the feasibility of the solution
with ye values as assigned above. Now we further observe that

∑
e∈U

price(e) = H(n)(∑
e∈U

ye)≤ H(n).OPTf ≤ H(n).OPT

Recall here that the costs of the sets selected in the set cover are distributed over the elements of U
as price(e); all new elements e covered when a certain set S is picked up by the greedy algorithm
are assigned the cost-effectivity value price(e) of the seleted set S. Therefore, ∑e∈U price(e) is the
sum of costs of all selected sets, which as seen above is at most H(n) times OPT .

9.4.4 The notion of prices for the primal integral solution being fully and payed up by the
dual solution

Observe that using the linear programming relaxation of the integer program and the dual LP of
the (primal) LP relaxation, we saw how the (primal) integral solution computed by the algorithm
is fully paid for by the computed dual variables. The objective function value of the primal integral
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solution is matched by the objective function value of the dual variables computed. However, fur-
ther in the analysis, we divide the dual variables by a suitable factor and show that the scaled down
dual solution is feasible. The scaling factor is the approximation guarantee of the algorithm since
the dual gives a lower bound on the optimal value of the linear primal and dual linear programs,
thereby giving a lower bound on also the optimal objective function value of the integer linear
program.

Indeed, the greedy algorithm defines dual variable values price(e), for each element e. Observe
that the cost of the selected sets in the set cover picked by the algorithm is fully payed for (in
this case exactly equalled) by the dual solution. However, this dual solution is not feasible. We
therefore needed to shrink the values by a factor of H(n), so that they fit into the given set cover
instance, i.e., no set is overpacked (in other words, all constraints of the dual LP are satisfied).

9.5 Dual fitting for the constrained set multicover problem
The discussion here on the constrained set multicover problem is from Section 13.2.1 in [8]. Here,
each element e needs to be covered a specific integer number re of times. We also use the constraint
that each set can be picked up at most once. [A set S if picked up k times yields cost kc(S).
Such permissible picking of a set multiple times is allowed in the less constrained problem set
multicover.]

9.5.1 Integer program and the primal relaxation LP for the constrained problem

Now we propose the integer programming formulation as min ∑S∈S c(S)xS subject to ∑S:e∈S xS ≥
re, for all e ∈U , given that xS ∈ {0,1}, for all S ∈ S . Here, re ∈ Z+. The LP-relaxation is tricky
because we must now constrain each set to be selected at most once. So, we need to realize the
constraint xS ≤ 1 as well. Therefore, replacing the integer program constraint on xS taking on
values 0 and 1 only, we now use the following constraints in the LP-relaxation: −xS ≥ −1 and
xS ≥ 0, for all S ∈ S .

9.5.2 The dual LP for the primal LP relaxation of the integer program

The dual linear program for the LP-relaxation is therefore complex, with a few more variables
because we do not have a primal covering linear program (there are some negative elements in the
matrices and vectors in the primal-dual linear program formulation). The additional constraints
have new variables zS in the dual. The dual LP is no more a packing program. The primal LP has
one constraint for each element in U as well as a constraint for each set in S ; there are as many
variables in the dual LP, the ye variables as well as the zS variables. Now, a set S can be overpacked
with the ye variables. This can be done only provided we raise zS to ensure feasibility. The objective
function value can then decrease. However, overall, overpacking may still be advantageous, since
the ye appear with coefficients of re in the objective function.

max ∑e∈U reye−∑S∈S zS
subject to
(∑e:e∈S ye)− zS ≤ c(S), for all S ∈ S
ye ≥ 0, for all e ∈U
zS ≥ 0, for all S ∈ S
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9.5.3 The greedy set cover algorithm for choosing alive elements repeatedly

The greedy algorithm is as follows. We say that element e is alive if it occurs in less than re of the
sets already selected. The algorithm next picks an unpicked set which is the most cost-effective
set; the cost-effectiveness of a set is defined as the average cost at which the set covers its currently
alive elements. The algorithm halts when there are no more alive elements.

9.5.4 Multiple prices for elements in different selections

On picking a set S, its cost c(S) is distributed equally amongst the alive elements it covers. If S
covers e for the jth time, price(e, j) is set to the current cost-effectiveness of S as defined above. [It
is easy to see that the cost-effectiveness of sets picked is nondecreasing.] Since cost-effectiveness
is non-decreasing over iterations of selection of sets in the set cover, we have, for each element e,
price(e,1)≤ price(e,2)...≤ price(e,re).

9.5.5 The dual solution

The variables of the dual are set as follows at the end of the algorithm’s execution. For each e ∈U ,
we set (after scaling by Hn) y(e) = αe

Hn
= 1

Hn
.price(e,re). For each S ∈ S picked up by the algorithm

in the set cover, we set (after scaling down by Hn) zS = βS
Hn

= 1
Hn
.[∑e−covered−by−S(price(e,re)−

price(e, je))], where je is the copy of e covered by S. Note that since price(e, je)≤ price(e,re), so
βS is non-negative. If S is not picked by the algorithm, then βS is defined to be 0.

Now observe that the objective value of the primal is ∑e∈U ∑
re
j=1 price(e, j). Indeed, this is

identical to the objective function value of the dual variables (α,β) since ∑e∈U reαe−∑S∈S βS=
∑e∈U ∑

re
j=1 price(e, j). After scaling down (α,β) by a factor of Hn we get the scaled dual LP

feasible solution (y,z), where ye =
αe
Hn

and zS =
βS
Hn

.

9.5.6 Scaling and dual-fitting for satisfying the dual constraints

For ascertaining that the (y,z) solution is a scaled but feasible dual solution, we need to look at
each set S. Consider a set S ∈ S consisting of k elements. Order and enumerate its elements
in the order in which their re occurance requirements were fulfilled. This is the order in which
they stopped being alive. Let the ordered elements be e1, ...,ek. Suppose S is not picked by the
algorithm. When the algorithm is about to cover the last copy of ei, S contains at least k− i+1 alive
elements, so price(ei,rei) ≤

c(S)
k−i+1 . Since zS is zero, we get ∑

k
i=1 yei − zS = 1

Hn
∑

k
i=1 price(ei,rei)

≤ c(S)
Hn

.(1
k +

1
k−1 + · · ·+

1
1)≤ c(S).

Next, we assume that S is picked by the algorithm. Also assume that just before S is picked up
k′≥ 0 elements of S are already completely covered. Then, (∑k

i=1 yei)−zS= 1
Hn
[∑k

i=1 price(ei,rei)−
∑

k
i=k′+1(price(ei,rei)− price(ei, ji))]=

1
Hn
[∑k′

i=1 price(ei,rei)+∑
k
i=k′+1 price(ei, ji)], where S covers the jith copy of ei, for each i ∈

{k′+ 1, ...,k}. But ∑
k
i=k′+1 price(ei, ji) = c(S), since the cost of S is equally distributed among

the copies it covers. Finally consider elements ei, i ∈ {1, ...,k′}. When the last copy of ei is being
covered, S is not yet picked and covers at least k− i+1 alive elements. Thus, price(ei,rei)≤

c(S)
k−i+1 .

Therefore, (∑k
i=1 yei)− zS ≤ c(S)

Hn
(1

k + · · ·+
1

k−k′+1 +1)≤ c(S)).
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9.5.7 The final analysis of the factor Hk ratio bound

The actual aprroximation ratio is as good as Hk, where k is the cardinaity of the largest set in S .
This fact is easily seen in the derivations above.

9.6 Primal-dual analysis for the edge-charging algorithm for the weighted
vertex covering problem

In this section we again use the Primal-Dual technique where an (alternative) algorithm is used
for edge-based charging as in the Exercise 2.11 on page 24 of [8]. Observe that the factor two
vertex covering algorithm using maximal matching computation (as presented in the Section 2)
was based on a lower bound on the size of any vertex cover provided by the size of any maximal
matching. Here we use lower bounding in a differet way by working on LP dual variables; the
primal LP uses variables x(v) for vertices v and the dual LP uses varibles y(e) for edges e. An
edge e is written as (u,v), or better as {u,v} where u,v are vertices. Vertices are assigned weights
w(v) as in the input. The primal objective function is ∑v∈V w(v)x(v), which is to be minimized
s.t. x(u)+ x(v) ≥ 1, for all {u,v} ∈ E. The integer programming version is when x(v) is 0 or 1
for all v ∈ V . The primal LP relaxation says that x(v) ≥ 0, for all v ∈ V . The dual LP maximizes
∑e∈E y(e) s.t. ∑e=(u,v),e∈E y(e) ≤ w(v), for all v ∈ V . Here y(e) ≥ 0, for all e ∈ E. The constraint
for each vertex in the dual LP for each vertex v says that the prices y(e) of all edges e = (u,v), for
vertex v add up to at most w(v).

Supppose some algorithm computes a vertex cover C with prices y(e) for edges e∈E. Then, the
sum of these prices over edges incident on a vertex v would add up to at most w(v) if the y(e) values
for all e ∈ E constitute a feasible solution for the dual LP. However, suppose we could algorithmi-
cally assign prices to edges e∈ E s.t. for every v∈C, we have ∑e=(u,v)∈E y(e) = w(v). So, the price
of an edge incident on v, say e = (u,v) must be such that y(e)≤ w(v) and ∑e=(u,v)∈E y(e) = w(v).
We can do this by selecting an edge e = (u,v) and subtracting the smaller of (remaining) minimum
of weights of u and v from both u and v. Then if u (or v) become zero in weights, we force u (or v)
into C. [If they simultaneously become zero then naturally both are included in C.] The algorithm
proposed is thus as follows. Set C to an empty set and t(v) to w(v) for each v ∈ V . These t(v)
are varying (reducing) weights of vertices; picking an edge e = (u,v), we subtract the minimum of
t(v) and t(u) from each of them. For u or v (or both) we select u (v) in C if t(u) (t(v)) is zero after
subtraction. Since each time an edge of v is processed, we deduct t(v) till we select v when t(v)
becomes zero, the prices of edges e = (u,v) where v ∈C, are indeed summed up to w(v).

