
SELF-ORGANIZATION OF SPEECH SOUND INVENTORIES

IN THE FRAMEWORK OF COMPLEX NETWORKS

Animesh Mukherjee





SELF-ORGANIZATION OF SPEECH SOUND INVENTORIES

IN THE FRAMEWORK OF COMPLEX NETWORKS

A dissertation submitted to the
Indian Institute of Technology, Kharagpur

in partial fulfillment of the requirements of the degree

of

Doctor of Philosophy

by

Animesh Mukherjee

Under the supervision of

Dr. Niloy Ganguly

and
Prof. Anupam Basu

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

December 2009

c© 2009 Animesh Mukherjee. All Rights Reserved.





APPROVAL OF THE VIVA-VOCE BOARD

Certified that the thesis entitled “Self-Organization of Speech Sound

Inventories in the Framework of Complex Networks” submitted by
Animesh Mukherjee to the Indian Institute of Technology, Kharagpur, for the
award of the degree of Doctor of Philosophy has been accepted by the exter-
nal examiners and that the student has successfully defended the thesis in the
viva-voce examination held today.

Members of the DSC

Supervisor Supervisor

External Examiner Chairman

Date:





CERTIFICATE

This is to certify that the thesis entitled “Self-Organization of Speech

Sound Inventories in the Framework of Complex Networks”, sub-
mitted by Animesh Mukherjee to the Indian Institute of Technology, Kharag-
pur, for the partial fulfillment of the award of the degree of Doctor of Phi-
losophy, is a record of bona fide research work carried out by him under our
supervision and guidance.

The thesis in our opinion, is worthy of consideration for the award of the de-
gree of Doctor of Philosophy in accordance with the regulations of the Institute.
To the best of our knowledge, the results embodied in this thesis have not been
submitted to any other University or Institute for the award of any other De-
gree or Diploma.

Niloy Ganguly
Associate Professor
CSE, IIT Kharagpur

Anupam Basu
Professor
CSE, IIT Kharagpur

Date:





DECLARATION

I certify that

(a) The work contained in the thesis is original and has been done by myself
under the general supervision of my supervisors.

(b) The work has not been submitted to any other Institute for any degree
or diploma.

(c) I have followed the guidelines provided by the Institute in writing the
thesis.

(d) I have conformed to the norms and guidelines given in the Ethical Code
of Conduct of the Institute.

(e) Whenever I have used materials (data, theoretical analysis, and text)
from other sources, I have given due credit to them by citing them in
the text of the thesis and giving their details in the references.

(f) Whenever I have quoted written materials from other sources, I have
put them under quotation marks and given due credit to the sources by
citing them and giving required details in the references.

Animesh Mukherjee

Date:





ACKNOWLEDGMENTS

For every thesis, as a “technical” story builds up over the years in the

foreground, there is a “social” story that emerges at the background. While

the rest of the thesis is meant to elucidate the technical story, this is the only

place where one takes the liberty to narrate the social story. Here is how I

view the social story of this thesis . . .

The M.Tech curriculum of the Department of Computer Science and Engi-

neering, IIT Kharagpur requires that a candidate spends the final year of the

course in research work for preparing the master’s thesis. In order to meet this

requirement as a registrant of this course, in 2004, I joined the Communication

Empowerment Laboratory (CEL) run by Prof. Anupam Basu and primarily

funded by the Media Lab Asia (MLA). It was during this time that I got in-

troduced to the complexity of human languages and readily fell in love with

this topic although my M.Tech thesis had almost nothing to do with it. The

whole credit for churning this interest in me goes to one of the most charming

personalities I have ever encountered in life – Dr. Monojit Choudhury whom I

call “Monojit da” (“da” refers to elder brother in Bengali). This interest had

turned into a passion by the time I graduated as an M.Tech in summer 2005.

I always wanted to be in research and due to the encouragements that I

received from my M.Tech supervisor Prof. Basu and Monojit da, I decided to

join the PhD programme of the department in the fall of 2005. The topic of

the thesis was set to be – no not something associated with the complexity



xii

of human languages, but “cognitive models of human computer interaction”!

Here is where another prime mover of this story enters – Prof. Niloy Ganguly

who after our very first meeting agreed to supervise this work along with Prof.

Basu. It was he who introduced us to the new and emerging field of complex

network theory. Immediately, Monojit da and I realized that the problem of

sound inventories which we had been discussing for quite some time could be

nicely modeled in this framework. I decided to carry on this work as a “side

business” apart from the work pertaining to the topic of the thesis. Soon I

landed up to various interesting results in this side business that made me glad.

Nevertheless, the fact that I was not able to do much on the thesis front used

to keep me low most of the times. Therefore, I decided to share my excitement

about the side business with Prof. Ganguly and further confessed to him that

there was almost no progress pertaining to the thesis. It was in this meeting

that by showing some initial results Monojit da and I tried to convince Prof.

Ganguly to allow me to devote my full time in the side business for at least

the next three months. He kindly agreed to our proposal and that marked the

beginning of a journey meant to convert my passion about the intricacies of

natural languages into something noteworthy, that is, this thesis!

There are a large number of people and organizations to be thanked for

collectively making this journey comfortable and gratifying. First of all, I must

acknowledge all those who worked with me on certain parts of this thesis –

Fernando Peruani (parts of the analytical solution for the growth model of the

bipartite network), Shamik Roy Chowdhury (experiments related to the com-

munity analysis of vowel inventories), Vibhu Ramani (sorting the consonant

inventories according to their language families), Ashish Garg and Vaibhav

Jalan (experiments related to the dynamics across the language families) and



xiii

above all Monojit da for his innumerable comments and suggestions as and

when I needed them. I am also thankful to all my co-authors with whom I

had the opportunity to work on various interesting and intriguing problems

(the list is quite long and it is difficult to enumerate).

I received a lot of encouragements as well as many valuable feedbacks

while presenting parts of this work at various conferences, workshops and

institutions. In this context, I would like to express my sincere thanks to Prof.

John Nerbonne, Prof. T. Mark Ellison and Prof. Janet B. Pierrehumbert

for all the highly informative discussions that I had with them at ACL 2007

(Prague). I am grateful to Prof. Juliette Blevins for giving me an opportunity

to present my work at the Max Planck Institute for Evolutionary Anthropology

(Leipzig) as well as for her invaluable suggestions. Let me also say “thank

you” to Dr. Andreas Deutsch for inviting me at the Technical University of

Dresden, Germany and, thereby, giving me a chance to interact with his team

of researchers which later turned out to be extremely productive. Thanks

to Prof. Ravi Kannan and the entire Multilingual Systems (MLS) Research

Group for their co-operation, support and guidance during my internship at

Microsoft Research India (MSRI).

I have been fortunate to come across many good friends, without whom

life would be bleak. Special thanks to the members of CEL and CNeRG

(Complex Networks Research Group), who apart from extending personal and

professional helps from time to time, have reminded me that there are other

important things in life than a PhD thesis (namely chats, movies, dinners,

concerts and plays). I am also indebted, in particular, to Mousumi di and

Tirthankar for painstakingly proof-reading parts of this thesis.

I express my gratitude to the staffs and the faculty members of the de-



xiv

partment. I would specially like to thank Prof. S. Sarkar, Prof. S. Ghose and

Prof. P. Mitra for their suggestions about the work at various occasions. I am

indebted to many organizations including MSRI, ACL, IARCS, ISI Founda-

tion, Italy for their financial assistance towards either a monthly fellowship or

a foreign travel or both. I must also thank the International Phonetic Associ-

ation (Department of Theoretical and Applied Linguistics, School of English,

Aristotle University of Thessaloniki, Greece) for allowing me to reproduce the

International Phonetic Alphabet in Appendix D.

Finally, I must admit that a “thank you” is something too small for the

role played by my parents and my supervisors in shaping this thesis. In their

absence, this thesis would have been very different or perhaps would not have

existed at all.

Animesh Mukherjee

Date:



ABSTRACT

The sound inventories of the world’s languages show a considerable extent

of symmetry. It has been postulated that this symmetry is a reflection of

the human physiological, cognitive and societal factors. There have been a

large number of linguistically motivated studies in order to explain the self-

organization of these inventories that arguably leads to the emergence of this

symmetry. A few computational models in order to explain especially the

structure of the smaller vowel inventories have also been proposed in the liter-

ature. However, there is a need for a single unified computational framework

for studying the self-organization of the vowel as well as other inventories of

complex utterances like consonants and syllables.

In this thesis, we reformulate this problem in the light of statistical me-

chanics and present complex network representations of these inventories. The

central objective of the thesis is to study and explain the self-organization and

emergence of the consonant inventories. Nevertheless, in order to demonstrate

the versatility of our modeling methodology, we further apply it to investigate

and detect certain interesting properties of the vowel inventories.

Two types of networks are considered - a language-consonant bipartite

network and a consonant-consonant co-occurrence network. The networks are

constructed from the UCLA Phonological Segment Inventory Database (UP-

SID). From the systematic analysis of these networks we find that the occur-
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rence and co-occurrence of the consonants over languages follow a well-behaved

probability distribution. The co-occurrence network also exhibits a high clus-

tering coefficient. We propose different synthetic models of network growth

based on preferential attachment so as to successively match with higher accu-

racy the different statistical properties of the networks. Furthermore, in order

to have a deeper understanding of the growth dynamics we analytically solve

the models to derive expressions for the emergent degree distribution and clus-

tering coefficient. The co-occurrence network also exhibits strong community

structures and a careful inspection indicates that the driving force behind the

community formation is grounded in the human articulatory and perceptual

factors. In order to quantitatively validate the above principle, we introduce

an information theoretic definition of this factor – feature entropy – and show

that the natural language inventories are significantly different in terms of

this quantity from the randomly generated ones. We further construct similar

networks for the vowel inventories and study various interesting similarities as

well as differences between them and the consonant inventories.

To summarize, this thesis shows that complex networks can be suitably

used to study the self-organization of the human speech sound inventories. In

this light, we deem this computational framework as a highly powerful tool

in future for modeling and explaining the emergence of many other complex

linguistic phenomena.

Keywords: consonants, vowels, distinctive features, occurrence network, co-

occurrence network, self-organization, emergence, preferential attachment, com-

munity structure, feature entropy.
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Chapter 1

Introduction

If you are reading the thesis for the first time, then every new sentence that you come

across tends to make you feel increasingly curious about – “what follows?”. Undoubt-

edly, curiosity about the world as well as ourselves is one of the most important traits

of the human race. It is perhaps in order to relinquish this curiosity about each

other that thousands of years ago our forefathers invented an extremely sophisticated

medium of communication – language. Linguistic ability not only makes us differ-

ent from the rest of the animal kingdom but is also central to the sense of identity

that unites nations, cultures and ethnic groups. The same curiosity about ourselves

gives birth to numerous important as well as interesting questions about this ability

itself. Some of the most intriguing ones among these are “How did language evolve?”,

“Why do languages change over time?”, “What are the universal characteristics of

the thousands of mutually unintelligible languages that co-exist at a given time?”

and “How does a child almost effortlessly acquire all the intricacies of language in the

very early stages of development?” Various disciplines have joined in the search for

the answers to the above questions in a collaborative and systematic approach. As a

consequence of this collective effort, one argument that has gained enormous popu-

larity in recent times is that language is a complex adaptive system, which has evolved

through the process of self-organization in order to serve the purpose of human com-

munication needs [147]. In fact, the main premise of synergetic linguistics [84,85,86]

is that language is a self-organizing and self-regulating system and its (a) existence,

1
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(b) properties, and (c) change can be successfully explained within this framework.

The symmetries observed across languages are therefore, primarily an outcome of

the dynamic interdependence of the structure and the functions of a language [86].

The aforementioned efforts have repeatedly pointed to the fact that the emergent

complexity of a linguistic phenomenon can be understood by treating language as a

physical system.