Summing up weights of all vertices in C we have ∑v∈C w(v) = ∑v∈C ∑e=(u,v) y(e) =
∑e=(u,v),e∈E ∑w∈e=(u,v),w∈C y(e)≤ ∑e=(u,v)∈E 2.y(e).
We know that OPT = ∑v∈C∗w(v)≥ ∑e∈E y(e), since the dual LP objective function value can

never exceed the cost OPT of the optimal weighted vertex cover, which is no lesser than OPT ∗,
the optimal objective function value shared by both the (fractional) primal and dual LPs. The
2-approximation result follows.

9.7 Improvements beyond the factor 2 for vertex covering
Strictly less than factor 2 approximation ratio can be achieved for the vertex covering problem
(VC) when certain conditions are enforced. Firstly, it is possible to show that the primal LP is
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half-integral. More particularly and precisely, it is possible to show that extreme point solutions to
the primal LP are half-integral (see Lemma 14.4 and Theorem 14.5 of [8]).

A half-integral solution x∗ to the primal VC LP may not be an optimal solution for VC. How-
ever, it is known due to Neemhauser and Trotter (see [9]), that there is some half-integral solution
x∗ for the primal VC which agrees in all its integral components with an optimal (integer) solution
for VC. Guessing the optimal solution by rounding such a half-integral solution may not be possi-
ble in polynomial time in the number of variables. However, it is possible to approximate the VC
problem with approximation ratio 2 by working non-trivially on a subgraph induced by a subset of
the set of vertices of the graph, as follows.

9.7.1 Partitioning graph G into vertex sets P, Q and R

We partition the set V of vertices into sets P, Q and R, corresponding to vertices i, where x∗i is 1,
1
2 , or 0, respectively, and where x∗ is an optimal half-integral solution for VC; this optimal half-
integral solution for VC can in turn be computed in polynomial time, as we show below, starting
from any half-integral solution for VC.

9.7.2 Optimal half-integral solution from any half-integral solution

We develop the various ideas and partial results as follows. We show that given a half-integral
solution HI to VC, there exists an optimal LP solution OPT ⊆V for VC such that OPT comprises
of all the 1-components of HI and a subset of the 1

2 -components of HI.
First we show that all 1-components lie in OPT . .... Then we show that the other elements of

OPT are from the 1
2 -components. ....

Next we will have to find out the OPT solution given the initial half-integral solution. ....

9.7.3 Using combinatorial methods and algorithms like network flow computations for com-
puting optimal LP solutions

. . .
.
Once the OPT solution is obtained, we can then call the three sets with 1, 1/2 and 0 values as

P, Q, R, and proceed as follows.

9.7.4 The vertex cover and the lower bound

We can consider P ∪Q as a vertex cover. Why? The weight of this cover is w(P) + w(Q).
The optimal LP solution objective funcion value of w(P) + 1

2w(Q) ≤ OPT leads to a 2-factor
approximation ratio. A smaller vertex cover results by dropping an independent set S from Q
with weight at least w(Q)

k , which we can get from a proper k-coloring of Q; note that R ∪ S
is an independent set and P∪Q \ S is a vertex cover. So we have a vertex cover with weight
w(P)+ k−1

k w(Q)≤ 2(k−1
k )(w(P)+ w(Q)

2 )≤ (2− 2
k )OPT .
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9.8 The generic primal-dual scheme for covering-packing programs written
in the standard form

As in Section 15.1 of [8], we focus on the standard form primal and dual LPs, and define relaxed
complementary slackness conditions with parameters α and β, leading to the crucial Proposition
15.1 of [8]. The design of Algorithm 15.2 is based on Proposition 15.1 leading to Theorem 15.3.

Algorithm 15.2 starts with a primal infeasible solution and a dual feasible solution; these are
usually the trivial solutions x = 0 and y = 0. It iteratively improves the feasibility of the primal
solution, and the optimality of the dual solution, ensuring that in the end a primal feasible solution
is obtained and all conditions, with a suitable choice of α and β, are satisfied. The primal solution
is always extended integrally, thus ensuring that the final solution is integral. The current primal
solution is used to determine the improvement to the dual, and vice versa. Finally, the cost of
the dual solution is used as a lower bound on OPT, and by Proposition 15.1, the approximation
guarantee of the algorithm is αβ.

[For exercise 12.4 in the print version of [8] (absent in the e-version), we use the paying mecha-
nism for showing the equality of the objective function values for the primal and dual LPs provided
the solutions for the primal and dual LPs obey the complememtary slackness conditions.]

To prove Proposition 15.1, we show that given a sufficient amount of balance, the dual can
pay enough from this balance through dual variables yi for the primal variabes x j, so that the total
payment done by the yi’s, and collected by the x j’s, is sufficient to meet the objective function cost
of the primal solution. The upper bound (balance) for the total payment by the yi’s is the r.h.s. of
Proposition 15.1 and the collection made by the primal x j’s is at least the lower bound l.h.s. of
Proposition 15.1. The details as are follows.

The payment from yi to x j is αyiai jx j. The total payment to all the primal variables from yi
is therefore αyi ∑

n
j=1 ai jx j ≤ αβbiyi (due to the upper bounds in the relaxed dual complementary

slackness conditions). So, the total payment from all dual variables to all primal variables is at most
the balance r.h.s. of Proposition 15.1. The total collection in x j is αx j ∑

m
i=1 ai jyi ≥ c jx j (due to the

lower bounds in the relaxed primal complementary slackness conditions.) So, the total payment is
at least the l.h.s of Proposition 15.1.

10 The travelling salesman problem
In the metric TSP problem (see Section 3.2 of [8]), the approximation ratio is two, as we argue
now. Note that the input graph is a complete graph G(V,E) with n vertices, with non-negative edge
weights, where the edge weights satisfy the triangle inequality.

10.1 The lower bound for the cost of the minimum cost tour
The minimum tour has cost at least that of an MST. Why? We can get a spanning tree T from a
minimum cost tour by dropping any edge of the tour. The MST has cost m, where m is at most the
cost of T . So, an MST has cost m≤OPT , where OPT is the cost of the minimum metric TSP tour
over G(V,E). This lower bound m (of the MST cost) for OPT (the cost of the minimum metric
TSP tour), is used in establishing the approximation ratio bound of two.
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10.2 Computing the 2-approximate tour
For computing a tour that is at most twice the cost of the minimum cost metric TSP tour, we double
an MST, by duplicating each of the n− 1 weighted edges of the MST. Clearly, in the resulting
doubled (multi-)graph G′, all vertices have even degree, thereby admitting an Euler tour, say T
of exactly 2n− 2 edges. From the Euler tour T , a Hamiltonian cycle C is finally constructed by
visiting the n vertices in the order of their first appearance in T in a DFS traversal on the Euler
tour T . To skip the repetition of vertices (as we convert the Euler tour into a Hamiltonian tour),
we add “short-circuited edges” from the set E of G(V,E). Clearly, by the triangle inequality, such
short-circuting does not increase the cost; the resulting Hamiltonian tour has cost at most twice
that of the MST, and therefore at most twice that of the minimum metric TSP tour.

10.3 Using minimum cost perfect matchings for lower cost Euler tours
The above factor two algorithm doubles the whole MST, only to construct a new graph G′ with
all vertices of even degree, thus ensuring the existence of an Euler tour in G′; a DFS on the Euler
tour is then used to generate a Hamiltonian metric TSP tour by short-circuiting. Instead, we could
avoid doubling all the n−1 edges of the MST and bother only about the set V ′ ⊆V of |V ′| vertices
in the MST T , where V ′ is the subset of vertices of V with only the odd degree vertices in the MST
T . Each pendant vertex in T is of odd degree one. Some internal vertices of T could also be of
odd degree in the tree T . (The even degree vertices in V \V ′ do not bother us.) Christofedes used
the technique of Euler tour construction by appending the MST T of n−1 edges with a set of |V

′|
2

edges, where we note that |V ′| is an even number. Why is |V ′| even?
[We use induction on the number of vertices to show that any tree has an even number of odd-

degree vertices. We can grow a tree by adding a pendant edge (u,v) where u is already in the
tree and v is the new vertex; this increases the number of odd-degree vertices as v has degree 1,
and (i) if u had even degree then u now becomes odd-degree as well (making the total number of
odd-degree vertices again even), and (ii) if u had odd-degree then there is no change in the number
of odd-degree vertices overall.]

The edges added comprise the minimum cost perfect matching in G′(V ′,E ′), where the graph
G′ is the induced subgraph of G over the vertex subset V ′ of V with edges E ′ ⊆ E. The MST T we
start with is already a connected graph. Adding new edges to T does not destroy the connectedness
property of the resulting graph G′ with edge set E ′ = T ∪M, where M is the minimum cost perfect
matching in G′(V ′,E ′). These edges in M, added to T are however special edges– to reiterate, they
are the |V

′|
2 edges of the minimum cost perfect matching in G′(V ′,E ′), the induced subgraph of G

over vertex set V ′. Such a minimum cost perfect matching can be computed in polynomial time
O(n3) time by an algorithm of Gabow.. How do we do this computation?

Now, consider an Euler tour T of T ∪M. Let C be the tour that visits the n vertices in G in
the order of their first appearance in the Euler tour T of M∪T . This C is the output TSP tour of
the algorithm by Christofedes. Since C is found from T by DFS, we have cost(C) ≤ cost(T ) by
triangle inequality. So, cost(C)≤ cost(T )≤ cost(T )+ cost(M)≤ OPT + OPT

2 = 3
2OPT , because

cost(M)≤ OPT
2 , as we will soon show below; we already know that cost(T )≤ OPT .

To see that cost(M)≤ OPT
2 , consider the minimum metric TSP tour C ∗ of cost OPT for G(V,E).

Let C ′ be the tour on V ′ obtained by shortcutting C ∗, that is by doing a DFS on C ∗ and picking
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only the vertices of V ′ in the order of their first appearance in C ∗. By triangle inequality, we
have cost(C ′) ≤ cost(C ∗) = OPT . Observe that C ′ has edges alternating on the even number of
vertices in V ′, and therefore it has two perfect matchings. The lower cost perfect matching of these
two matchings has cost at most cost(C ′)

2 ≤ OPT
2 . Also, cost(M) ≤ cost(C ′)

2 ≤ OPT
2 , since M is the

minimum cost perfect matching in G(V ′,E ′).

11 The k-centre and the k-suppliers problems
The k-center problem is formally stated as follows. Let G = (V,E) be a complete graph having
a non-negative cost di j associated with each edge (vi,v j) of E. We assume that for every triple
of vertices vi,v j , vl ∈ V , the distances satisfy the triangle inequality, i.e., di j ≤ dil + dl j. Given a
positive integer k, (i) chose a set (called cluster centers) S⊆V of |S|= k, and (ii) assign each of the
remaining vertices V ⊆ S to its nearest cluster center. The objective is to minimize the maximum
distance of a vertex to its own cluster center.

11.1 Further geometric interpretations
Geometrically, the goal is to find k different balls centred at vertices of V , covering all the vertices
in V , so that the radius of the largest ball is as small as possible. Why? In other words, the goal
is to find a set S ⊆V of the centers of k different balls of the same radius r that cover all points in
V \S, so that this radius r is as small as possible.

First, we define the distance of a vertex i from a set S⊆V of vertices to be d(i,S) = min j∈Sdi j.
Then the corresponding radius for S is equal to maxi∈V d(i,S), and the goal of the k-center problem
is to find a subset S of V of size k of minimum radius.

Again in this problem, we will use the triangle inequality. The n points of a set V of points
with pairwise distances obeying the triangle inequality are given. We study the specific clustering
problem of choosing a set S of k out of n points as the centres of clusters or cluster centres, so
that points of V \ S closer to a specific cluster centre in S than any other cluster centres in S are
grouped into a cluster. The cluster radius is the radius of the smallest ball (circle) centred at each
cluster centre and enclosing all points of that cluster. The maximum of the k cluster radii has to be
minimised. This is an NP-hard problem; we present a factor two approximation algorithm as given
in [7].

11.2 The algorithm
The approximation algorithm is simple: it selects an arbitrary vertex of V initially as one cluster
centre in the set S of cluster centres. Then, it repeatedly chooses cluster centres for newer clusters
till all k centres are selected in S. Every subsequent cluster centre is chosen by selecting a vertex
i ∈V \S whose distance d(i,S) to the points in the current set S of cluster centres, is maximized.

For proving the factor two approximation bound, we again choose an arbitrary optimal solution
S∗ with r∗ denoting the radius of the largest cluster in the optimal solution S∗. Due to triangle
inequality, the distance between any two vertices within any cluster of the optimal solution S∗ is
bounded by 2r∗. The solution S of k cluster centres, as identified by our approximation algorithm
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may be different from S∗. Assume that the algorithm has chosen only one vertex vi in S from a
cluster B of the optimal solution S∗. If only one vertex is selected in S from each cluster of the
optimal solution S∗, then any vertex vl within the cluster with vi as the center (in cluster B) is within
a distance of 2r∗ because the distance from each of vi and vl to the center of B is r∗ (in the optimal
solution S∗).

Now consider the other situation where one vertex vi in a cluster B of S∗ is already selected in S
and the algorithm again chooses another vertex v j in B as a cluster center in S. Again, the distance
between vi and v j is bounded by 2r∗. Moreover, v j must be the furthest point from all points in S
including vi by the choice of the algorithm, and therefore, all the given points are within a distance
of 2r∗ of some center point already selected in S. Why? This argument holds even if the algorithm
adds more points of B to S subsequently. Why?

Now consider the problem where we need “centres” to be placed in specialized “supplier”
nodes, whereas the other nodes will simply act as “customer” or “consumer” nodes. See problem
2.1 from [7].

11.3 The modified k-suppliers problem
Given a set V of vertices on a metric space, and a set F ⊆ V of suppliers where D = V is the set
of clients, we define for each vi ∈ V , d(vi,S) = min

v j∈S
d(vi,v j). Find S ⊆ F with |S| = k such that

max
vi∈V

d(vi,S) is minimized. So, the nearest supplier in S to vi ∈V defines d(vi,S). The subset S has

to be chosen minimizing max
vi∈V

d(vi,S).

Initialize S = /0

1. Run the k-center 2-approximation algorithm on V . Let it produce the k-center set T ⊆V .
2. Let T F = T ∩F , and S = S∪T F ; We include the whole of T F in S.
3. For each u ∈ T \TF
(i) find a vertex u′ ∈ F , where d(u,u′) is minimized ∀u′ ∈ F .
(ii) S = S∪{u′} ; Include u′ in S.
4. Return S

Analysis
Claim: The above algorithm is a 3-approximation algorithm for the k-suppliers problem.

Proof: Let OPT be the actual optimal value i.e.,

OPT = min
S⊆F
|S|=k

max
vi∈V

d(vi,S)

Let OPT ∗ be the optimal value for the k-center problem i.e.,

OPT ∗ = min
S⊆V
|S|=k

max
vi∈V

d(vi,S)
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As the condition S⊆ F is relaxed for OPT ∗, we have

OPT ∗ ≤ OPT (5)

The k-center algorithm ensures d(v,S) ≤ 2 ∗OPT ∗ ≤ 2×OPT , ∀v ∈ V such that, d(v,S) =
d(v,u) where u∈ T F (i.e., the vertices having their supplier as one of the original k-center vertices).
See Step 2 of the algorithm.

Let v be such that its nearest k-center vertex is u where u /∈ T F . Let u′ ∈ F be the nearest vertex
from u to F . Therefore, by Step 3(ii) of the algorithm, u′ ∈ S. Also, as u′ is nearest to u amongst
all vertices in F , we have d(u,u′)≤ OPT .

Now, d(u′,v)≤ d(u′,u)+d(u,v) [By Triangular inequality]
≤ OPT +2×OPT ∗

≤ OPT +2×OPT = 3×OPT

So, any supplier that gets allotted to v must be within 3×OPT distance from it.
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11.4 The k-suppliers problem as in Williamson-Shmoys, Exercise 2.1
In the modified problem of the previous section, we considered the suppliers also to be behaving as
clients. So, although suppliers supply to clients, suppliers also supply to suppliers. In this section
however, we do not permit suppliers to be clients. The total number of suppliers will again be
exactly k.

Treating all elements in D uniformly, we can apply the k-center algorithm to D, and then find
the nearest supplier s(u) ∈ F to each center u ∈ D.

Let OPT be the optimal value for the k-supplier radius. For any di ∈D let fi ∈ F , be its nearest
supplier. Note that dist(di, fi) ≤ OPT for any i. If |d| ≤ k, then S = { fi|di ∈ D} is an optimal
solution. So from now onwards assume that |D|> k.

The k-center algorithm computes the subset D′ of D as a set of k centres. Let D′= {d1,d2, ...,dk}.
Take S = { fi|di ∈ D′} as a solution. We prove that this gives a 3-approximation.
Consider an arbitrary customer v ∈ D. If there is a customer di ∈ D′ at a distance at most

2×OPT from v, then by the triangle inequality dist(v, fi)≤ dist(v,di)+dist(di, fi)≤ 2×OPT +
OPT = 3×OPT .

Now assume that there is no customer di ∈ D′ at a distance at most 2×OPT from v. Then,
by the algorithm, for any two customers in di,d j ∈ D′ we have dist(di,d j) > 2×OPT . However,
in that case, the set D′ ∪{v} consists of k+ 1 customers such that the distance between any pair
of vertices is more than 2×OPT . This is impossible since in that case at least k+1 suppliers are
needed for a solution with radius OPT .

12 Facilities location
The uncapacitated facility location problem is a combinatorial optimization problem. It has appli-
cations in setting up facility distribution centres. A 4-approximation primal rounding algorithm is
first analyzed. A 3-approximation primal-dual algorithm is also considered here.

In the uncapacitated facility location problem, we have a set of clients or demands D and a set
of facilities F. For each client j ∈ D and facility i ∈ F , there is a cost ci j of assigning client j to
facility i. Furthermore, there is a cost fi associated with each facility i ∈ F . The aim is to choose a
subset F ′ ⊆ F so as to minimize the total cost of the facilities in F ′ and the cost of assigning each
client j ∈ D to the nearest facility in F ′. In other words, we wish to find F ′ ⊆ F such that,

Minimize ∑
i∈F ′

fi + ∑
j∈D,i∈F ′

ci j

where the first part is called facility cost and the second part is called assignment cost or service
cost. This is an NP-hard problem.

The integer programming formulation for this problem has decision variables yi ∈ {0,1} for
each facility fi ∈ F . If we decide to open facility i, then yi = 1, and yi = 0 otherwise. We also
introduce decision variables xi j ∈ {0,1} for all i ∈ F and all j ∈ D. If we assign client j to facility
i, then xi j = 1 while xi j = 0 otherwise.

The objective function becomes,

Minimize ∑
i∈F

fiyi + ∑
i∈F, j∈D

ci jxi j
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We need to make sure that each client j ∈ D is assigned to exactly one facility. This can be
done by,

∑
i∈F

xi j = 1

We also need to make sure that the client is assigned to a facility that is open. This can be done
by,

xi j ≤ yi

Thus, the integer linear programming formulation of the facility location problem can be summa-
rized as follows:

minimize ∑
i∈F

fiyi + ∑
i∈F, j∈D

ci jxi j

subject to ∑
i∈F

xi j = 1, ∀ j ∈ D,

xi j ≤ yi, ∀i ∈ F, j ∈ D,

xi j ∈
{

0,1}, ∀i ∈ F, j ∈ D,

yi ∈
{

0,1}, i ∈ F.

Linear programming relaxation from the integer linear programming can be obtained by re-
placing the constraint xi j ∈ {0,1} and yi ∈ {0,1} with xi j ≥ 0 and yi ≥ 0. Thus, the relaxed linear
programming can be summarized as follows:

minimize ∑
i∈F

fiyi + ∑
i∈F, j∈D

ci jxi j

subject to ∑
i∈F

xi j = 1, ∀ j ∈ D,

xi j ≤ yi, ∀i ∈ F, j ∈ D,

xi j ≥ 0, ∀i ∈ F, j ∈ D,

yi ≥ 0, i ∈ F.