Like any physical system, a linguistic system (i.e., language) can be viewed from

three different perspectives [11]. At one extreme, it is a collection of utterances that

are produced and perceived by the speakers of a linguistic community during the pro-

cess of communication with the other speakers of that community. This is analogous

to the microscopic view of a thermodynamic system, where every utterance and its

corresponding context together render the identity of the language, that is, its gram-

mar. At the other extreme, a language can be described by a lexicon and a set of

grammar rules. This is equivalent to the macroscopic view of a thermodynamic sys-

tem. Sandwiched between these two extremes, one can also conceive of a mesoscopic

view of language, where the different linguistic entities such as phonemes, syllables,

words or phrases form the basic units of the system and the grammar is an emer-

gent property resulting from the complex interactions among these units. Figure 1.1

presents a hypothetical illustration of these three levels of a linguistic system.

In the recent years, complex networks have proved to be an extremely suitable

framework for modeling the structure and dynamics of various large-scale systems

primarily at the level of mesoscopy. Examples of well-studied naturally-occurring

networks include biological, ecological and social networks such as metabolic net-

works [77, 131], gene regulatory networks [6], protein interaction networks [21, 76],

signalling networks [106], epidemic networks [121, 122], food webs [48, 164], scientific

collaboration networks [113], movie-actor networks [130] and acquaintance/friendship

networks [2, 112]. Similarly, there have also been a lot of studies on man-made

networks, which mainly include communication networks and transportation infras-

tructures such as the Internet [52], WWW [3, 9], p2p networks [87, 4, 109, 110, 111],

power grid [10], airlines [68] and railway networks [137]. An extensive survey of

the different theoretical and empirical developments of the field have been presented

in [8, 41, 42, 114].
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Figure 1.1: A hypothetical illustration of the three levels of a linguistic system. In the microscopic

level, two example sentences, “the brown birds watched the old dog” and “the big dog attacked the

birds” are being uttered by the speakers (S) and heard by the listeners (L). The broken arrows in

this level indicate direction of communication. In the mesoscopic level, the words in the above two

example sentences are represented by nodes and a pair of nodes are linked if they are adjacent to

each other in either of these two sentences. The network, so formed, is representative of the complex

patterns of interaction among the words in a language. At the macroscopic level, the properties of

the two sentences can be represented using a set of grammar rules and a small lexicon
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Since human language is one of the most appropriate examples of a complex

system, principles of network theory have proved to be extremely suitable for modeling

as well as explaining the emergence of various intricate linguistic phenomena. In fact,

it is due to this reason that within a very short period of time the study of linguistic

networks, to understand the structure and the evolutionary dynamics of language,

has gained a lot of momentum (see [5,25,26,65,78,140,143,151] for references). The

primary motivation for the computational methodology adopted in this work is the

burgeoning success of the aforementioned studies (some of which are discussed below)

that not only investigate but also substantiate numerous linguistic properties within

the framework of complex networks. More precisely, we show how this computational

framework helps us in addressing one of the most important problems in phonology

that involves modeling and explaining the structure, dynamics and emergence of

human speech sound inventories across the languages of the world.

In this chapter, we review some of the most popular studies on linguistic net-

works, which have been the principal source of inspiration for the work presented

here (section 1.1). This is followed by a brief history of the problem addressed in this

thesis (section 1.2). A detailed survey of the same will be presented in Chapter 2.

Section 1.3 outlines the main objectives of this thesis and section 1.4 summarizes

the salient contributions of the work. The organization of the thesis is presented in

section 1.5.

1.1 Linguistic Networks

The study of linguistic networks at the level of mesoscopy can be broadly classified

into three different categories based on the purpose of construction of these networks.

These categories are

(i) Lexical networks that are constructed to explore the organization of the “mental

lexicon” (i.e., the repository of word forms, which are assumed to reside in the

human brain).
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(ii) Word co-occurrence networks that are constructed to study the evolution of the

syntactic structure of a language.

(iii) Phonological networks which are built to determine the universal properties of

the sound structure of linguistic systems.

In the rest of this section, we will briefly describe some of the most important studies

(referring, wherever applicable, to the other relevant ones) in each of the aforemen-

tioned categories. Note that the definitions of the standard statistical properties of

complex networks used in this chapter as well as in the rest of this thesis are provided

in Appendix C.

1.1.1 Lexical Networks

In 1940, Seashore and Eckerson [136] reported that the average vocabulary size of

an educated adult is 150,000. It is quite surprising to note that native speakers can

navigate this huge lexicon and almost instantaneously recognize (usually in less than

200 milliseconds) a word of their language. Consequently, there are two important

questions associated with the mental lexicon (ML): (a) how are the words stored in the

long term memory, i.e., how ML is organized, and (b) how are these words retrieved

from ML. The above questions are highly inter-related – to predict the organization

one can investigate how words are retrieved from ML and vice versa.

The inherent complexity of the problem has motivated a lot of researchers in the

past to investigate the organization of ML in the framework of complex systems and

more specifically, complex networks (see [37, 65, 78, 140, 153, 157] for references). In

all of these studies, ML is modeled as a network of inter-connected nodes, where each

node corresponds to a word form and the inter-connections can be based on any one

of the following:

(i) Phonological Similarity: A large scale phonological similarity based ML can be

represented as a complex network in which the nodes correspond to word forms

and two nodes (read words) are connected by an edge if they differ only by the
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addition, deletion or substitution of one or more phonemes [65,78,153,157]. For

instance, the words cat, bat and rat may be connected since they differ by the

substitution of a single phoneme. [78] reports one of the most popular stud-

ies, where the author constructs a Phonological Neighborhood Network (PNN)

based on a slight variation of the above definition in order to unfurl the orga-

nizing principles of ML. The author shows that PNN is characterized by a high

clustering coefficient (0.235) but at the same time exhibits long average path

length (6.06) and diameter (20). The above results indicate that, like a small-

world network, the lexicon has many densely inter-connected neighborhoods.

However, connections between two nodes from two different neighborhoods are

harder to find unlike in small-world networks. An intuitive explanation for such

a structure of ML is as follows [104].

Low mean path lengths are necessary in networks that need to be traversed

quickly, the purpose of the traversal being search in most cases. However, in

the case of ML, the search is not expected to inhibit those nodes that are neigh-

bors of the immediate neighbors of the stimulus but are non-neighbors of the

stimulus itself and are therefore, not similar to the stimulus. Hence, it can be

conjectured that, in order to search in PNN, traversal of links between distant

nodes is usually not required. In contrast, the search involves an activation of

the structured neighborhood that share a single sub-lexical chunk that could be

acoustically related during the process of word recognition.

(ii) Semantic Similarity: One of the classic examples of semantic similarity based

networks is the Wordnet [53] lexicon. In this network, concepts (known as

synsets) are the nodes and the different semantic relationships between them

are represented through the edges. [140] analyzes the structure of the noun

network extracted from the English Wordnet database (version 1.6). The se-

mantic relationships between the nouns can be primarily of four types (i) hy-

pernymy/hyponymy (e.g., animal/dog), (ii) antonymy (e.g., day/night), (iii)

meronymy/holonymy (e.g., eye/body), and (iv) polysemy (e.g., the concepts

“the main stem of a tree”, “the body excluding the head and neck and limbs”,

“a long flexible snout as of an elephant” and “luggage consisting of a large

strong case used when traveling or for storage” are connected to each other due
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to the polysemous word “trunk” which can mean all of these). Some of the im-

portant findings from this work are – (a) semantic relationships in this network

are scale-invariant, (b) the hypernymy tree forms the skeleton of the network,

(c) inclusion of polysemy re-organizes the network into a small-world, (d) sub-

groups of fully connected meanings become regions of higher traffic (i.e., nodes

with maximum number of paths passing through them), and (e) in presence of

polysemous edges, the distance between two nodes across the network is not in

correspondence with the depth at which they are found in the hypernymy tree.

(iii) Orthographic Similarity: Like phonological similarity networks, one can also

construct networks based on orthographic similarity, where the nodes are the

words and the weight of the edge between two nodes is defined by the edit

distance between the words corresponding to those two nodes. Such networks

have been studied to investigate the difficulties involved in the detection and

correction of spelling errors that are made by humans while typing [37]. In

the aforementioned work, the authors construct orthographic similarity based

networks (SpellNet) for three different languages (Bengali, Hindi and English)

and analyze them to show that (a) for a particular language, the probability

of real word errors is proportional to the average weighted degree of the corre-

sponding SpellNet, (b) for a particular language, the hardness of non-word error

correction is correlated to the average clustering coefficient of the corresponding

SpellNet, and (c) the basic topological properties of SpellNet are invariant in

nature for all the languages.

Other relevant studies pertaining to the structure and dynamics of various lexical

networks may be found in [98, 65, 153, 157,148].

1.1.2 Word Co-occurrence Networks

In this section, we present a brief review of some important studies on word co-

occurrence networks where the nodes represent words and two nodes are connected

by an edge if the words corresponding to them co-occur in a language in certain

context(s). Most of these studies attempt to explore the evolution of the syntactic
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structure of a linguistic system. In this category, we shall mainly focus on word

collocation networks and their application in unsupervised induction of the grammar

of a language.

(i) Word Collocation Network: One of the most fundamental and well-studied ex-

amples of co-occurrence networks are the word collocation networks, where two

words are connected if they are neighbors, that is they collocate, in a sen-

tence [25]. Two types of networks – the unrestricted and the restricted ones –

have been constructed for English in [25] from The British National Corpus.

In the unrestricted network all the collocation edges are retained while in the

restricted one only those edges are retained for which the probability of the

occurrence of the edge is higher than in the case where two words collocate in-

dependently. The authors report that (a) both the networks exhibit small-world

properties. The mean path lengths are small (around 2 to 3) and the clustering

coefficients are high (0.69 in case of the unrestricted network and 0.44 for the

restricted one), (b) for both the networks, the degree distributions follow a two

regime power-law. The degree distribution of the 5000 most connected words

exhibit a power-law with exponent -3.07, which is very close to that predicted by

the Barabási-Albert model [13]. These findings led the authors to posit that the

word usage in human languages is preferential in nature, where the frequency

of a word determines the comprehensibility and production capability. From

(a) and (b) together they conclude that evolution of language has resulted in

an optimal structure of the word interactions that facilitate easier and faster

production, perception and navigation of the words.

In a separate study, Dorogovtsev and Mendes [46] propose a preferential

attachment based growth model to explain the emergence of the two regime

power-law degree distributions obtained for the aforementioned networks. In

this model, at every time step t a new word (i.e., a node) enters the language

(i.e., the network) and connects itself preferentially to one of the pre-existing

nodes. Simultaneously, ct (where c is a positive constant) new edges are grown

between pairs of old nodes, which are also selected preferentially. Through

a series of experiments and mathematical analysis the authors show that the
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power-law exponents predicted by the model are close to those exponents that

have been reported in [25].

There have also been studies on the properties of collocation networks of lan-

guages other than English (see [31,79] for references). These studies show that

the basic structural properties (e.g., scale-free, small-world, assortative) are

similar across all languages. Therefore, together they qualify as linguistic uni-

versals and call for well-founded psycho-linguistic accounts for their emergence

and existence.

(ii) Unsupervised Grammar Induction: One of the most interesting applications of

collocation networks, reported in [144], is the unsupervised induction of the

grammar of a language. Understanding the process of language acquisition is

one of the greatest challenges of modern science. Even at the very early stages

of development, infants can pick up all the intricacies of the language they

are exposed to quite accurately and effortlessly. This is one of the strongest

observations in support of the instinctive capacities of human beings towards

language [125], which Chomsky calls the Universal Grammar [36]. In [144],

the authors propose a very simple algorithm for learning hierarchical structures

from the collocation graph built from a raw text corpus. A brief description of

this algorithm, which they call ADIOS is presented below.

A directed collocation network is constructed from the corpus, where the

words are the nodes and there is a directed edge from node u to node v if

node (read word) v follows node (read word) u in a sentence. Therefore, each

sentence is represented by a directed path in the network. The algorithm iter-

atively searches for motifs that are shared by different sentences. A linguistic

motif is defined as a sequence of words, which tends to occur quite frequently

in the language and also serves certain special functions. For instance, “X is

same as Y” is a very commonly occurring motif in English, where X and Y

can be substituted by a large number of words and the whole sequence can be

embedded in various parts of a sentence. The authors define the probability

of a particular structure being a motif in terms of network flows. Once the

motifs are extracted, the algorithm proceeds to identify interchangeable motifs

and merge them into a single node. Consequently, in each step the network
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becomes smaller and a hierarchical structure emerges. This structure in turn

can be presented as a set of phrase structure grammar rules.