In order to formulate the dual of the relaxed linear programming, we argue as follows. Ignoring
the facility cost, by setting fi = 0 for all i ∈ F , the optimal solution is to open all the facilities
and assign each client to its nearest facility. We introduce a dual variable v j and set it as v j =
min i∈Fci j; a modest lower bound for the primal’s objective function cost in an integral solution

is ∑ j∈D v j therefore. We can better the lower bound by considering non-zero facility costs. Each
facility takes its cost fi and shares it apportioned among the clients it provides service to: fi =

∑ j∈D wi j, where each wi j ≥ 0. A client j needs to pay this share only if it uses facility i. Hence, the
optimal solution is to assign all the clients to the nearest facility, now we can set v j = min i∈F(ci j+
wi j), and if we allow v j ≤ ci j+wi j, the objective function maximizing ∑ j∈D v j forces v j to be equal
to the smallest right-hand side overall facilities i ∈ F , then any feasible solution to dual is lower
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bound on cost of optimal value on facility location problem. Thus, the dual linear program for the
primal linear program can be summarized as:

maximize ∑
j∈D

v j

subject to ∑
j∈D

wi j ≤ fi, ∀i,∈ F

v j−wi j ≤ ci j, ∀i ∈ F, j ∈,D
wi j ≥ 0, ∀i ∈ F, j ∈ D.

12.1 4-factor algorithm
We need to determine a subset F ′ ⊆ F of facilities to be opened to serve customers in D. So,
facilities indicator variables fi and connection indicator variables xi j appear in the primal ILP. We
connect each j ∈ D to exactly one i ∈ F . Also, clients are assigned to only the opened facilities.
These two conditions appear as constraints in the primal ILP.

If we allow opening facilities without any restriction then we may use v j = mini∈Fci j as the
connection cost. This will make ∑ j∈D v j a lower bound for the primal objective function. Since
such unrestricted action might shoot up facilities installation costs, we may enhance v j by appor-
tioning cost fi as fi = ∑ j∈D wi j, wi j ≤ 0.

....

12.2 3-factor algorithm
We set S = D, the set of clients. We raise v j’s and wi j’s uniformly until either (i) some client
j ∈D neighbours some facility i ∈ F , or (ii) some facility i ∈ F becomes saturated. Such saturated
facilities are kept in a set T . All clients neighbouring a facility discovered above are moved out
of the set S. A subset T ′ ⊆ T of facilities is opened by selecting one facility at a time to cover
a number of clients; whenever any such facility i is moved into T ′, all other facilities h ∈ T are
removed from T if h and i are contributed to by some client j. Please recall the definitions of a
client neighbouring a facility (v∗j ≥ ci j), a saturated dual constraint (obeying equality), and when
it is said that a client contributes to a facility (wi j > 0).

More precisely, v j are increased uniformly for all j ∈ S. Once v j = ci j for some i, we increase
wi j and v j uniformly. It may be the case that some dual inequality becomes tight (saturated) in the
process. It may be the case that v j grows along with some wi j till j neighbours i. Removal of j
from S and addition of i in T are mentioned above. Recall that the neighbours of a facility i are in
the set N(i) of clients, and the neighbours of a client j are in the set N( j) of facilities. From the
set T we compute a subset T ′ of T as mentioned above. Whenever a facility i is added to T , we
remove all N(i) from S.

Once the whole set S is exhausted, we assign facilities from T ′ to the clients such that each
client is assigned to its closest facility in T ′.

If a client j has a neightbour i in T ′ then the client j is assigned to i and has connection cost
ci j≤ v∗j to i. Otherwise, we see due to Lemma 7.13 in WS that although j does not have a neighbour
in T ′, there is a facility i ∈ T ′ such that ci j ≤ 3v∗j .
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Assuming Lemma 7.3, we see Lemma 7.4 that proves the 3-factor approximation.
Note one important point that each client has a neighbouring facility in T . This is due to the

maximality of (v∗,w∗). We refer to the proof of this fact to the section in WS. With the above
discussion, we conclude the 3-factor claim.

13 Computing spanning trees of low maximum vertex degree
Starting with some initial structure and gradually modifying it with smart local changes, we can
sometimes get provably good results. So, even if we start with an arbitrary spanning tree of the
given graph G(V,E) of n vertices, and keep reducing degrees of some large degree vertices in
the tree, we may eventually get an spanning tree with a resonably low value for the maximum
vertex degree in the final spanning tree, after a sufficiently large number of steps. Reduction of the
large degree of a vertex (in a spanning tree) can also reduce the degree of an earlier neighbour of
this vertex (in the modified spanning tree), thereby possibly reducing the largest degree too, after
several such steps.

13.1 Local action
The mechanism for reducing a vertex degree by adding an edge {v,w} to a spanning tree T is as
follows. If the cycle generated by adding the new edge has the vertex u in it then we can drop an
edge ending on u in that cycle to reduce the degree of u. The degrees of v and w rise by one each
in the resulting spanning tree T . So it is prudent and necessary to choose {v,w} so that the larger
of the degrees of these two vertices is at least two less than that of u. Then, the modified degrees
of v and w remain less than the modified (reduced) degree of u.

13.2 The overall algorithm
The algorithm starts with an arbitrary spanning tree and ends with what we call the locally optimal
spanning tree. In the locally optimal spanning tree (say) T , we do not have a sufficiently high
degree vertex u whose degree can be further reduced by adding an edge {v,w} to the current tree T
as explained above. However, we also have to determine how long this algorithm runs. The chosen
vertex u must have degree at least ∆(T )− logn. Henceforth, let l = logn.

13.2.1 A lower bound for the maximum vertex degree in any MST

Let S ⊆ V be a set of vertices with the following property. All edges in G(V,E) that jump across
the k+ 1 connected components of any spanning tree T (components created due to the removal
of some k edges of T ), have at least one vertex in S. Now any spanning tree T of G(V,E) must
have at least k edges that connect across the k+1 components defined above due to the removal of
k edges from the spanning tree T . All these (at least) k edges must be covered by the vertex set S.
So, the average vertex degree in S in the spanning tree T must be at least k|S|. If T = T ∗ where T
is a spanning tree with the minimum value of maximum vertex degree then we have OPT ≥ k|S|.
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14 Scheduling jobs on a single machine
Scheduling jobs with specified deadlines on a single machine is a simply stated and fundamental
combinatorial optimization problem. We wish to schedule n jobs on a single machine. The given
single machine can process at most one job at a time. Also, each job beng processed, must be
completed fully once it has been started. Let p j units of time be the processing time for job j,
1≤ j≤ n. The processing of job j must start only on or after a specified release time r j, j = 1, ...,n.
We assume that all release times are non-negative. Since each job j has a specified due time d j,
its lateness L j is C j− d j, where C j is the actual completion time for job j. Note that the optimal
(maximum lateness) can be zero or even negative, when due times for jobs can be large positive
quantities. So, we simplify the problem by assumimg that all due times are negative.

We wish to schedule the jobs minimizing the maximum lateness Lmax = maxn
j=1L j. Consider

the example where p1 = 2,r1 = 0, p2 = 1,r2 = 2, p3 = 4,r3 = 1. Let C1 = 2,C2 = 3,C3 = 7. If the
deadlines for the jobs are such that d1 =−1,d2 = 1,d3 = 10, then L1 = 3,L2 = 2,L3 =−3. Hence,
Lmax = L1 = 3 for the schedule of jobs 1, 2 and 3 in that order. We are interested in the optimal
schedule that minimizes maximum lateless. We may compute a schedule in polynomial time that
has maximum lateness at most as bad as twice the maximum lateness of the optimal solution. The
exposition here is from the text by Williamson and Shmoys [7].

14.1 A lower bound for maximum lateness
Let L∗max denote the optimal value for maximum lateness. We show that for each subset S of jobs,
L∗max ≥ r(S)+ p(S)−d(S), where r(S) = min j∈Sr j , p(S) = ∑ j∈S p j , and d(S) = max j∈Sd j. Consider
the optimal schedule, viewing it as a schedule only for the jobs in the subset S. Let job j be the
last job in S to be processed. Since none of the jobs in S can be processed before r(S), and in
total they require p(S) time units of processing, it follows that the job j cannot complete earlier
than r(S) + p(S). The due date of job j is d(S) or earlier. The lateness of job j therefore is at
least r(S)+ p(S)−d(S). So, the maximum lateness L∗max ≥ r(S)+ p(S)−d(S). In particular, with the
singleton set S = j having only one job j, we have L∗max ≥ r j + p j−d j ≥−d j.

14.2 An algorithmic (polynomial time) upper bound for maximum lateness
Now we use the EDD (earliest due date) method for computing a schedule whose maximum late-
ness is at most twice the maximum lateness L∗max in the optimal schedule. Since a job j is available
at time t if its release date r j ≤ t, we consider the following natural step: at each moment that the
machine is idle, start processing next an available job with the earliest due date. This is known as
the earliest due date (EDD) rule. We show that the EDD rule yields a 2-approximation algorithm
for the problem of minimizing the maximum lateness on a single machine, subject to release dates
with negative due dates.

Consider the schedule produced by our algorithm using the EDD rule, and let job j be a job of
maximum lateness in this schedule; that is, Lmax =C j−d j. Focus on the time C j in this schedule
and find the earliest point in time t ≤ C j such that the machine was processing without any idle
time for the entire period [t,C j). Let S be the set of jobs that are processed in the interval [t,C j). By
our choice of t, we know that just prior to t, none of the jobs in S were available, and clearly at least
one job in S is available at time t; hence, r(S) = t. [The jobs selected before time t were available
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to be picked up before time t, but none of the jobs in S were available before time t.] Furthermore,
since only jobs in S are processed throughout this time interval, p(S) = C j− t = C j− r(S). Thus,
C j ≤ r(S)+ p(S). Since d(S) < 0 by assumption, L∗max ≥ r(S)+ p(S)− d(S) ≥ r(S)+ p(S) ≥C j. On
the other hand, with the singleton set S = j, we have L∗max ≥ r j + p j− d j ≥ −d j. Therefore, by
addition of the two inequalities, we dedcue that 2L∗max ≥C j−d j = Lmax.

15 Multiway cut
Given a set S = {s1,s2, ...,sk} of terminals where S ⊆ V , a multiway cut is a set of edges whose
removal disconnects the specified terminals from each other. The multiway cut problem asks for
such a minimum weighted cut. This presentation is from Section 4.1 of [8]. The problem of finding
a minimum weight multiway cut is NP-hard for any fixed k ≥ 3. Observe that the case k = 2 is
precisely the minimum (s, t)-cut problem, which is solvable in polynomial time using newtwork
flows. We study a 2− 2

k approximation algorithm for this problem as follows. For each i = 1, ...,k
do (i) identify the terminals in S \{si} into a single vertex, (ii) compute a minimum weight cut Ci
for (si,S−{si}) using a network flow algorithm, and (iii) discard the heaviest of these k cuts. The
output answer is the union of the rest, say C.

Let A be an optimal multiway cut in G. A can be viewed as the union of k cuts as follows. The
removal of A from G creates k connected components, each having one terminal. Let Ai ⊆ A be
the cut separating the component containing si from the rest of the graph. So, A = ∪k

i=1Ai. Since
each edge of A is incident at two of these components, each edge belongs to two of the cuts. So,
∑

k
i=1 w(Ai) = 2w(A).

15.1 The computational lower bounds on the sizes of cuts in the optimal
solution

Now the main lower bound argument is that Ci being a minimum weight cut for si, we have w(Ci)≤
w(Ai). [A similar lower bound argument is used also in the much more complex proof of an
approximation bound for the minimum weight k-cut problem in Section 4.2 of [8].] Note that this
already gives a 2-approximation algorithm, by taking the union of all k cuts Ci. [This union step in
the alorithm is reminiscent of the vertex cover algorithm where for each matching edge we include
vertices at both ends of the edge.] Finally, since C is obtained by discarding the heaviest of the
cuts Ci, we have w(C)≤ (1− 1

k )∑
k
i=1 w(Ci)≤ (1− 1

k )∑
k
i=1 w(Ai) = 2(1− 1

k )w(A).

16 The k-cut problem
The k-cut problem is similar to the multiway cut problem but in this case we do not provide any
set of k terminals. This exposition is based on Section 4.2 of [8]. This k-cut problem is a more
general problem. The nice approimation bound in this problem requires a complicated analysis
using Gomory-Hu trees. A k-cut is is a set of edges whose removal leaves k connected components
for a connected graph. For positive edge weights, we wish to find a minimum weighted k-cut. We
will address the well-known result about the factor 2− 2

k approximation algorithm.
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16.1 The Gomory-Hu tree and minimum weight cuts
We use the Gomory-Hu tree T defined on the same vertex set V as that of the graph G(V,E) with
positive edge weights for edges in E. The edges of T may not belong to E. Suppose the removal
of an edge eT of T gives two components of the vertex set namely, S and V \ S. Let E ′ ⊆ E be
the edges of G whose removal from G partitions vertex set of G into S and V \S. In other words,
E ′ is the cut-set for S and V \S in G. Assign the sum of weights on edges of E ′ on edge eT of T .
So, edges of T have weights corresponding to the minimum weight cut-sets in G. Thus, out of

(n
2

)
minimum weight u−v cuts, only n−1 minimum weight cut sets in G are used as weights on edges
of T . Thus, the min-cut tree T (called the Gomory-Hu Tree) has the property that the minimum cut
between any two nodes vi and v j in G is the smallest weight edge in the unique path that connects
vi and v j in T .

16.2 Properties of any optimal k-cut A and the approximation algorithm for
computing a k-cut

Let S be the union of minimum weights cuts in G associated with l edges of T . Then, the removal
of S from G leaves a graph with at least l+1 components, as it leaves T with l+1 components. The
k-cut approximation algorithm we analyze is simple; the algorithm first constructs the Gomory-Hu
tree T for G in polynomial time, and then constructs a k-cut set C by taking the union of cut
edges of G corresponding to the lightest k− 1 edges in T . If more than k connected components
result then we keep throwing back cut edges till there are exactly k components. So, much for the
polynomial time approximation algorithm.

Let A be an optimal k-cut in G, which can be viewed as the union of k cuts. Let the removal of
A from G create k connected components, V1,V2, ...,Vk. Let Ai ⊆ A be the cut separating Vi from
the rest of the graph. Then, A = ∪k

i=1Ai. Each edge of A is incident at two of these components.
So, each edge of A is in two of the cuts. So, ∑

k
i=1 w(Ai = 2w(A).

16.3 Establishing the novel lower bound
Now we have to connect the properties of the output C of the approximation algorithm with the
properties of the arbitrary minimum k-cut A, in order to establish the factor 2− 2

k ratio bound. The
main idea is to identify (show the existence of) k−1 cuts defined by the edges of T whose weights
are dominated by the weight of the cuts A1,A2, ...Ak−1 of the optimal k-cut A, where without loss
of generality we assume that Ak is the heaviest cut in A. This lower bound argument is crucial.
These k−1 cuts are identified as follows.

Let B be the set of edges of T that connect across two of the sets V1,V2, ...,Vk, as partitioned
by A. Consider the graph on the vertex set V and the edge set B. We shrink each of the sets
V1,V2, ...,Vk to respective k single super-vertices. So, we have essentially superimposed the tree T
over the k connected components of an optimal k-cut A giving a possibly non-tree but connected
graph with edge set B on the k super-vertices. Observe that this graph must be connected since T
is itself connected. Throw edges away from this graph until a tree T ′ survives. Let B′ ⊆ B be the
leftover edges in T ′. Clearly, |B′| = k− 1 as T ′ is a tree of k vertices. The edges of B′ define the
required k−1 cuts which are dominated by k−1 cuts from A. Assuming that Ak is the heaviest cut
amongst the cuts of A. Imagine rooting tree T ′ at Vk. We now define a correspondence between the
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edges in B and the sets V1,V2, ...,Vk−1: each edge corresponding to the set it comes out of in the
rooted tree, going towards the parent.

Suppose edge (u,v) ∈ B′ corresponds to a set Vi in this manner where Vj is the parent of Vi in
T ′, u ∈ Vj and v ∈ Vi. The weight of a minimum u− v cut in G is w′(u,v), as represented in the
Gomory-Hu tree T , by the edge (u,v) of T in edge set B′. Observe that Ai is also a u− v cut in G
(but may not be the minimum such cut!); therefore we have w(Ai)≥w′(u,v) for all i, 1≤ i≤ k−1.
Since, the union of the lightest k− 1 cuts defined by T is C in our approximation algorithm, we
have w(C)≤ ∑e∈B′w′(e)≤ ∑

k−1
i=1 w(Ai)≤ ∑

k
i=1(1− 1

k )Ai = 2(1− 1
k )w(A).

17 Using set covering for the shortest superstring problem
The 2Hn factor approximation algorithm uses a reduction to the more general set cover problem
and then uses the greedy weighted set cover heuristic. The set cover instance is designed so that
the solution computed yields a superstring which is at most 2Hn times the length of the shortest
superstring. The weights of the sets in the set cover instance are lengths of certain “covering”
strings. Given n strings as input, the set cover universe comprises of precisely the given n strings
which need to be substrings of the computed superstring.

18 Online deterministic paging algorithms and their competi-
tive ratio bounds

Theorem 1 from [6] claims that LRU and FIFO are k-competitive. For arbitrary requests streams
σ, we must show that CLRU(σ) ≤ k.COPT (σ). The phases P(0), P(1), ... in σ are substrings of
page requests, where in each substring some page requests raise page faults in the online algorithm
LRU, or in the deterministic offline algorithm OPT. All we need to prove is that there is at least one
fault in each of these phases of page requests for OPT, whereas in LRU we already have at most k
faults in P(0) and exactly k faults in each phase P(i) for i > 0.

Since LRU and OPT start with the same set of k pages in their respective fast memories, OPT
has a page fault on the first page request on which LRU has a fault. So, P(0) has at least one page
request on which OPT has a page fault.

To show that the other phases too have at least one page fault for OPT, we use Lemma 1.

Lemma 1. Let page p be the last requested page in phase P(i−1) (at time ti−1). Then P(i) must
contain requests to k distinct pages that are different from p.

Before we prove Lemma 1, we show how this result is used to show that OPT must have a page
fault in P(i). Since P(i) has requests to k distinct pages other than p but has p in its fast memory
at the end of P(i− 1), P(i) cannot have all the k distinct pages in its fast memory. So, P(i) must
have a page fault for OPT.

(Page requests may lead to page faults. Lemma 1 states that there are k page requests in P(i) for
pages different from p, and all these k requests are for distinct pages. Here p is the last requested
page in P(i−1), just before time ti when P(i) starts.)
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The proof of Lemma 1 goes case by case. LRU has k faults in P(i) by construction. If all these
page requests are for distinct pages and these requests are not for page p then Lemma 1 holds. So,
we assume that LRU faults twice on some page q in P(i). Page q is served and brought into fast
memory at time s1 and then evicted from fast memory at time t before time s2, when it is again
served in the phase P(i). When q is evicted at time t, it is the least recently requested page in the
fast memory. So, the sequence σ(s1), ... , σ(t) must contain requests to k+1 distinct pages, at least
k of which must be different from p. (After coming into fast memory at time s1, q remains in fast
memory till it is evicted at time t. So there must be k requests (after the time s1 requests for page
q and before time t when q is evicted) for non-q pages, and at most one of these k requests can be
for page p. If two (or more) of these k requests (after the time s1 request for page q) are for page
p, then these k requests cannot be for k−1 distinct non-q pages leading to eviction of q at time t.
So p can be requested only at most once in the k distinct requests from time s1 +1 till time t, that
witness the eviction of q at time t. The request at time s1 is for q.)