For other studies on word co-occurrence networks the reader is referred to [26,27,28,

30].

1.1.3 Phonological Networks

In the preceding sections, we have described how complex networks can be used

to study the different types of interactions (e.g., phonological, syntactic, semantic)

among the words of a language. Networks can also be constructed to study the

properties of different sub-lexical units. One such study is presented in [143] where

the authors construct a network of Portuguese syllables from two different sources:

a Portuguese dictionary (DIC) and the complete work of a very popular Brazilian

writer – Machado de Assis (MA). Each node in this network is a syllable and links

are established between two syllables each time they are shared by a word. The

authors show that the networks have (a) a low average path length (DIC: 2.44, MA:

2.61) and (b) a high clustering coefficient (DIC: 0.65, MA: 0.50). Further, both the

networks exhibit a power-law behavior. Since in Portuguese the syllables are close to

the basic phonetic units unlike in English, the authors argue that the properties of

the English syllabic network should be different from that of Portuguese. The authors

also conjecture that since Italian has a strong parallelism between its structure and

syllable hyphenization it is possible that the Italian syllabic network has properties

close to that of the Portuguese network pointing to certain cross-linguistic similarities.

1.2 The Problem of Consonant Inventories

The most basic units of human languages are the speech sounds. The repertoire of

sounds that make up the sound inventory of a language are not chosen arbitrarily,

even though the speakers are capable of perceiving and producing a plethora of them.

In contrast, the inventories show exceptionally regular patterns across the languages
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of the world, which is arguably an outcome of the self-organization that goes on in

shaping their structure [119]. Earlier researchers have proposed various functional

principles to explain this self-organizing behavior of the sound inventories. The most

important among these are as follows.

(i) Maximal perceptual contrast [96], which implies that the phonemes as well as

the other linguistic units (e.g., syllables, words) of a language should be maxi-

mally distinct from each other, because this facilitates proper perception of the

individual linguistic units in a noisy environment.

(ii) Ease of articulation [44,96], which states that the structure of a language should

facilitate expression and dissemination of information at the expense of minimal

energy spent on the part of the speaker. Some of the general implications of

this principle are: frequent words are shorter in length; the sound systems of

all languages are formed of certain universal (and highly frequent) sounds that

do not use complicated articulatory gestures, etc.

(iii) Ease of learnability [44], which states that a language should be easily learnable

in order to propagate through the generations. Consequences of this principle

include facts that linguistic structures are mostly regular and irregularities, if

any, are observed for only extremely frequent linguistic units (e.g., some very

frequent verbs in English are irregular).

These principles are applied to language as a whole, thereby, viewing it from the

macroscopic level. In fact, the organization of the vowel inventories across languages

has been quite satisfactorily explained in terms of the single principle of maximal per-

ceptual contrast through linguistic arguments [158], numerical simulations [92,94,134]

as well as genetic algorithms [80]. With the advent of highly powerful computers, it

has also been possible to model the micro-level dynamics involving a group of (robotic)

speakers and their interactions and this in turn has proved to be highly successful

in explaining how the vowel inventories originated and self-organized themselves over

the linguistic generations [44].

Right from the beginning of the 20th century, there have been a large number of

linguistically motivated attempts [20,39,154,155] in order to explain the emergence of
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the regularities that are observed across the consonant inventories. However, unlike

the case of vowel inventories, majority of these efforts are limited to the investigation

of certain specific properties primarily because of the inherent complexity of the

problem. The complexity arises from the fact that (a) consonant inventories are

usually much larger in size and are characterized by much more articulatory/acoustic

features than the vowel inventories, and (b) no single force is sufficient to explain

the organization of these inventories; rather a complex interplay of forces collectively

shape their structure. Thus, a versatile modeling methodology, which is hitherto

absent in the literature, is required so that the problem can be viewed and solved

from an alternative perspective.

In the next chapter, we shall present a more detailed history of the problem of

sound inventories and in particular, consonant inventories, which is the central theme

of this thesis.

1.3 Objectives

The primary objective of this thesis is to develop a computational framework for sim-

ulating the structure and dynamics of the consonant inventories of the world’s lan-

guages. More specifically, we model the self-organization of these inventories through

a complex network approach. The choice of this approach is motivated by (a) its

enormous success in explaining various dynamical properties of language (examples

of which have been already discussed in the earlier sections), and (b) its easy appli-

cability in modeling this particular problem.

Some of the typical questions that we would like to answer in the course of this

thesis are as follows.

(i) Representation of the Inventories: The first question that one needs to answer

is how can the structure of the consonant inventories be accurately represented

within the framework of complex networks. This is indeed a very important

problem, because all the results obtained as well as the predictions made can
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be heavily influenced by the underlying scheme of representation.

(ii) Analysis of the Inventory Structure: Once a suitable representation scheme

is chosen, the next crucial question is how to conduct the analysis in order

to extract meaningful results. In particular, one needs to answer (a) which

statistical properties of the network(s) should be studied in order to discover the

different cross-linguistic patterns that manifest across the consonant inventories,

(b) what are the basic principles that could be responsible for the formation of

these patterns, and (c) how can these principles be systematically quantified in

order to figure out the extent to which they drive the origins of these patterns.

(iii) Synthesis of the Inventory Structure: A third and an equally important problem

is to explain the emergence of the different statistical properties (obtained from

the analysis) by means of generative mechanisms that are usually based on var-

ious models of network growth. The typical questions that one needs to answer

here are (a) what can be a suitable synthesis model for explaining the statistical

properties of the network, (b) how can such models be analytically solved to

have a better understanding of the dynamics, (c) what are the linguistic corre-

lates of each of these models with reference to the consonant inventories, and

(d) what is the physical significance of the parameters involved (if any) in each

of these models.

Although the thrust of this work is on consonant inventories, we also aim to

investigate certain well-known properties of the vowel inventories within the same

computational framework. The objective of this is twofold – (a) to show that the for-

malism proposed here is generic and is useful in studying the evolution and emergence

of human speech sound inventories, and (b) to report interesting new observations

about the vowel inventories apart from validating the results presented by the earlier

researchers.
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1.4 Contributions

In this work, we show how the structure of the consonant inventories can be repre-

sented, analyzed as well as synthesized within the framework of complex networks.

For this purpose, we construct two networks, one of which is based on the occurrence

of consonants across languages while the other is based on co-occurrence of the con-

sonants across languages. A brief report (which we shall elaborate in the forthcoming

chapters) on the studies of these two networks and the results obtained thereby, are

presented below.

Occurrence Network of Consonants

We represent the inventories as a bipartite network in which one of the partitions

consists of nodes corresponding to the languages while the other partition consists

of nodes corresponding to the consonants. There is an edge between the nodes of

these two partitions if a particular consonant occurs in a particular language. An

exhaustive study of this network reveals various interesting results as follows.

(i) The size of the consonant inventories (indicated by the distribution of the de-

grees of the language nodes) follow a β-distribution.

(ii) The distribution of occurrence of the consonants over languages (i.e., the de-

gree distribution of the consonant nodes in the network) follow a well-behaved

probability distribution.

(iii) A synthesis model based on preferential attachment (i.e., a language node at-

taches itself to a consonant node depending on the current degree (k) of the

consonant node) coupled with a tunable randomness component can explain

the emergence of the degree distribution of the consonant nodes.

(iv) The emergent degree distribution obtained from the synthesis model can be

analytically shown to approach a β-distribution in the asymptotic limits.
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Co-occurrence Network of Consonants

After studying the properties of occurrence of consonants, the next apparent step

is to investigate their co-occurrence properties. For this purpose, we construct a

network in which the nodes are the consonants and an edge between two nodes (read

consonants) signifies their co-occurrence likelihood across languages. Some of the

important findings from this study are summarized below.

(i) The co-occurrence distribution of the consonants across languages (i.e., the

degree distribution of the consonant nodes in the co-occurrence network) is

again found to follow a well-behaved probability distribution.

(ii) The clustering coefficient of the co-occurrence network is very high, a property

commonly observed in social networks [113,130] that is indicative of the presence

of a large number of densely connected neighborhoods (formed by groups of

consonants).

(iii) Community structure analysis of this network reveals strong patterns of co-

occurrence of consonants that are prevalent across the languages of the world.

(iv) Languages exhibit an economic behavior by using a small number of articula-

tory/acoustic features and maximizing the combinatorial possibilities of these

features in order to generate a large number of consonants. This behavior, often

termed as feature economy [20, 39, 45, 105], leads to the formation of the con-

sonant communities. An information theoretic quantification of this principle

further shows the extent to which it is responsible for the community formation.

(v) The emergent degree distribution of the co-occurrence network can be shown

to be sensitive to the distribution of the consonant inventory sizes even though

the degree distribution of the occurrence network does not depend on the same.

(vi) The clustering coefficient of the co-occurrence network can be explained through

a synthesis model that is based on both preferential attachment and triad (i.e.,

fully-connected triplet) formation. This process of triad formation actually

imposes a large number of triangles onto the generated network thereby creating

many densely connected neighborhoods and increasing the clustering coefficient.
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Apart from exploring various significant properties of the consonant inventories, we

also employ our computational methodology to study the structure of the vowel in-

ventories. Some of our observations are

(i) The topological properties of the occurrence and co-occurrence networks con-

structed from the vowel inventories are found to be largely similar to that of

the consonant inventories. In particular, preferential attachment plays the key

role in the emergence of their structure.

(ii) Community analysis of the co-occurrence network of vowels indicate that the

small size vowel inventories tend to be organized based on the principle of

maximal perceptual contrast – an observation that is in agreement with those

reported by the earlier researchers [44, 92, 94, 134].

(iii) On the other hand, the larger vowel inventories reflect a considerable extent of

feature economy – an observation that has been made by a school of linguists

earlier [20, 39], but quantitatively substantiated here.

(iv) Co-occurrences based on implications (one vowel implying the presence of an-

other) are prevalent across the vowel inventories and their presence is again a

consequence of feature economy. This property has also been noted by linguists

earlier; however, it has been quantitatively established here.

It is worthwhile to mention here that this thesis also contributes significantly to

the development of the modeling techniques that are used in general, in the field of

complex networks. For example, in most of the bipartite networks studied in the past

both the partitions are assumed to grow over time (see [24, 113, 130] for references).

Nevertheless, the occurrence network of consonants introduced here is a special class

of bipartite network in which one of the partitions remains almost fixed over time (i.e.,

the partition of consonants) while the other can grow unboundedly (i.e., the partition

of languages). This subclass of bipartite networks can be extremely useful in repre-

senting, analyzing as well as synthesizing discrete combinatorial systems (DCS) [125],

where the basic building blocks are a finite set of elementary units (e.g., consonants)

and the system is a collection of potentially infinite number of discrete combinations
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of these units (languages). In fact, two of the greatest wonders of evolution on earth,

life and language, are examples of DCS. In case of living systems, for instance, the

elementary units are the nucleotides or codons while their discrete combinations give

rise to the different genes. In case of language, the elementary units are the letters or

words and the discrete combinations are the sentences formed from them. Therefore,

the network growth models that we propose in this work essentially attempt to mimic

the evolution of a DCS. Note that analytical treatment of these growth models are

not straightforward because, the average degree of the fixed partition diverges with

time and hence, stationary state assumptions, that are commonly made in the litera-

ture to solve these types of problems (see [114] for reference), are no longer applicable

here. This thesis, therefore, opens up many new challenging theoretical problems in

the area complex networks and more specifically, bipartite networks.

Finally, to summarize the contributions of this thesis in a single sentence, we

have shown that the self-organization and the emergence of the structure of human

speech sound inventories can be successfully studied within the framework of complex

networks. Thus, we believe that in future, this computational framework can serve

as an extremely powerful tool in modeling the structure and dynamics of several lin-

guistic phenomena, which are as complex as the one presented here and for which no

satisfactory explanation exists.