(Page p is requested just before phase P(i) started and this phase has exactly k faults in LRU.)
The only other case is when LRU faults (i) not on all distinct pages different from p, or (ii) not

twice on some page q, but (iii) faults once for a page request to page p. Let t ≤ ti be the time when
page p is evicted so that page p was there in fast memory right before time ti in the beginning of
the phase P(i) as it was the last requested page in phase P(i−1). So, the sequence σ(ti−1) = p,
σ(ti), ..., σ(t) has a request to the page p in the beginning of the sequence. Since p is evicted at
time t, there must a sequence of k distinct page requests that cannot be requests for p from time ti
till t. So, we have a set of k distinct non-p page requests in P(i). This complete all the cases for
the proof of Lemma 1.

19 Amortized bound for the competitive ratio for paging using
a potential function

As usual let σ = σ(1),σ(2), ...,σ(m) be an arbitrary request sequence. At any time let SLRU be the
set of pages contained in LRUs fast memory, and let SOPT be the set of pages contained in the fast
memory of OPT. Set S = SLRU \SOPT .

Assign integer weights from the range [1 : k] to the pages in SLRU such that, for any two pages
p,q ∈ SLRU , w(p)< w(q) if and only if the last request to p occurred earlier than the last request
to q.

Let the potential function φ = ∑p∈S w(p). Consider an arbitrary request σ(t) = p and assume
without loss of generality that OPT serves the request first and LRU serves second. If OPT does
not have a page fault on σ(t), then its cost is 0 and the potential does not change immediately. On
the other hand, if OPT has a page fault, then its cost is 1. In that case, OPT might evict a page (say,
r ) that is in LRUs fast memory, in which case the potential increases by w(r) as r now becomes
the member of S. Since w(r) can be at most k, the potential can increase by at most k for evicting r
from OPT’s fast memory. Note that when LRU does not have a fault on σ(t), the cost is 0 and the
potential cannot change.

If LRU has a page fault, its cost on the request is 1. In that case, the potential decreases by
at least 1 as follows if OPT has not had a page fault on this request. Immediately before LRU
serves σ(t), page p is only in OPTs fast memory but not in LRU’s fast memory, so that that there
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is no page fault of OPT. By symmetry, there must be page(s) q only in LRUs fast memory, i.e,
q ∈ S = SLRU \SOPT . If q is evicted by LRU during the operation, then the potential decreases by
w(q) ≥ 1. Otherwise, since p is loaded into fast memory, the weight of q must decrease (why?
because p gets weight k and the rest of the pages in the fast memory of LRU reduce in weights by
unity), and thus the potential must decrease by at least 1.

In summary, every time OPT has a fault, the potential increases by at most k. Every time LRU
has a fault, the potential decreases by at least 1.

20 Online coloring for complements of bipartite graphs
Naturally, the first fit method produces a maximal stable sequence partition of V = S1 ∪ ...,∪Sk
where Si is a maximal non-empty stable set in the subgraph induced by Si∪ ...,∪Sk, for 1≤ i≤ k.
Also, every maximal stable sequence partition of V can be reproduced by a first fit process, if an
appropriate ordering of the vertices is taken.

20.1 The formulation using maximal stable sets partitioning
We show that the vertex set of the complement of a bipartite graph may be partitioned into a
number k of maximal stable sets, where we may assign one unique colour to all vertices of each
of such k stable sets. Suppose we have already used i−1 colors and colored i−1 such stable sets
S1, S2, ..., Si−1. Let Si be the maximal stable set in Si∪Si+1∪ ...∪Sk. It is easy to see that we can
determine a sequence in which we can supply the vertices of the graph so that first-fit coloring will
use exactly k colors, one for each Si, 1≤ i≤ k.

20.2 The stable sets and the online competitive ratio bound
For a maximal matching M in a bipartite graph G(U ∪V,E), we have |M|+ |X | ≤ α(G) and |M|+
|Y | ≤ α(G), where X ⊆U and Y ⊆ V are the unmatched vertices. Also, unmatched vertex pairs
cannot be connected in G; any such pair forming an edge would add to the maximal matching M,
yielding a bigger matching. So. |X |+ |Y | ≤ α(G). So, 2|M|+ 2|X |+ 2|Y | ≤ 3α(G) or, 2|M|+
2α(G) ≤ 3α(G), or, |M| ≤ 1

2α(G). Observe that vertices of U (or, V ) form a clique in G′ (the
complement graph of G), vertices of M in U (or, V ) form a clique in G′, and vertices of X ∪Y
form a clique in G′. Since both vertices of a matched edge (in M) can be coloured in G′ with
the same colour, and every vertex of X ∪Y needs a different colour as X ∪Y is a clique in G′,
ζFF(G) = χFF(G′)≤ |M|+ |X ∪Y | ≤ 3

2α(G) = 3
2χ(G′).

20.3 The tight example
Let V = A∪B∪C ∪D be the vertex set in a graph G(V,E) where A, B, C and D are pairwise
disjoint independent sets of k vertices each, and A∪B, B∪C , and C∪D induce complete bipartite
subgraphs, totalling to 3k2 edges in all, in G. Now G is a bipartite graph G(A∪C,B∪D,E). Edges
run from A to B and from C to D. Also, edges run between B and C. Take a maximum matching
M between B and C of size k in the bipartite graph G(A∪C,B∪D,E). The unmatched sets are A
and D. The maximum independet set is of size 2k. This is a tight example therefore.
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21 Online coloring for complements of chordal graphs
We show that if G(V,E) is chordal, then ζFF(G) ≤ 2α(G)− 1 (or, χFF(G′) ≤ 2χ(G′)− 1), and
there are graphs that attain equality. The result holds if G is a complete graph (G′ is empty), as
α(G)(= χ(G′)) is one. We use induction on V to prove the upper bound. Let C1,C2, ...,Ck be a
first-fit clique partitioning of G where Ci is a maximal clique in the subgraph of G induced by
Ci∪Ci+1∪ ...∪Ck, for every i, 1≤ i≤ k.

To prove the result, it is enough to show that α(G) ≥ k+1
2 as ζFF(G) ≤ k. Here, C1 induces

a maximal independent set in G′ and we can therefore use just one color, the first color. So the
first-fit algorithm simply identifies a maximal clique in the chordal graph G. This is done using the
“simplicial vertex” s in G from C1, which is adjacent to the maximal clique induced by C1 \ {s}.
A chordal graph always has at least two such simplicial vertices. The removal of C1 from G
again results in a residual chordal graph. This process repeats with C2, C3 and so on so that we
get a first-fit coloring of G′ with k colors. So, G1 = G \C1, and C2,C3, ...,Ck is a first-fit clique
partitioning of G1. If G1 has more components than G, then the claim easily follows by using the
inductive hypothesis, as each additional component contributes one vertex to α(G). Otherwise, G
has a simplicial vertex (a vertex whose neighbourhoods induce a clique) in C1 as G is a perfect
graph. This simplical vertex can be added to maximum independent set of G1, that is α(G) is
at least α(G1) + 1, and again the proof follows by applying induction as α(G) ≥ α(G1) + 1 ≥
(k−1)+1

2 +1 > k+1
2 , that is 2χ(G′)−1 = 2α(G)−1 > k ≥ χFF(G′) = ζFF(G).

22 The K-server problem
Online algorithms for the K-server problem are considered. K servers need to be moved around
to service requests appearing online at points of a metric space.The total distance travelled by the
K servers must be minimised, where any request arising at a point of the metric space must be
serviced on site by moving a server to that site.d(a1,a2) is defined as the distance between a1 and
a2. M represents the metric space where d is the metric which satisfies the triangle inequality. MK

represents the set of configurations of the K points of M. Given configurations C1 and C2, d(C1,C2)
is the minimum possible distance travelled by K servers that change configuration from C1 to C2.
C0 ∈MK is the initial configuration. Let r = (r1,r2, ...rm) be the sequence of request points in M.
The solution C1,C2, ...,Cm ∈MK is such that rt ∈Ct ,∀t = 1....m. Serving r1,r2, ....rm by moving
through C1,C2, ...,Cm entails solution cost ∑

m
t=1 d(Ct−1,Ct).

The online algorithm uses only r1,r2...rt and C0, ..,Ct−1 to compute Ct . The offline algorithm
uses also rt+1,rt+2...rm. Given C0, r = (r1,r2, ...rm), costA(C0,r) is the cost of the online algorithm
A, and opt(C0,r) is the cost of the optimal algorithm. ρ is the competitive ratio. Competitive ratio
is used as costA(C0,r)< ρ∗opt(C0,r)+φ(C0) for some ρ. φ(C0) is independent of r. ρM may be
used for metric space M. Conjecture: For every metric space with more than K distinct points the
competetive ratio for the K-server problem is exactly K. ρ = infA supr

costA(C0,r)
opt(C0,r)

, modulo a constant
term.

Theorem 1. In every metric space with at least K+1 points, no online algorithm for the K-server
problem can have competitive ratio less than K.
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We wish to show there are request sequences of arbitrary high cost for A for which the online
algorithm A has cost K times that of the optimal offline algorithm. We prove this lower bound
result later below.

22.1 The upper bound
Now we consider the double coverage strategy, used for the online algorithm A to achieve the
competitive ratio K. Let a1,a2,a3 be ordered left to right on a horizontal line with a2 closer to a1
than a2. Let servers s1 and s2 be at a1 and a3 respectively, initially, with no server at a2.

Let serving requests come repeatedly alternating between a2 and a1. If we move only the
(closest) server s1 (which was intitally stationed at a1) up and down between a1 and a2 for the
sequence a2,a1,a2,a1, · · · , we incur unbounded competive ratio for asympopically large strings of
requests a2,a1. This is so because the offline algorithm would place servers s1 and s2 at a1 and a2
respectively, permanently, instead of fixing s2 at a3. In the double coverage strategy instead, we
move both s1 and s2 towards a2 by amount d(a1,a2) on serving request a2, and then move s1 back
to a1 on serving request a1. So we use travel cost at most 3 times of that used by the optimal offline
algorithm, which moves s2 only once to a2 on the first serving request for a2.

We continue to analyse the double coverage strategy whose suggested ratio is 3 for K = 2
servers. Note that consecutive configurations Ct ,Ct−1 differ only in rt i.e., Ct =Ct−1∪{rt}.