1.5 Organization of the Thesis

The thesis is organized into seven chapters.

Chapter 2 presents the history of the problem of sound inventories. It describes

the human articulatory apparatus and the representation scheme for a phonological

system. This is followed by a concise review of the different linguistic and computa-

tional studies pertaining to the organization of the sound inventories, which together

form the basic motivation for this work.
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Chapter 3 centers around the study of the occurrence network of consonants.

It outlines the construction procedure for the network and describes the data source

used for this construction. This is followed by an analysis of some of the interesting

topological properties of the network. A synthesis model is then proposed and analyt-

ically solved to explain these properties. Finally, we employ this model to investigate

the dynamics within and across five major language families of the world.

Chapter 4 investigates in detail the properties of the co-occurrence network of

the consonants. It begins with a study of some of the important topological properties

of this network. Suitable refinements of the synthesis model presented in Chapter 3

are also proposed to explain the emergence of these topological properties.

Chapter 5 presents the community structure analysis of the co-occurrence net-

work of consonants. It discusses the algorithm for community detection and identifies

the role of feature economy in the formation of the communities. Furthermore, it de-

scribes an information theoretic approach to quantify feature economy so as to deter-

mine the extent to which this factor governs the community formation in consonant

inventories.

Chapter 6 presents a detailed study of the topological properties of the occur-

rence and co-occurrence network of vowels. Furthermore, it outlines the community

analysis of the co-occurrence network and reports various interesting as well as im-

portant observations about the vowel inventories apart from validating the results

that are already documented in the literature.

Chapter 7 concludes the thesis by summarizing the contributions and pointing

to a few topics of future research that have been opened up from this work.

There are also a few appendices that present an annotated list of publications from

this work, a complete list of publications by the candidate, a glossary of definitions

and an alphabet of phonetic notations.



Chapter 2

Background

Almost all human languages make use of speech sounds as a primary medium for

conveying meaning. The physical speech signal is usually represented as a sequence

of abstract minimal units called phonemes, which render a distinction in meaning

between the words of a language. Such distinctions are usually reflected by word pairs

(also minimal pairs) which mean different things, but differ only in one sound. For

instance, in English, /m/1 and /n/ are phonemes because, word pairs such as “rum”

and “run” have different meanings. The repertoire of phonemes that the speakers of

a language use to bring about these meaning distinctions is termed as the phoneme

inventory (or alternatively, the sound inventory) of that language. Interestingly, the

phoneme inventories of the world’s languages exhibit a large number of universal

tendencies. In fact, these universal tendencies are among the best-researched universal

properties of language [20, 39, 44, 80, 92, 94, 96, 134]. The linguistic questions that are

addressed in this thesis are mostly taken from those that have been unveiled by

this extensive research. Furthermore, the outcomes from this research have also been

used in verifying whether the computational models proposed here are able to produce

results that are compatible with what is known about natural languages.

1Throughout the thesis we shall represent phonemes using the IPA (International Phonetic Al-

phabet) symbols. The complete list of the IPA symbols is provided in Appendix D (adapted from

http://www.langsci.ucl.ac.uk/ipa/fullchart.html).
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Figure 2.1: Human vocal system

In this chapter, we shall attempt to briefly outline this long history of research on

the universal properties of the phoneme inventories of human languages. We begin,

in section 2.1, with a brief description of the human vocal system and the mechanism

of speech production. In the same section, we also discuss how speech sounds can

be appropriately represented as phonemes in terms of a set of articulatory/acoustic

features extracted from them. In section 2.2, we point out several regularities that are

observed across the phoneme inventories of the world’s languages. In the following

section, we describe some of the linguistic as well as computational attempts that

have been made in the past in order to explain the emergence of these regularities.

In section 2.4, we summarize the state-of-the-art in this area of research and also

identify the gaps, which in turn form the primary motivation for the work presented

in this thesis.
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2.1 Human Vocal System and Speech Production

Human speech is produced by the vocal organs shown in Figure 2.12. The vocal

tract, which plays the role of a resonance tube during speech production mainly

consists of three cavities namely, the pharynx, the nasal cavity, and the oral cavity

(see Figure 2.1). The shape of the vocal tract is altered by the soft palate (velum),

the tongue, the lips and the jaw. These organs together are collectively known as

the articulators. The phenomenon of shaping the structure of the vocal tract for

producing different speech signals is known as articulation. During speech production,

the air flow from the lungs is forced through the glottis (between the vocal cords) and

the larynx to the vocal tract. From the oral and the nasal cavities the air flow exits

through the nose and the mouth, respectively. The vocal cords can act in several

different ways, the most important function being the modulation of the air flow

by rapidly opening and closing, thereby, generating a buzzing sound from which the

vowels and the voiced consonants are produced. Voiceless sounds, on the other hand,

are produced if this rapid vibration is absent (see [88] for a more detailed description

of the speech production system).

A phoneme can be described by a collection of articulatory features [154] that can

be broadly categorized into three different types namely, the manner of articulation,

the place of articulation and phonation. Manner of articulation is concerned with the

flow of air, that is, the path it takes and the degree to which it is impeded by the

constrictions of the vocal tract. Some of the most important manners of articulation

are (a) plosives – these phonemes result from blocking the vocal tract by closing the

lips and the nasal cavity, (b) fricatives – these phonemes are generated by constricting

the vocal tract at some point and forcing the air stream to flow at a velocity that is

appropriate for producing turbulence, (c) affricates – these phonemes are produced

by a combination of the plosive and the fricative phonemes, and (d) nasals – these

phonemes are generated when the vocal tract is closed but the velum opens a route

for the air stream to the nasal cavity.

2This figure has been drawn by the author himself. The guidelines for the figure has been taken

from http://www.telecom.tuc.gr/∼ntsourak/tutorial acoustic.htm.

http://www.telecom.tuc.gr/~ntsourak/tutorial_acoustic.htm
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Place of articulation specifies the active speech organ and also the place where it

acts. Vowels are usually described in terms of tongue position and lip rounding. The

significant places of articulation for consonants are the lips (bilabial), the lips and the

teeth (labio-dental), the teeth (dental), the upper gums (alveolar), the hard palate

(palatal), the soft palate (velar), and the glottis (glottal).

Phonation specifies whether rapid vibrations are produced in the vocal cords dur-

ing the articulation of a particular phoneme. If such vibrations are produced during

the articulation of a phoneme then it is said to be vocied. In contrast, if a phoneme

is produced without the vibration of the vocal cords then it is called voiceless.

Apart from these three major classes, there are also secondary articulatory features

that are used to describe some specific phonemes found in certain languages. A few

representative examples of phonemes as a collection of features are shown in Table 2.1.

Note that sometimes more than one features are required in a particular category to

perfectly describe a phoneme (see [102]). For instance, there are phonemes that can

be best expressed (a) as a combination of two places of articulation (e.g., dental-

alveolar, palato-alveolar, labial-velar), or (b) using more than one secondary feature

(e.g., a phoneme can be labialized and velarized at the same time).

It is worthwhile to mention here that there is a lively debate about the cognitive

reality of the articulatory features with some researchers [99] claiming that they do

not exist at all. Nevertheless, recent experiments in neuroscience [128] show that

during speech production and perception specific motor circuits are recruited in the

brain that reflect distinctive features of the speech sounds encountered. Therefore, in

this light, one might interpret articulatory features as motor programs.

In the following section, we shall discuss about some of the regularities that are

observed across the phoneme inventories of the world’s languages.
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Table 2.1: Examples of phonemes (consonants and vowels) represented as a collection of features

Voewls Position of Tongue Tongue Height Lip Roundedness

/i/ front high unrounded

/a/ central low unrounded

/u/ back high rounded

Consonants Manner Place Phonation Secondary Features

/t/ plosive alveolar voiceless –

/d/ plosive alveolar voiced –

/tw/ plosive alveolar voiceless labialized

/tj/ plosive alveolar voiceless palatalized

2.2 Regularities of the Phoneme Inventories

The phoneme inventories of the world’s languages exhibit remarkable regularities.

Although the human vocal tract is capable of producing an amazing variety of sounds,

any single language only uses a small subset of them. The phonemes that a particular

language use are not chosen randomly from the possible sounds that the human

vocal tract can generate. In contrast, some phonemes recur more frequently across

languages than others. For instance, if a language has only three vowels then these

are usually /i/, /a/ and /u/ [44, 92, 94]. Similar observations can also be made for

the case of consonants. Certain consonants like /m/ and /k/ are present in almost all

languages while others, such as /Ü/ and /Ý/ are extremely rare [39, 44]. Some other

equally important observations are (a) all languages have at least two of the voiceless

plosives /p/,/t/ and /k/ [20, 39], (b) voiceless nasals only occur in languages that

have voiced nasals [39], and (c) in the series of voiced plosives /b/, /d/, and /g/, /g/

is most likely to be missing [19, 20].

Regularities also arise from the fact that the phoneme inventories tend to be

symmetric. For example, if a language has a front rounded vowel of a specific tongue

height then it tends to have a corresponding back unrounded vowel of the same height.

In case of consonants, if a language makes a distinction between voiced and voiceless

plosives then it tends to do so at each place of articulation. In general, if a language
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makes use of certain place of articulation and manner of articulation features then

usually all the combinatorial possibilities of these features are used rather than a

subset of them (see [20, 39] for further references).

The above observations collectively imply that certain inventories of phonemes are

usually favored, while others are systematically avoided. The regularities across the

phoneme inventories are interesting because, their emergence calls for an explanation.

Perhaps, the most important questions are – “why are certain sound patterns recur-

rent?”, “what are the possible causes of symmetry across the phoneme inventories?”,

and “how can these properties of recurrence and symmetry be systematically investi-

gated and assessed?”. In the next section, we shall briefly review some of the popular

studies conducted in the past in order to explain the evolution and the emergence of

the regularities across the phoneme inventories.

2.3 Explanations for Cross-Linguistic Regularities

Several attempts have been made in the past to build a theory that can explain

the structure of the phoneme inventories, which are primarily based on the physical

and psychological properties of human speech production and perception. In this

section, we shall present a concise report of both linguistic as well as computational

studies that have been conducted by the earlier researchers in order to reason the

emergence of the observed patterns across these inventories. While some of these

studies employ purely linguistic insights to explain the inventory structure, others

attempt to develop computational models grounded in the linguistic theories in order

to explain the emergence of this structure.

Most of the studies based on linguistic insights are largely inspired by the concepts

of generative phonology proposed by Noam Chomsky and Morris Halle in 1968 [35].

According to this view, phonological representations are sequences of segments made

up of distinctive features (i.e., features that distinguish phonemes from one another).

There have been several attempts following the advent of this theory to show that

distinctive features are the key elements that determine the structure of the phoneme
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inventories [20, 32, 33, 39, 149, 150]. Cross-linguistic studies have also been carried

out to show that these features are not innate; in contrast, they are acquired during

language learning [108].

More recently, researchers have also started building computer models based on

various well-studied linguistic principles in order to predict the structure of the in-

ventories as a whole [92, 134, 44, 80]. In such studies various optimization techniques

are employed which in turn result in the emergence of the inventory structure.

2.3.1 Linguistic Explanations

In this section, we shall highlight some of the popular linguistic attempts that have

been made by the past researchers to develop a theory for the emergence of the

sound patterns. We discuss four such theories that have proved to be quite useful in

describing various structural patterns found across the phoneme inventories.

Theory of Feature Economy

One of the central findings of the earliest work on phonology is that language in-

ventories tend to be structured in terms of correlations based on the features that

characterize the phonemes present in them [70, 105, 155]. In order to explain this

tendency feature economy was proposed as the organizing principle of the phoneme

inventories (see [39] and the references therein). According to this principle, languages

make use of a small number of distinctive features and maximize their combinatorial

possibilities to generate a large number of phonemes [39]. Stated differently, a given

phoneme will have a higher than expected chance of occurrence in those inventories,

where a majority of its features have distinctively appeared in the other phonemes.

The idea is illustrated in Table 2.2 for a set of four consonants.

There have been many attempts to investigate as well as establish the statistical

significance of this principle mainly through linguistic insights [20,39]. A preliminary

mathematical formulation of this principle have also been provided in [39]. In this
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Table 2.2: Example of feature economy. The table shows four plosives. If a language has in its

consonant inventory any three of the four consonants listed in this table, then there is a higher than

average chance that it will also have the fourth consonant of the table in its inventory

plosive voiced voiceless

dental /d”/ /t”/

bilabial /b/ /p/

study, the author defines the term economy index to measure the extent of feature

economy across the phoneme inventories. Given an inventory of S phonemes that are

characterized by F features, the economy index E is given by the expression

E =
S

F
(2.1)

Feature economy can be thought of as the tendency to maximize E either by maxi-

mizing the number of phonemes S or by minimizing the number of features F . Note

that this definition does not capture the extent to which the features contribute to

discriminate the different phonemes in an inventory. The less discriminative the fea-

tures are on an average the more closer should be the phonemes in the feature space

and higher should be the feature economy.

The author further examines the co-occurrence of various pairs of plosives sharing

the manner of articulation features but differing in the place of articulation and shows

that languages having one member of the pair tend to have the other with a very high

probability.

These studies and the observations made from them led the researchers to general-

ize feature economy as one of the most important principles governing the regularities

across the phoneme inventories.
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Optimality Theory

The central idea of optimality theory [107,127] is that the observed forms of language

arise from the interaction between conflicting constraints. There have been some

attempts to apply this theory to explain the structure of the sound inventories [20,55].

The inventory structure, in this theoretical framework, can be expressed in terms of

a set of constraints, each of which can be violated if it is crucially dominated by a

stronger constraint. The interaction between the constraints are based on a principle

of strict ranking, i.e., a high-ranked constraint will always outweigh any number of

lower-ranked constraints. For instance, a speaker will turn /r/ into /ö/ or /ô/ if the

constraint expressing the articulatory effort of /r/ dominates the constraint that aims

for perceptual clarity. On the other hand, if the clarity constraint is ranked higher

then the speaker will faithfully pronounce /r/. In fact, in [20] the author shows that

if the articulatory and perceptual principles are expressed directly as constraints in

the production and perception models of the speakers of a language then the desired

properties of their interactions that are necessary to explain the structure of the

inventories will follow from the principles of optimality theory.

Quantal Theory

The study of the acoustic theory of speech production reveals that in general, if one

changes the configurations of the vocal tract then the acoustic output also changes

accordingly. However, the relationship between the articulatory parameters and the

acoustic output produced is not linear. For certain positions of the articulators, a

small displacement in the position causes only a negligible change in the acoustic out-

put, while for certain other positions an equivalent displacement causes a significant

change in the acoustic output. The idea is illustrated in Figure 2.2. The figure shows

that there is a large acoustic difference between the regions I and III; however, within

regions I and III the acoustic parameter is almost insensitive to the change in the

articulatory parameter.

Stevens’ quantal theory of speech [149, 150] is based on the above observation.
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Figure 2.2: The change in the acoustic parameter with respect to the articulatory parameter

According to this theory, linguistic contrasts essentially involve differences in ‘quantal’

regions (i.e., differences in regions I and III in Figure 2.2). In other words, all quantal

regions define contrastive phonemes or at least, quantal distinctions are preferred.

There are various arguments in support of the claim that quantal regions influence

the structure of the phoneme inventories. Some of these are (a) articulations need

not be precise for producing a particular acoustic output, (b) continuous movement

through the quantal regions will always yield an acoustic steady state, and (c) minor

articulatory errors will not affect perception.

It is interesting to note that the quantal theory is essentially a theory of distinctive

features, where each plateau-like region can be considered as a correlate of a particular

distinctive feature. It therefore explains, from independent physical, physiological and

psychological arguments why certain distinctive features are expected to be present

in natural languages.
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Theory of Distinctive Region

The theory of distinctive region developed by René Carré [32, 33] for explaining the

structure of the phoneme inventories is based on the assumption that human speech

communication is a near-optimal solution to the physical problem of producing com-

munication over an acoustic channel using a deformable acoustic tube. The theory

further assumes that for an optimal communication system maximal acoustic differ-

ences can be produced with minimal articulatory gestures.

In this model, the articulatory movements are defined in terms of the linear and

orthogonal deformations of a uniform acoustic tube. Using mathematical techniques

the author then calculates those deformations that cause maximal acoustic distinc-

tions. The model is able to find distinctions that result in an acoustic space exactly

corresponding to the vowel space of human languages. The uniform tube gets di-

vided into four distinct regions corresponding to the regions of the vocal tract that

are responsible for vowel production. The author further shows that the model can

be extended to predict the places of articulation for consonant production by ob-

serving the maximal changes taking place in the formant frequencies3. In this case,

the uniform tube gets separated into eight regions, each corresponding to a place of

articulation for the consonants.

It is worthwhile to mention here that all the above theories attempt to show that cer-

tain feature distinctions are beneficial and therefore, preferred over others across the

languages of the world. However, none of them actually predict phoneme inventories

as a whole, that is, which vowels and consonants should appear in an inventory of a

certain size. In other words, it remains to be answered that given a set of phonemes,

what are the chances of this set being a natural language inventory.

3Formants are the distinguishing and meaningful frequency components of human speech. A set

of formants, orthogonal to each other, defines the acoustic space. For instance, it has been found

that most often the first two formants f1 and f2 are sufficient to disambiguate the vowels. Therefore,

the vowel space can be thought of as a two dimensional Euclidean space defined by the first two

formants.
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2.3.2 Computational Explanations

In this section, we shall outline a few representative studies that have been con-

ducted in the past to predict sound inventories as a whole. These studies attempt

to develop computational models which are again based on various well-known lin-

guistic principles. The computational techniques can be broadly classified into three

different categories namely, (a) functional optimization – phoneme inventories are

derived through the optimization of certain functions, (b) multi-agent simulation –

phoneme inventories emerge due to interactions between linguistic agents over hun-

dreds of generations, and (c) evolutionary optimization – phoneme inventories evolve

through certain simulated evolution techniques such as genetic algorithms.

Functional Optimization

One of the first attempts to predict vowel inventories as a whole without looking at the

qualities of the individual sounds and their features was undertaken by Liljencrants

and Lindblom [92]. They searched for optimal vowel inventories of different sizes by

maximizing the perceptual contrast between the vowels in a fixed two-dimensional

perceptual space. For this purpose, they defined an energy function E of the form

E =

n−1∑

i=1

i−1∑

j=0

1

r2
ij

(2.2)

where n is the total number of vowels in the system and rij is the Euclidean distance

between the vowels i and j in the vowel space defined by the first and the second

formants. The function E essentially adds the inverse square of all the distances

between all pairs of vowels in the system. The authors tried to minimize this function

so that the vowels get spread as evenly as possible in the vowel space. The simulation

begins with a predefined number of vowels that are scattered randomly near the

center of the available Euclidean space. In every step the positions of the vowels are

perturbed (restricted within the vowel space that is limited by what can be produced

by the vocal tract) and if as a result, the value of E gets reduced then the new state of
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the system is saved. The procedure is repeated until there is no further reduction in

the value of E. The authors showed that the resultant vowel inventories are very close

to the most common vowel inventories of similar size that are found in real languages.

For instance, the seven–vowel inventory that they obtain closely resembles the vowel

inventory of Italian.

Later, Schwartz et al. [134] proposed the dispersion-focalization theory for an

improved calculation of the perceptual distances between the different vowels. Con-

sequently, the predicted vowel inventories showed a better match with realistic vowel

inventories than in the previous case.

The same method can also be applied in order to explain the emergence of the con-

sonant inventories. However, as Ohala [117] points out, models exclusively based on

the principle of maximal perceptual contrast make “patently false” predictions about

the structure of the consonant inventories. For instance, such a model would predict

that a 7–consonant inventory should include something like the set /ã k’ ts ì m r |/.

Nevertheless, languages with very few consonants (e.g., the Polynesian languages) do

not have such an exotic consonant inventory; rather, languages that do possess these

consonants, such as Zulu, also have a great variety of other consonants of each type,

i.e., ejectives, clicks, affricates, etc. Therefore, apart from perceptual distance, one

needs to also add other factors like the criterion of minimal articulatory complexity

into the simulation model. This immediately introduces many more parameters into

the model and makes it extremely hard to build and realize computer simulations for

explaining the structure of the consonant inventories.

Functional optimization techniques have also been used in modeling the emergence

of combinations of speech sounds. In [93] the authors presented a system that created

a set of syllables from a given (large) set of possible consonants and vowels based on

the criteria of both minimal articulatory complexity as well as maximal perceptual

contrast. For the right choice of parameters, repertoires of “phonemically coded”

(meaning that only a small subset of the available vowels and consonants would be

used in a combinatorial way) realistic syllables would emerge. However, this system

was limited to one type of syllable (consonant-vowel) and there were a large number of

parameters that made the computer simulations much harder and more controversial
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to build.

Multi-agent Simulation

The earliest model that used simulation of a population of agents in order to explain

the structure of the vowel inventories was the AGORA-model proposed by Hervé

Glotin [61, 62]. This model is based on a community of talking “robots” termed as

carls (Cooperative Agents for Research in Linguistics). Each carl has a repertoire

of vowels that are represented in the model through articulatory features as well as

acoustically in terms of a set of formant frequencies. The carls are equipped with an

articulatory model to produce acoustic signals during communication. In each step

of the simulation, two carls are chosen randomly from the population and they both

randomly select and articulate a vowel from their repertoire. They then search for

the vowel, which is closest to the one that they hear. They shift this vowel so that

its acoustic signal is closer to the one heard by them and at the same time, shift all

other vowels present in their repertoire away from this signal. A fitness parameter

is calculated based on the amount of shifting that a carl does. The less the shifting,

the more it is in agreement with the vowel inventories of the others and therefore,

the fitter it will be. After a number of interactions among the carls, the less fit

ones are removed from the population and the fittest ones are used to reproduce off-

springs in a way similar to genetic algorithms (see [63] for reference). After several

simulation steps the population is usually found to converge to a common repertoire

of vowels (typically four to five in number) that is very close to what is observed in real

languages. However, the convergence of this model is not guaranteed. Furthermore,

in this model the agents are assumed to be conscious optimizers (which is usually not

true for the speakers of a language), who are able to push the vowels in their vowel

inventories away from each other. In essence, this makes it equivalent to Liljencrants

and Lindblom’s [92] model described earlier. As the agents perform local optimization

through the computation of fitness functions, the interactions among them are not

necessary for shaping the structure of the emergent vowel inventories. In fact, an

agent talking to itself should be able to reproduce the same results.

The most popular study in this category is perhaps the one presented by Bart
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de Boer in [44]. The model proposed in this study is based on the first principles of

communication, where each agent has the simple abilities of identifying and imitating

the vowels produced by the other agents. To this end, the individual agents are able

to articulate, perceive and maintain a repertoire of vowels. Vowels are represented

as prototypes using the basic articulatory features of position, height and rounding.

During articulation, this representation is converted into a corresponding acoustic

representation based on formant frequencies with some additional noise to ensure

that no two signals produced are exactly same. During perception, the vowel sound

that is heard is mapped to the prototype that is closest to the signal. The interactions

between the agents is limited to an idealized episode of imitation based on language

games introduced by Steels in [146]. Each episode of the game consists of four distinct

steps of production, imitation, evaluation and modification as follows.

(i) The first agent (i.e., the initiator or the speaker) utters a vowel randomly chosen

from its repertoire.

(ii) The second agent (i.e., the imitator or the listener) hears this vowel, searches

for it in its own repertoire, and produces the prototype that is closest to the

signal it heard.

(iii) The initiator indicates to the imitator through an extra-linguistic signal whether

the imitation corresponds to the original vowel produced by the initiator.

(iv) Based on the consequences of an episode, both the agents update their reper-

toire.

With each of the vowels in an agent’s repertoire, there is an associated score, which

is slightly increased if a vowel is used in a successful imitation game. On the other

hand, if the game is unsuccessful, then this score is reduced and the imitator either

adds the new vowel into its repertoire or shifts the unsuccessful vowel in such a way

that it is close to the acoustic signal of the vowel that it had heard from the initiator.