The scenario where servers are moved only to service requests directly is called lazy. The dou-
ble coverage algorithm in that sense is not lazy. A non-lazy algorithm can however be memory-less
like the double coverage algorithm since decisions are based only on the current configuration. Let
us use potential Φ(Ct ,C′t) where C stands for the online algorithm and C′ for the offline algorithm.
Let cost(t) and opt(t) be the costs to service rt by online and offline methods at the instant t. We
need to show that

cost(t)−K ∗opt(t)≤Φ(Ct−1,C′t−1)−Φ(Ct ,C′t) (6)

Adding for m steps we have

m

∑
t=1

cost(t)−K ∗
m

∑
t=1

opt(t)≤Φ(C0,C′0)−Φ(Cm,C′m) (7)

We can drop Φ(Cm,C′m) without disturbing upper bounding so that we have

m

∑
t=1

cost(t)−K ∗
m

∑
t=1

opt(t)≤Φ(C0,C′0) (8)

which gives the competitive ratio of at most K.
Let us use the offline algorithm to respond to rt first and then the online algorithm.

1. C′t−1←C′t , whereas Ct−1 is unchanged.

2. Ct−1←Ct where C′t has already reached a server to location rt .

We define the potential function as

Φ(Ct ,C′t) = K ∗d(Ct ,C′t)+ ∑
ai,a j∈Ct

d(ai,a j) (9)
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d(Ct ,C′t)← weight of the minimum weight bipartite matching in KCt ,C′t , the complete bipartite
graph where servers of the offline and online algorithm form the two vertex sets Ct and C′t .

To prove inequality (1) we do the two transitions of [1], the offline algorithm, and then [2], the
online algorithm.

cost(t)−K ∗opt(t)≤Φ(Ct−1,C′t−1)−Φ(Ct ,C′t)
Wherever cost(t) is more than K ∗opt(t), there is a balancing payment from fall in the potential

function. Observe that d(Ct ,C′t) is simply ∑
K
i=1 d(si,ai) for the scenario of straightline geometry.

For the offline algorithm movement of servers for the request rt , we have the following equations
for potential functions for transition [1].

Φ(Ct−1,C′t) = K ∗d(Ct−1,C′t)+ ∑
ai,a j∈Ct−1

d(ai,a j) (10)

Φ(Ct−1,C′t−1) = K ∗d(Ct−1,C′t−1)+ ∑
ai,a j∈Ct−1

d(ai,a j) (11)

By the definition of Φ in Equation 9 and from Equations 10 and 11 we deduce

Φ(Ct−1,C′t)−Φ(Ct−1,C′t−1) = K ∗ [d(Ct−1,C′t)−d(Ct−1,C′t−1)] (12)

Now by the triangle inequality
d(Ct−1,C′t)≤ d(Ct−1,C′t−1)+d(C′t−1,C

′
t)

and inequality 12 we have

Φ(Ct−1,C′t)≤Φ(Ct−1,C′t−1)+K ∗d(C′t−1,C
′
t) (13)

We will remember Inequality 13 for future use to prove Inequality 6.
Suppose we show for the online movement that

Φ(Ct ,C′t)≤Φ(Ct−1,C′t)−d(Ct−1,Ct) (14)

Combining Equation 13 and 14 we get
Φ(Ct ,C′t)+d(Ct−1,Ct)≤Φ(Ct−1,C′t)≤Φ(Ct−1,C′t) or
d(Ct−1,Ct)−K ∗d(C′t−1,C

′
t)≤Φ(Ct−1,C′t−1)−Φ(Ct ,C′t)

However, d(Ct−1,Ct) = cost(t) and d(C′t−1,C
′
t) = opt(t). So we have established Inequality 6.

Therefore, Inequality 7 follows and we are done. Finally, to show Equation 14 for movement of
online steps, we do as follows.

Let us account the cost of the online algorithm for moving survers at the request rt . Again,
by the definition of Φ, we have Φ(Ct ,C′t) = K× d(Ct ,C′t)+∑ai,a j∈Ct d(ai,a j) and Φ(Ct−1,C′t) =
k× d(Ct−1,C′t)+∑ai,a j∈Ct−1 d(ai,a j). Observe that if rt is a point between two online servers si
and si+1, then one of them moves towards its matching point of the offline configuration and the
other server may move away from its matching offine server an equal distance. So, their total
contribution does not increase the matching, i.e., d(Ct ,C′t)−d(Ct−1,C′t)≤ 0. Without loss of gen-
erality assume that d(si,rt) ≤ d(si+1,rt). Since si and si+1 move towards rt by the same distance,
∑ai,a j∈Ct d(ai,a j)−∑ai,a j∈Ct−1 d(ai,a j) is reduced by 2d(si,rt). So, Φ(Ct ,C′t)−Φ(Ct−1,C′t) ≤
2d(si,rt), or Φ(Ct ,C′t) ≤ Φ(Ct−1,C′t)− 2d(si,rt), or Φ(Ct ,C′t) ≤ Φ(Ct−1,C′t)− d(Ct−1,Ct), where
d(Ct−1,Ct) represents the change in the distance between online servers. This is the very Inequality
14 for this case.
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Now consider the other case where rt lies outside the interval of the K servers, and only one
server (say, s1) moves to rt . Here, the first term of the potential decreases by K×d(s1,rt), because
s1 moves closer to its matching point a1. The second term of the potential increases by (K −
1)× d(s1,rt) as the distance to s1 from s2, s3, ... , sk increases by d(s1,rt). The difference of
these two terms is d(s1,rt), which is equal to d(Ct−1,Ct). So, in this second case too, Φ(Ct ,C′t)≤
Φ(Ct−1,C′t)−d(Ct−1,Ct), that is, Inequality 14. This completes the proof.

22.2 The lower bound

23 Minimum Knapsack Problem
We wish to solve the ILP.

min ∑i∈I sixi such that ∑i∈I vixi ≥ D, xi ∈ {0,1} ∀i ∈ I

View each A ⊆ I, such that v(A) < D, where we may achieve an additional value of DA =
D− v(A). So, from vi, i 6∈ A, we seek only min(vi,DA). So, if v(A) < D and v(X) ≥ D then we
observe that

∑i∈X\A vA
i ≥ DA

We may therefore write

∑i∈I xisi

such that ∑i∈I\A vixi ≥ DA,∀A⊆ I
xi ∈ {0,1},∀i ∈ I

LP relaxation

∑i∈I xisi

such that ∑i∈I\A vA
i xi ≥ DA,∀A⊆ I, xi ≥ 0,∀i ∈ I

So, for any A⊆ I, the deficiency, if any can be satisfied by I \A. The dual LP is

max ∑A:A⊆I DAyA

such that ∑A⊆I,i6∈A vA
i yA ≤ si,yA ≥ 0,∀A⊆ I,∀i ∈ I

On having collected a set A⊆ I already, we need to pick up the next item i ∈ I and adding i to
A, i.e., we update A← A∪{i}. This goes on until v(A)≥ D, when we output X ← A.

Initially A = φ, and therefore any i ∈ I can be selected. We show that the approximation ratio
is 2.

So, when X is returned, X ⊆ I, and l was the last item selected, then

v(X)≥ D and v(X \{l})< D
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So,

∑i∈X si = ∑i∈X(∑A⊆I,i6∈A yAvA
i )

= ∑
A⊆I

yA ∑
i∈XnA

vA
i (15)

Now vi < D−v(A) = DA in all but the last iteration, i.e., vA
i = min(vi,DA) = vi when A was the

set of items.
So,

∑
i∈XnA

vA
i = vA

l + ∑
i∈XnA,i6=l

vA
i = vA

l + v(X \{l})− v(A) (16)

But vA
l ≤ DA and v(X \ l)< D

So that
v(X \{l})− v(A)< D− v(A) = DA (17)

So,
vA

l + v(X \ l)− v(A)< 2DA (18)

∑
i∈X

si = ∑
A⊆I

yA ∑
i∈X\A

vA
i < 2 ∑

A⊆I
DAyA ≤ 2OPT (19)

24 Hardness of approximation
The following are MAXSNP-hard problems.

MAXE3SAT: Given a set of clauses with 3 literals each, find a truth assignment that satisfies
the maximum number of clauses.

MAX2SAT: Differs from MAXE3SAT with at most 2 literals per clause.

24.1 Hardness of k-centre and TSP approximation
24.1.1 Definitions and notation

For a minimization problem an α-approximation algorithm is a polynomial time algorithm with
a performance guarantee of α. This guarantee is that of delivery of a solution whose value is at
most α times the optimal value for the problem. We know that the vertex cover problem has a
performance gurantee of α = 2.

24.1.2 The k-centre problem

From Theorem 2.4 in [7] we know that the k-centre problem has no α-approximation algorithm for
α < 2 unless P=NP. The dominating set problem is used for proving this result. A reduction from
the dominating set problem shows that we can find a dominating set of size at most k if and only if
an instance of the k-center problem (in which all distances are either 1 or 2), has optimal value 1.
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The graph whose dominating set we wish to compute is translated into a graph where the missing
edges are edges now with weight 2 and the original edges have weight 1. Such a construction
obeys the triangle inequality.

24.1.3 The travelling salesman problem (TSP)

Theorem 2.9 from [7] is interesting. For any α > 1, there does not exist an α-approximation
algorithm for the traveling salesman problem (TSP) on n cities, provided P is not the same as NP.
In fact, the existence of an O(2n)- approximation algorithm for the TSP would similarly imply P
= NP. This result follows from the hardness of the Hamiltonian cycle problem. If we had an α-
approximation algorithm for the TSP problem for some α > 1 then we could invoke this algorithm
with weights 1 for all edges and get a yes answer for such an input if and only if the graph had a
Hamiltonian cycle.

24.1.4 The bin-packing problem

Given an integer T and integral weights in the range 0 through T with a total sum of weights
2T , we wish to partition these weights into two sets so that each set has a sum exactly T . This
partition problem is a well known NP-hard problem. We may view this problem as a 2 bins bin-
packing problem. Is there an α-approximation algorithm for this bon-packing problem for any
α < 3

2? Since the optimal value is 2 bins for a yes instance of this partition problem, any such
approximation algorithm would give a yes answer for the number of required bins as strictly less
than 3, that is, with 2 bins, solving the partition problem in polynomial time.