Apart from these, each agent regularly does certain housekeeping tasks, which include

removal of vowels that are used minimum number of times, merging of vowels that are

close to each other, and occasionally adding of a new random vowel to its repertoire.
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Through the simulations of this model the author shows that the emergent vowel

inventories largely correspond with those that are found across real languages. For

instance, the five–vowel inventory, which emerged from the simulations, occurs in 88%

of the world’s languages that have five vowels.

The author further extends this framework to explain the emergence of more com-

plex utterances like the consonant-vowel syllables. In this case, the possible syllable

onsets (i.e., the beginning of a syllable incorporating a single or a group of conso-

nants) comprise seven consonants while the possible nuclei (i.e., the central part of a

syllable which is most commonly a vowel) of the syllable comprise nineteen vowels.

The rules of the imitation game played in the population of agents using consonant-

vowel syllables are similar to the ones presented above for the vowels except for one

important difference. In case of the vowels, new vowel prototypes that were added or

updated depending on the outcome of an imitation game, were improved solely on the

basis of the distance between a particular prototype and the acoustic signal perceived

by an agent. In contrast, the syllable prototypes are improved not only based on the

acoustic distance but also on the articulatory effort involved in producing complex

syllables. However, as the author himself observes, the results obtained from the ex-

periments with syllables are “somewhat confusing”. The outcomes of the simulations

are largely dependent on the parameter settings that determine the way in which the

distance between the syllables are calculated as well as the way in which the quality of

the syllables are improved with respect to an acoustic signal. Although for the right

choice of parameters it is possible to produce phonemically encoded repertoires of

syllables, most of these are unrealisitc and extremely infrequent across the languages

of the world.

Evolutionary Optimization

The most popular modeling paradigm in this category are genetic algorithms (hence-

forth GA) (see [63] for reference). GA is a technique based on the way evolution

works in nature. Instead of keeping track of a single optimal solution, the algorithm

keeps track of a population of solutions. Each solution is represented at two levels –

(a) the level at which the fitness of the solutions are evaluated (i.e., the phenotype),
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and (b) the level at which the solutions are recombined and mutated for reproduction

(i.e., the genotype). Solutions with high fitness are allowed to reproduce off-springs,

while the bad solutions (i.e., solutions with low fitness values) are removed from the

population.

In [80] the authors use a GA model to search for the optimal configuration of

vowel inventories. The model consists of a population of chromosomes, each repre-

senting a possible vowel inventory. The individual vowels are encoded using the basic

articulatory features of position (p), height (h), and rounding (r). While the first

two features are assumed to be continuous within the range [0,1], the last feature

is considered to be binary-valued. Therefore, each vowel can be represented as an

assemblage of these three features. For instance, if for a particular vowel p = 0.1,

h = 0.3, and r = 1 then we can represent it as three-tuple (0.1,0.3,1). Although

this encoding method allows for an infinite number of vowels, the authors assume

that there is only a limited number of inventories of vowel prototypes from which the

system can select candidate configurations. In this GA model, one-point crossover

(recombination) and one-point mutation are used. For instance, Figure 2.3 shows

how the simulation of three–vowel inventories take place. Parent1 in the figure is

a hypothetical vowel inventory consisting of three vowels represented by (0.0,0.5,1),

(0.1,0.3,1), and (0.2,0.7,0), respectively. Similarly, Parent2 is a hypothetical inven-

tory of three vowels encoded as (0.5,0.0,0), (0.3,0.5,0), and (0.3,0.2,0), respectively.

Crossover takes place between two randomly chosen vowels and in the process the two

chromosomes exchange their vowels as shown in the figure. Next, a mutation takes

place at random in one of the vowels of the off-springs that are produced (e.g., the

third vowel of the Off-spring2 in the figure has been mutated). The fitness of each

chromosome after every reproductive phase is computed using the energy function

introduced in [92] as well as the dispersion-focalization principle reported in [134].

The off-springs with high fitness values are allowed to breed, while the ones with low

fitness are removed from the population. The idea behind this policy is that chro-

mosomes coding for high quality solutions shall multiply in the population, whereas

chromosomes coding for bad solutions shall disappear.

Comparison of the real and the emergent inventories show that only the most

frequently observed three– and four–vowel inventories are predicted by the system.
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Figure 2.3: Crossover and mutation in the simulation of (hypothetical) three–vowel inventories

Other predictions, for inventories of larger size, do not match well with real inventories

due to the limitations of the simple GA model used by the authors in producing more

than a single optimal vowel inventory.

In [132] the authors adopt a genetic algorithm framework to explain the emer-

gence of syllable structures that are found across human languages. In this case,

the population is composed of a set of candidate strings (the “words” of a language)

which are selected on the basis of a number of functional criteria and then mutated,

crossed and multiplied to reproduce the next generation of strings. After a number of

generations, strings that closely resemble the structure of human syllables are found

to emerge. The most important problem with this model is that the constraints that

govern the structure of the human syllables are built in as selection criteria. Conse-

quently, the model does not actually explain the structure of the syllables; in contrast,

it only indicates that if the selection criteria are present, simulated evolution would

be sufficient to produce syllables that obey the constraints.

2.4 Summary

In this chapter, we have briefly outlined the state-of-the-art of research in one of the

central problems of phonology that involves predicting the structure of the human

speech sound inventories. More specifically, we have described (a) the speech produc-

tion mechanism, (b) how speech sounds can be represented as abstract units called

phonemes, (c) the regularities observed across the phoneme inventories of the world’s



2.4 Summary 37

languages, and (d) linguistic as well as computational approaches to explain these

regularities.

This review makes it clear that there have been several attempts made by the

earlier researchers to explain the structure of the sound inventories of human lan-

guages. In fact, some of these studies have proved to be quite successful in accurately

modeling the emergence of various universal properties of these inventories. However,

another issue that is also apparent from the review is that it becomes increasingly

difficult as one attempts to model the emergence of the inventories of more and more

complex utterances such as consonants and syllables.

Therefore, the primary objective of this work is to develop a versatile modeling

methodology that can, in general, serve as a computational framework for explaining

the emergent structure of the sound inventories of human languages. More specif-

ically, in the forthcoming chapters, we shall show how this methodology, grounded

in the theories of complex networks, can be successfully employed to study the self-

organization of the consonant inventories which is considered to be one of the more

difficult problems in phonology. The fact that we are able to easily employ the same

framework to successfully analyze the structure of the vowel inventories also, illus-

trates the generality of this modeling paradigm.

Since our primary focus throughout this thesis are the consonant inventories, it is

worthwhile to mention here that we do not pretend to provide final and authoritative

answers about the evolution and emergence of these inventories. However, we present

an initial attempt to model and investigate this old but difficult problem in a highly

sophisticated computational framework which in turn can be also used to successfully

study other types of inventories.





Chapter 3

Analysis and Synthesis of the

Occurrence Network of Consonants

In this chapter, we present the basic computational framework to represent, analyze

and synthesize the consonant inventories of the world’s languages. This framework

belongs to a special class of complex networks where there are two different sets (or

partitions) of nodes: the bipartite networks. An edge, in a bipartite network, connects

nodes from one partition to the other, but never the nodes within the same partition.

We represent the consonant inventories as a bipartite network namely, the Phoneme-

Language Network or PlaNet where the nodes in the two partitions are labeled by

the consonants and the languages respectively. Edges run between the nodes of these

two partitions depending on whether a particular consonant occurs in the inventory

of a particular language.

The construction of PlaNet as a bipartite network is motivated by similar modeling

of various complex phenomena observed in society as well as nature. In most of

these networks, however, both the partitions grow with time unlike PlaNet where the

partition corresponding to the consonants remains relatively fixed over time while the

partition corresponding to the languages grows with time. Typical examples include

different types of collaboration networks such as (a) the movie-actor network [7, 10,

123,130,161] where movies and actors constitute the two respective partitions and an

39
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edge between them signifies that a particular actor acted in a particular movie, (b) the

article-author network [14, 89, 113] where the two partitions respectively correspond

to articles and authors and edges denote which person has authored which articles

and (c) the board-director network [24, 152] where the two partitions correspond to

the boards and the directors respectively and a director is linked by an edge with a

society if he/she sits on its board. In fact, the concept of collaboration has also been

extended to model such diverse phenomena as the city-people network [49] where

an edge between a person and a city indicates that he/she has visited that city, the

word-sentence network [25,66], the bank-company network [145] or the donor-acceptor

network [142] (see section 3.6 for a detailed review on bipartite networks).

Several models have been proposed in literature to synthesize the structure of these

bipartite networks, i.e., when both the partitions grow unboundedly with time [7,66,

123, 130, 161]. The results of such growth models indicate that when an incoming

movie node (in case of movie-actor networks) preferentially attaches itself to an ac-

tor node, the emergent degree distribution of the actor nodes follows a power-law

(see [130] for details). This result is reminiscent of unipartite networks where prefer-

ential attachment leads to the emergence of power-law degree distributions (see [13]

for details).

Although there have been some studies on non-growing bipartite networks [118,

50], those like PlaNet where one of the partitions remain fixed over time (i.e., the

partition of consonants) while the other grows (i.e., the partition of languages) have

received much less attention. Therefore, the primary objective of this chapter is

to systematically analyze as well as synthesize the structure of PlaNet and thereby,

explain the occurrence distribution of the consonants across languages.

The rest of the chapter is organized as follows. In section 3.1, we present the formal

definition of PlaNet, describe the data source and outline its construction procedure.

We analyze some interesting topological properties of PlaNet in the following section.

In section 3.3, we present a synthesis model that can, quite accurately, reproduce the

structure of PlaNet. The next section presents an analytical solution for the proposed

synthesis model after certain simplifications. In section 3.5, we further construct five

different networks that respectively represent the consonant inventories belonging to
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the five major language families namely, the Indo-European (IE-PlaNet), the Afro-

Asiatic (AA-PlaNet), the Niger-Congo (NC-PlaNet), the Austronesian (AN-PlaNet)

and the Sino-Tibetan (ST-PlaNet). We analyze as well as synthesize these networks

in order to examine the dynamics within and across the language families. In the

next section, we present a detailed review on various studies related to complex

bipartite networks and, wherever possible, draw a comparison between them and

the one proposed by us here. In section 3.7, we summarize some of the important

contributions of this chapter, outline a few linguistic interpretations of the model and

identify certain limitations with reference to the network construction and synthesis,

most of which are addressed in the next chapter.

3.1 Definition and Construction of PlaNet

In this section, we present a formal definition of PlaNet. This shall serve as the

working definition throughout the rest of the thesis. We also present a detailed

description of the data source used for the construction of PlaNet and discuss the

methodology adopted for this construction.

3.1.1 Definition of PlaNet

PlaNet is a bipartite graph G = 〈 VL, VC , Epl 〉 consisting of two sets of nodes namely,

VL (labeled by the languages) and VC (labeled by the consonants); Epl is the set of

edges running between VL and VC . There is an edge e ∈ Epl from a node vl ∈ VL to a

node vc ∈ VC iff the consonant c is present in the inventory of language l. Figure 3.1

presents a hypothetical example illustrating the nodes and edges of PlaNet.

3.1.2 The Data Source

The source of data for this work is the UCLA Phonological Segment Inventory

Database (UPSID) [102]. The choice of this database is motivated by a large number
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Figure 3.1: A hypothetical example illustrating the nodes and edges of PlaNet

of typological studies [44,69,88,96] that have been carried out in the past on UPSID.

We have selected UPSID mainly due to two reasons – (a) it is the largest database

of this type that is currently available and, (b) it has been constructed by selecting

languages from moderately distant language families, which ensures a considerable

degree of genetic balance.

The languages that are included in UPSID have been chosen in a way to approxi-

mate a properly constructed quota rule based on the genetic groupings of the world’s

extant languages. The quota rule is that only one language may be included from

each small language family (e.g., one from the West Germanic and one from the North

Germanic) but that each such family should be represented. Eleven major genetic

groupings of languages along with several smaller groups have been considered while

constructing the database. All these together add up to make a total of 317 lan-

guages in UPSID. Note that the availability as well as the quality of the phonological

descriptions have been the key factors in determining the language(s) to be included

from within a group; however, neither the number of speakers nor the phonological
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Table 3.1: Some of the important features listed in UPSID

Manner of Articulation Place of Articulation Phonation

tap velar voiced

flap uvular voiceless

trill dental

click palatal

nasal glottal

plosive bilabial

r-sound alveolar

fricative retroflex

affricate pharyngeal

implosive labial-velar

approximant labio-dental

ejective stop labial-palatal

affricated click dental-palatal

ejective affricate dental-alveolar

ejective fricative palato-alveolar

lateral approximant

peculiarity of a language has been considered.

Each consonant in UPSID is characterized by a set of articulatory features (i.e.,

place of articulation, manner of articulation and phonation) that distinguishes it from

the other consonants. Certain languages in UPSID also consist of consonants that

make use of secondary articulatory features apart from the basic ones. There are

around 52 features listed in UPSID; the important ones are noted in Table 3.1. Note

that in UPSID the features are assumed to be binary-valued (1 meaning the feature is

present and 0 meaning it is absent) and therefore, each consonant can be represented

by a binary vector.

Over 99% of the UPSID languages have bilabial (e.g., /p/), dental-alveolar (e.g.,

/t/) and velar (e.g., /k/) plosives. Furthermore, voiceless plosives outnumber the

voiced ones (92% vs. 67%). According to [101], languages are most likely to have
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8 to 10 plosives; nevertheless, the scatter is quite wide and only around 29% of the

languages fall within the mentioned limits. 93% of the languages have at least one

fricative (e.g., /f/). However, as [101] points out, the most likely number of fricatives

is between 2 to 4 (around 48% of the languages fall within this range). 97% of the

languages have at least one nasal (e.g., /m/); the most likely range reported in [101]

is 2 to 4 and around 48% of the languages in UPSID are in this range. In 96% of

the languages there is at least one liquid (e.g., /l/) but, languages most likely have

2 liquids (around 41%) [101]. Approximants (e.g., /j/) occur in fewer than 95% of

the languages; however, languages are most likely to have 2 approximants (around

69%) [101]. About 61% of the languages in UPSID have the consonant /h/, which

is not included in any of the categories already mentioned above. Some of the most

frequent consonants in UPSID are, /p/, /b/, /t/, /d/, /tS/, /k/, /g/, /P/, /f/, /s/,

/S/, /m/, /n/, /ñ/, /N/, /w/, /l/, /r/, /j/, /h/, and together they are often termed

as the ‘modal’ inventory [101].

It is important to mention here that there are certain criticisms of this database

especially related to representation of the phonemes [156]. The phoneme inventories

in UPSID are represented using a feature-based classificatory system developed by

the phoneticians primarily through the inspection of various observable facts about

language (see [88] for a vivid description of this design methodology). Although there

are questions regarding the authenticity of this representation mostly related to the

existence of (abstract) features [156], in absence of any other alternative resource

for the validation of our computational models we had to resort to UPSID. Note

that it is hard to find what exactly could be a true representation of the phonemes

and there is no consensus on such an issue even among the experts in the field.

Nevertheless, the representation of UPSID can be at least said to be quite “faithful”

if not the “true”. This is because, numerous studies on this database show that various

patterns reflected by it actually correlate perfectly with what is observed in nature.

The results presented in this thesis further brings forth certain universal qualities of

the feature-based classificatory system for describing the consonant and the vowel

inventories, which do not manifest in case of the randomly constructed inventories.

Most importantly, the structural regularities reported in the thesis were not presumed

by the phoneticians while designing the classificatory system. Therefore, these non-
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trivial findings possibly point to universal properties of real languages that are getting

reflected only because the classificatory system turns out to be a very appropriate

way of representing the inventories. We understand that the statistics that we present

might change if the experiments are carried out on a different data set. Therefore,

we do not claim that the inferences drawn here are sacrosanct; rather they are only

indicative. In this context, the trends in the results outlined here are more important

than the exact values. We believe that for any choice of the data set the trends should

remain similar and this being an interesting future research question related to the

evolution of sound inventories, our results definitely have a crucial role in propelling

it forward.

3.1.3 Construction Methodology

We have used UPSID in order to construct PlaNet. Consequently, the total number of

language nodes in PlaNet (i.e., |VL|) is 317. The total number of distinct consonants

found across the 317 languages of UPSID, after appropriately filtering the anomalous

and the ambiguous ones [102], is 541. In UPSID, a phoneme has been classified as

anomalous if its existence is doubtful and ambiguous if there is insufficient information

about the phoneme. For example, the presence of both the palatalized dental plosive

and the palatalized alveolar plosive are represented in UPSID as palatalized dental-

alveolar plosive (an ambiguous phoneme). According to popular techniques [124], we

have completely ignored the anomalous phonemes from the data set, and included

all the ambiguous forms of a phoneme as separate phonemes because, there are no

descriptive sources explaining how such ambiguities might be resolved. Therefore,

the total number of consonant nodes in PlaNet (i.e., |VC |) is 541.

The number of edges in PlaNet (i.e., |Epl|) is 7022. Thus, the connection density

of PlaNet is
|Epl|

|VL||VC |
= 7022

317×541
= 0.06, which can also be thought of as the probability

that a randomly chosen consonant occurs in a particular language. However, as we

shall see below, the occurrence of the consonants does not depend upon a single

probability value; rather, it is governed by a well-behaved probability distribution.
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3.2 Topological Properties of PlaNet

In this section, we shall study the topological properties of PlaNet mainly in terms

of the degree distributions of its two sets of nodes.

3.2.1 Degree of a Node

The degree of a node v, denoted by kv, is the number of edges incident on v. Therefore,

the degree of a language node vl in PlaNet refers to the size of the consonant inventory

of the language l. Similarly, the degree of a consonant node vc in PlaNet refers to the

frequency of occurrence of the consonant c across the languages of UPSID.

3.2.2 Degree Distribution of PlaNet

The degree distribution is the fraction of nodes, denoted by pk, that have a degree

equal to k [114]. In other words, it is the probability that a node chosen uniformly at

random from the network (with N nodes) has a degree equal to k. The cumulative

degree distribution Pk is the fraction of nodes having degree greater than or equal to

k. Therefore,

Pk =

∞∑

k′=k

pk′ (3.1)

Note that the cumulative distribution is more robust to noise present in the observed

data points, but at the same time it contains all the information encoded by pk [114].

Degree Distribution of the Language Nodes

Figure 3.2 shows the degree distribution of the nodes in VL where the x-axis denotes

the degree of each language node expressed as a fraction of the maximum degree and
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Figure 3.2: Degree distribution of the language nodes in PlaNet. The figure in the inset is a magnified

version of a portion of the original figure

the y-axis denotes the fraction of nodes having a given degree.

Figure 3.2 indicates that the number of consonants appearing in different lan-

guages follow a β-distribution1 (see [22] for reference) which is right skewed with the

values of α and β equal to 7.06 and 47.64 (obtained using maximum likelihood esti-

mation method) respectively. This asymmetry in the distribution points to the fact

that languages usually tend to have smaller consonant inventory size, the best value

being somewhere between 10 and 30. The distribution peaks roughly at 21 (which

is its mode) while the mean of the distribution is also approximately 21 indicating

that on an average the languages in UPSID have a consonant inventory of size 21

(approx.) [103].

1A random variable is said to have a β-distribution with parameters α > 0 and β > 0 if and

only if its probability mass function is given by, f(x)= Γ(α+β)
Γ(α)Γ(β)x

α−1(1 − x)β−1 for 0 < x < 1 and

f(x)= 0 otherwise. Γ(·) is the Euler’s gamma function.
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Figure 3.3: Degree distribution of the consonant nodes in PlaNet in doubly-logarithmic scale. The

letter x denotes the cut-off point

Degree Distribution of the Consonant Nodes

Figure 3.3 illustrates the degree distribution plot for the consonant nodes in VC in

doubly-logarithmic scale. In this figure the x-axis represents the degree k and the

y-axis represents the distribution Pk.

Figure 3.3 indicates that Pk follows a well-behaved distribution along with an

exponential cut-off towards the tail. The cut-off point is shown by the letter x in the

figure. We find that there are 22 consonant nodes which have their degree above the

cut-off range (i.e., these are the extremely frequent consonants). In the forthcoming

sections, we shall further explore the nature of this distribution.

An immediate question that follows is that what could be a possible reason for

the emergence of this degree distribution. In most of the networked systems like the

society, the Internet, the World Wide Web, and many others, preferential attach-

ment (i.e., when “the rich gets richer”) [13, 141] is known to play a crucial role in

generating such distributions. With reference to PlaNet this preferential attachment

can be interpreted as the heterogeneity in the choice of consonants by the speakers

over linguistic generations. Consonants belonging to languages that are more preva-
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lent among the speakers in one generation have higher chances of being transmitted

to the speakers of languages of the subsequent generations than other consonants

(see [18] for similar observations). Therefore, it may be argued that preferential at-

tachment is a manifestation of the heterogeneity in the choice of consonants by the

language speakers. In the next section, we attempt to develop a growth model based

on preferential attachment coupled with a tunable randomness component that can

mimic the degree distribution of the consonant nodes in PlaNet to a considerable

extent.

3.3 The Synthesis Model

In this section, we present a synthesis model for PlaNet based on preferential attach-

ment coupled with a tunable randomness component, where the distribution of the

consonant inventory size, i.e., the degrees of the language nodes, is assumed to be

known a priori. Note that this shall be a working assumption for all the synthesis

models presented in the rest of the thesis.

Let us denote the degree of a language node Li ∈ VL by di. The consonant nodes in

VC are assumed to be unlabeled, i.e., they are not marked by the distinctive features

that characterize them. We first sort the nodes L1 through L317 in the ascending

order of their degrees. At each time step a node Lj , chosen in order, preferentially

attaches itself with dj distinct nodes (call each such node Ci) of the set VC . The

probability Pr(Ci) with which the node Lj attaches itself to the node Ci is given by,

Pr(Ci) =
γki + 1∑

i
′∈V

′
C
(γki

′ + 1)
(3.2)

where, ki is the current degree of the node Ci, V
′

C is the set of nodes in VC that

are not already connected to Lj and γ is the tunable parameter that controls the

amount of randomness in the system. The lower the value of γ the higher is the

randomness. Note that 1/γ is a positive constant usually referred to as the initial

attractiveness [47]. Algorithm 3.1 summarizes the mechanism to generate the syn-
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Algorithm 3.1: Synthesis model based on preferential attachment

Input: Nodes L1 through L317 sorted in an increasing order of their degrees

for t = 1 to 317 do

Choose (in order) a node Lj with degree dj;

for c = 1 to dj do

Connect Lj to a node Ci ∈ VC to which it is not already connected

following the distribution, Pr(Ci) = γki+1∑
i
′
∈V

′
C

(γk
i
′ +1)

where V
′

C is the set of

nodes in VC (inclusive of Ci) to which Lj is not yet connected, ki is the

current degree of node Ci and γ is the tunable parameter;

end

end

thesized version of PlaNet (henceforth PlaNetsyn) and Figure 3.4 illustrates a partial

step of the synthesis process. In the figure, when language l4 has to connect itself

with one of the nodes in the set VC it does so with the one having the highest degree

(=3) rather than with others in order to achieve preferential attachment which is the

working principle of our algorithm.

Apart from the ascending order, we have also simulated the model with descending

and random order of the inventory size. The degree distribution obtained by consid-

ering the ascending order of the inventory size, matches much more accurately than in

the other two scenarios. One possible reason for this might be as follows. With each

consonant is associated two different frequencies: (a) the frequency of occurrence of a

consonant over languages or the type frequency, and (b) the frequency of usage of the

consonant in a particular language or the token frequency. Researchers have shown

in the past that these two frequencies are positively correlated [23]. Nevertheless, our

synthesis model based on preferential attachment takes into account only the type

frequency of a consonant and not its token frequency. If language is considered to be

an evolving system then both of these frequencies, in one generation, should play an

important role in shaping the inventory structure of the next generation.