24.2 Algorithms for maximum satisfiability [1]

24.3 Hardness of approximation for MAXE3SAT and MAX2SAT
24.3.1 L-reductions

Now we consider reductions from a problem Π to another problem Π′ such that if there is an ap-
proximation algorithm with performance guarantee α for problem Π′, then there is an approxima-
tion algorithm with performance guarantee f (α) for problem Π, where f is some function. These
results yield hardness theorems via the contrapositive, that is, if there is no f (α)-approximation
algorithm for problem Π unless P = NP, then there is no α-approximation algorithm for problem
Π′ unless P = NP.

24.3.2 L-reduction from MAXE3SAT to MAX2SAT

From Theorem 5.2 of [7] we know that there can be no ρ-approximation algorithm for MAXE3SAT
for constant ρ > 7

8 , unless P = NP. Suppose we show that given an α-approximation algorithm
for the MAX2SAT problem, we have a (55

7 α− 48
7 )-approximation algorithm for the MAXE3SAT

problem, then we can solve for α satisfying 55
7 α− 48

7 > 7
8 to conclude Theorem 16.3 in [7] that

there exists no α-approximation algorithm for the MAX2SAT problem for constant α > 433
440 unless

P = NP.
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24.3.3 The L-reduction approximation bound

See L-reduction definition in Chapter 16 of [7]. Such a reduction from a problem Π to Π′ requires
defining an instance I′ of Π′ from an instance I of Π, so that (i) OPT (I′) ≤ a×OPT (I), and (ii)
|OPT (I)−V | ≤ b×|OPT (I′)−V ′|, where given a solution V ′ of I′ we can compute in polynomial
time a solution V of I. Assuming I′ is α-approximate and we have maximization to be done,
we can say |V ′| ≥ α×OPT (I′). Using these three inequalities involving a, b and α, we see that
|V | ≥OPT (I)−b(OPT (I′)−|V ′|)≥OPT (I)−b(1−α)OPT (I′)≥OPT (I)(1−ab(1−α)). This
means we have an (1−ab(1−α))-approximate algorithm for Π. Verify that a = 55/7 and b = 1
give approximation ratio (1− 55/7(1− 433/440)) = (440− 55)/440 = 385/440 ≥ 7/8, as in
Theorem 16.3 of [7].

For an α-approximate minimization problem Π, we say |V ′| ≤ αOPT (I′) and we can write
|V |−OPT (I)≤ b(|V ′|−OPT (I′)), so that |V | ≤ OPT (I)+b(αOPT (I′)−OPT (I′))≤ OPT (I)+
ab(α−1)OPT (I)) =OPT (I)(1+ab(α−1)), rendering Π′ to be (ab(α−1)+1)-approximate. We
will use this bound for the L-reduction from vertex covering to the steiner tree problem.

24.4 L-reduction for the independent set problem as in [7]
We discuss an L-reduction from MAXE3SAT to the maximum independent set problem as in [7].
Given an E3SAT instance I with m clauses, we create a graph with 3m nodes, one for each literal
in the E3SAT instance. For any clause, we add edges connecting the nodes corresponding to the
three literals in the clause. Furthermore, for each node corresponding to a literal xi we add an
edge connecting this node to each node corresponding to the literal x′i . Call this instance I′ for the
maximum independent set problem.

Observe that given any solution V ′ to the independent set instance, we can obtain a solution V to
the E3SAT instance by setting to true any xi whose corresponding literal node is in the independent
set and to false any x′i whose corresponding literal node is in the independent set. This leads to
a consistent assignment to the variables since there is an edge between each xi node and each x′i
node, so that only one of the two kinds of nodes can be in the independent set. If for some variable
x j neither type of node is in the independent set, then we set x j arbitrarily to true or false truth
value. Notice that at most one literal node can be in the independent set for each clause as each
clause gives a triangle in the graph; thus we satisfy at least as many clauses as there are nodes in
the independent set, yielding the inequality |V | ≥ |V ′|.

Similarly, given any solution to the E3SAT instance, for each satisfied clause we can pick one
of the literals that satisfies the clause (that is, a positive literal xi set true or a negative literal x′i
set false) and put the corresponding node in the independent set for an independent set of size
at least the number of satisfied clauses. Thus OPT (I) = OPT (I′), and for any solution V ′ to the
independent set instance we can get a solution V to the E3SAT instance with |V | ≥ |V ′|. This is an
L-reduction with parameters a = b = 1, so that any α-approximation algorithm for the maximum
independent set problem results in an α-approximation algorithm for the MAXE3SAT problem.
Here, as defined in Section 24.3.3, a = 1 and b = 1 since OPT (I)−|V | ≤ OPT (I′)−|V ′|.
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24.5 Gap preserving reductions
An example of a minimization problem: Approximating vertex covering

A formula φ of SAT is mapped by a (gap) reduction to a graph G = (V,E) such that φ is satisfiable
implies G has a vertex cover of size at most 2

3 |V |, and φ is not satisfiable implies the smallest vertex
cover in G is of size more than α

2
3 |V |, where α > 1 is a fixed constant. (Recall earlier we studied

the usual NP-hardness proof of vertex covering where α = 1.) We now assume the existance of
a polynomial time α-approximation vertex covering algorithm. In the above setting of the given
gap reduction, if the algorithm finds a vertex cover of size at most α

2
3 |V | in G then we can deduce

that φ is indeed satisfiable, and unsatisfiable otherwise. In such a scenario we would be settling
satisfiability and thus be having P=NP.

The generalization for minimization problems

If Π is a minimization problem, we want the reduction to satisfy (i) φ is satisfiable implies OPT (x)≤
f (x), and (ii) φ is not satisfiable implies OPT (x) > α(|x|) f (x). Here, x is an instance of Π, f is a
function of the instance x and α is a function of the size |x| of the instance x. In this case, α(|x|)≥ 1.
The gap, α(|x|), is the hardness factor in the gap-introducing reduction for the NP-hard problem.
The instance x of Π is created from the formula φ for SAT in polynomial time.

The generalization for maximization problems

If Π is a maximization problem, we want the reduction to satisfy (i) φ is satisfiable implies
OPT (x)≥ f (x), and (ii) φ is not satisfiable implies OPT (x)< α(|x|) f (x). Here, x is an instance of
Π, f is a function of the instance x and α is a function of the size |x| of the instance x. In this case,
α(|x|)≤ 1. The gap, α(|x|), is the hardness factor in the gap-introducing reduction for the NP-hard
optimization problem.

24.6 Hardness of art gallery problems
The papers of Lee and Lin (1986) [12] and that of Eidenbenz [11] are relevant.

24.6.1 NP-hardness of the vertex guarding problem

In the Lee and Lin work [12], we have a special vertex W that sees regions defined by the 3m literal
patterns and the 2n rectangles in the n variable patterns. So, W has to be one of the K = 3m+n+1
guards of a guard set for the polygon. Thus we now only need to account for 3m+n gaurds, which
should help us work out a truth assignment for the formula C. The 3m+ n distinguished points
are such that any vertex that covers one of them cannot cover any other distinguished point. So, at
least 3m+n vertex guards are necessary. We show that 3m+n guards are sufficient along with W
to guard the entire polygon. The distinguished points in literal patterns of clause C = A+B+D in
clause pattern Ch, will require (in literal pattern A), either ah1 or ah3 to be included in the guard set
T . Similarly, one of two guards must be in T for literals B and D for each clause C. Which vertices
will be the 3m guards in L from the clause patterns will certainly depend on the construction of
variable patterns, with their spikes. Furthermore, the gh1,gh2,gh3 vertices, for all h = 1,2, ...,m,
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will need to be guarded by the 3m clause pattern guards. Here, Lemma 2 of [12] is used; the seven
triples called “three-vertex covers” correspond to the seven possible ways a 3-literal cluase can be
satisfied.

24.6.2 APX-hardness of the vertex guarding problem

The promise problem

The promise problem of 5-OCCURENCE-3-SAT (5-O-3-S henceforth) is where we are given an
instance I of m clauses in n variables so that I is promised to be either satisfiable (OPT (I)=m) or at
most m(1−4ε) clauses are satisfied [11]. So, if we have a polynomial time (1−4ε)-approximation
algorithm for this promise version of 5-O-3-S and we find an approximate solution with more
than m(1− 4ε) clauses satisfied then we can conclude that OPT (I) is indeed m, and less than m
otherwise. Since 5-O-3-S MAXSNP-complete, this discimination between OPT (I) being m or less
than m would imply P=NP [11].

The gap preserving reduction from 5-OCCURENCE-3-SAT to PG [11, 13]

Now let f be a reduction from the promise problem 5-O-3-S to PG (point guards) such that for
I′ = f (I) (i) OPT (I) = m imples OPT (I′) ≤ 3m+ n+ 1, and (ii) OPT (I) ≤ m(1− 4ε) implies
OPT (I′)≥ 3m+n+1+ εm.

Assume that we can achieve an approximation ratio of 3m+n+1+εm
3m+n+1 for the minimization prob-

lem PG.
Suppose OPT (I) = m then OPT (I′) ≤ 3m+ n+ 1 by (i). The approximation algorithm will

compute a guard set for I′ with at most 3m+ n+ 1+ εm guards, which, by the contrapositive of
(ii) (for small enough ε), would tell the algorithm that OPT (I)> m(1−4ε); by the promise for the
5-O-3-S problem, this would mean OPT (I) = m.

Suppose OPT (I) ≤ m(1− 4ε). Then (ii) implies OPT (I′) ≥ 3m+ n+ 1+ εm. Here the algo-
rithm will find a solution which is at least as large as OPT (I′) and thus using the contrapositive of
(i), we have OPT (I)< m.

The approximation ratio is 3m+n+1+εm
3m+n+1 ≥ 1+ ε

7 , as shown in [11], implying APX-hardness of
PG.
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