In the later stages of our synthesis process when the attachments are strongly

preferential, the type frequencies span over a large range and automatically compen-
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Figure 3.4: A partial step of the synthesis process

sate for the absence of the token frequencies (since they are positively correlated).

However, in the initial stages of this process the attachments that take place are ran-

dom in nature and therefore, the type frequencies of all the nodes are roughly equal.

At this point it is the token frequency (absent in our model) that should discriminate

between the nodes. This error due to the loss of information of the token frequency

in the initial steps of the synthesis process can be minimized by allowing only a small

number of attachments (so that there is less spreading of the error). This is perhaps

the reason why sorting the language nodes in the ascending order of their degree helps

in obtaining better results.

Simulation Results

We simulate the above model to obtain PlaNetsyn for 100 different runs and average

the results over all of them. We find that the degree distributions that emerge, fit the
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Figure 3.5: Comparison of the degree distribution (in doubly-logarithmic scale) of the consonant

nodes in PlaNet with that of (a) PlaNetsyn obtained from the simulation of the model (γ = 14)

and (b) PlaNettheo obtained from the analytical solution of the model (γ = 14). The results are

also compared with the case where there is no preferential attachment and all the connections are

equiprobable

empirical data well for γ ∈ [12.5,16.7], the best being at γ = 14 (shown in Figure 3.5).

In fact, the mean error2 between the real and the synthesized distributions for γ = 14

is as small as 0.03. In contrast, if there is no preferential attachment and all the

connections to the consonant nodes are equiprobable (see Figure 3.5), then this error

rises to 0.35.

2Mean error is defined as the average difference between the ordinate pairs (say y and y
′

) where

the abscissas are equal. In other words, if there are Y such ordinate pairs then the mean error can

be expressed as
∑

|y−y
′

|
Y
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3.4 The Analytical Solution for the Model

In this section, we attempt to analytically solve the model3 presented above in order

to derive a closed form expression for the degree distribution of the consonant nodes.

We shall refer to this analytically derived version of PlaNet as PlaNettheo. Let pk,t

denote the probability that a randomly chosen node from the partition VC has degree

k after t time steps. It is difficult to solve this model because, unlike the popular

preferential attachment based synthesis models for unipartite [13] and bipartite [130]

networks, in this case, one cannot make the stationary state assumption pk,t+1 = pk,t

in the limit t → ∞. This is due to the fact that the average degree of the nodes in VC

diverges with time and consequently, the system does not have a stationary state.

Nevertheless, for certain simplifications of the model we can derive an approximate

closed form expression for the degree distribution of the VC partition of PlaNettheo.

More specifically, we assume that the degree of the nodes in the VL partition is

equivalent to their average degree and is therefore, a constant (µ). In other words,

µ represents the average size of a consonant inventory or the average number of

consonants present in human languages. We further assume that in a time step a

language node can attach itself to a consonant node more than once. Although by

definition, a consonant can occur in the inventory of a language only once, as we

shall see, the result derived with the above assumption matches fairly well with the

empirical data.

Under the assumptions mentioned above the denominator of the equation 3.2 can

be re-written as
∑N

i=1(γki + 1) where N = |VC |. Further, since the sum of the

degrees in the VL partition after t steps (= µt) should be equivalent to that in the VC

partition therefore we have

N∑

i=1

ki = µt (3.3)

3This is a joint work that has been carried out with two colleagues, Fernando Peruani and Monojit

Choudhury, and one of my supervisors.
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Notice that the average degree of the nodes in VC after t steps is µt/N which, as we

have pointed out earlier, diverges with t because, N is fixed over time.

At time t = 0, all the nodes in VC have a degree zero and therefore our initial

condition is pk,t=0 = δk,0, where δk,0 is the Kronecker delta function [74]. We shall

now solve the model for µ = 1 and then generalize for the case µ > 1.

3.4.1 Solution for µ = 1

Since µ = 1, at each time step a node in the VL partition essentially brings a single

incoming edge as it enters the system. The evolution of pk,t can be expressed as

pk,t+1 = (1 − P̃ (k, t))pk,t + P̃ (k − 1, t)pk−1,t (3.4)

where P̃ (k, t) refers to the probability that the incoming edge lands on a consonant

node of degree k at time t. P̃ (k, t) can be easily derived for µ = 1 using together the

equations 3.2 and 3.3 and takes the form

P̃ (k, t) =

{
γk+1
γt+N

for 0 ≤ k ≤ t

0 otherwise
(3.5)

for t > 0 while for t = 0, P̃ (k, t) = 1
N

δk,0 .

Equation 3.4 can be explained as follows. The probability of finding a consonant

node with degree k at time t + 1 decreases due to those nodes, which have a degree

k at time t and receive an edge at time t + 1 therefore acquiring degree k + 1, i.e.,

P̃ (k, t)pk,t. Similarly, this probability increases due to those nodes that at time t have

degree k−1 and receive an edge at time t+1 to have a degree k, i.e., P̃ (k−1, t)pk−1,t.

Hence, the net increase in the value of pk,t+1 can be expressed by the equation 3.4.

In order to have an exact analytical solution of the equation 3.4 we express it as
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a product of matrices

pt+1 = Mtpt =
[ t∏

τ=0

Mτ

]
p0 (3.6)

where pt denotes the degree distribution at time t and is defined as pt = [p0,t p1,t p2,t . . .]T

(T stands for the standard transpose notation for a matrix), p0 is the initial condition

expressed as p0 = [1 0 0 . . .]T and Mτ is the evolution matrix at time τ which is

defined as

Mτ =




1 − P̃ (0, τ) 0 0 0 . . .

P̃ (0, τ) 1 − P̃ (1, τ) 0 0 . . .

0 P̃ (1, τ) 1 − P̃ (2, τ) 0 . . .
...

...
...

...
. . .




(3.7)

Let us further define a matrix Ht as follows.

H0 = M0 (3.8)

Ht = MtHt−1 =
[ t∏

τ=0

Mτ

]
(3.9)

Thus we have,

pt+1 = Htp0 (3.10)

Since our initial condition (i.e., p0) is a matrix of zeros at all positions except the

first row therefore, all the relevant information about the degree distribution of the

consonant nodes is encoded by the first column of the matrix Ht. The (k + 1)th

element of this column essentially corresponds to pk,t. Let the entry corresponding to

the ith row and the jth column of Ht and Mt be denoted by ht
i,j and mt

i,j respectively.
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On successive expansion of Ht using the recursive definition provided in equation 3.9,

we get (see Figure 3.6 for an example)

ht
i,j = mt

i,i−1h
t−1
i−1,j + mt

i,ih
t−1
i,j (3.11)

or,

ht
i,j = (mt

i,i−1m
t−1
i−1,i−2)h

t−2
i−2,j +(mt

i,i−1m
t−1
i−1,i−1+mt

i,im
t−1
i,i−1)h

t−2
i−1,j +mt

i,im
t−1
i,i ht−2

i,j (3.12)

Since the first column of the matrix Ht encodes the degree distribution, it suffices to

calculate the values of ht
i,1 in order to estimate pk,t. In fact, pk,t (i.e., the (k + 1)th

entry of Ht) is equal to ht
k+1,1. In the following, we shall attempt to expand certain

values of ht
k+1,1 in order to detect the presence of a pattern (if any) in these values.

In particular, let us investigate two cases of h1
2,1 and h2

2,1 from Figure 3.6. We have

h1
2,1 = m1

2,1h
0
1,1 + m1

2,2h
0
2,1 =

(
1 − 1

N

)(
1

γ + N

)
+

(
N − 1

γ + N

)(
1

N

)
(3.13)

or,

h1
2,1 = 2

(N − 1)

(γ + N)N
(3.14)

Similarly,

h1
2,1 = m2

2,1m
1
1,1h

0
1,1 + m2

2,2m
1
2,1h

0
1,1 + m2

2,2m
1
2,2h

0
2,1 (3.15)

or,

h1
2,1 = 3

(γ + N − 1)(N − 1)

(2γ + N)(γ + N)N
(3.16)

A closer inspection of equations 3.14 and 3.16 reveals that the pattern of evolution
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Figure 3.6: A few steps showing the calculations of equation 3.11 and 3.12

of this row, in general, can be expressed as

pk,t =

(
t

k

) ∏k−1
x=0 (γx + 1)

∏t−1−k
y=0 (N − 1 + γy)

∏t−1
w=0 (γw + N)

(3.17)

for 0 ≤ k ≤ t and pk,t = 0 otherwise. Further, we define the special case
∏−1

z=0(. . . ) =

1. Note that if we now put t = 2, k = 1 and t = 3, k = 1 in 3.17 we recover

equations 3.14 and 3.16 respectively.

Equation 3.17 is the exact solution of the equation 3.4 for the initial condition

pk,t=0 = δk,0. Therefore, this is the analytical expression for the degree distribution

of the consonant nodes in PlaNettheo for µ = 1.
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In the limit γ → 0 (i.e. when the attachments are completely random) equa-

tion 3.17 takes the form

pk,t =

(
t

k

)(
1

N

)k (
1 − 1

N

)t−k

(3.18)

for 0 ≤ k ≤ t and pk,t = 0 otherwise.

On the other hand, when γ → ∞ (i.e., when the attachments are completely

preferential) the degree distribution of the consonant nodes reduces to

pk,t =

(
1 − 1

N

)
δk,0 +

1

N
δk,t (3.19)

3.4.2 Solution for µ > 1

In the previous section, we have derived an analytical solution for the degree distribu-

tion of the consonant nodes in PlaNettheo specifically for µ = 1. However, note that

the value of µ is greater than 1 (approximately 21) for the real network (i.e., PlaNet).

Therefore, one needs to analytically solve for the degree distribution for values of µ

greater than 1 in order to match the results with the empirical data. Here we attempt

to generalize the derivations of the earlier section for µ > 1.

We assume that µ � N (which is true for PlaNet) and expect equation 3.4 to be

a good approximation for the case of µ > 1 after replacing P̃ (k, t) by P̂ (k, t) where

P̂ (k, t) is defined as

P̂ (k, t) =

{
(γk+1)µ
µγt+N

for 0 ≤ k ≤ µt

0 otherwise
(3.20)

The term µ appears in the denominator of the equation 3.20 for 0 ≤ k ≤ µt because,

in this case the total degree of the consonant nodes in PlaNettheo at any point in time
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is µt rather than t as in equation 3.5. The numerator contains a µ since at each time

step there are µ edges that are being incorporated into the network rather than a

single edge.

The solution of equation 3.4 with the attachment kernel defined in equation 3.20

can be expressed as

pk,t =

(
t

k

) ∏k−1
x=0 (γx + 1)

∏t−1−k

y=0 (N
µ
− 1 + γy)

∏t−1
w=0 (γw + N

µ
)

(3.21)

for 0 ≤ k ≤ µt and pk,t = 0 otherwise.

Given that µ � N we can neglect the term containing µ/N in the equation 3.21

and express the rest using factorials as

pk,t =
t!η!(t − k + η − γ−1)!(k − 1 + γ−1)!γ−1

(t − k)!k!(t + η)!(η − γ−1)!(γ−1)!
(3.22)

where η = N/µγ. Approximating the factorials using Stirling’s formula (see [1] for a

reference), we get

pk,t = Ã(t, γ, η)
(k − 1 + γ−1)k−1+γ−1+0.5(t − k + η − γ−1)t−k+η−γ−1+0.5

kk+0.5(t − k)t−k+0.5
(3.23)

where

Ã(t, γ, η) =
tt+0.5ηη+0.5γγ−1−0.5e√

2π(t + η)t+η+0.5(η − γ−1)η−γ−1+0.5
(3.24)

is a term independent of k.

Since we are interested in the asymptotic behavior of the network such that t is

very large, we may assume that t � k � η > γ−1. Under this assumption, we can
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re-write the equation 3.23 in terms of the fraction k/t and this immediately reveals

that the expression is approximately a β-distribution in k/t. More specifically, we

have

pk,t ≈ Â(t, η, γ)B(k/t; γ−1, η − γ−1) = Â(t, η, γ)(k/t)γ−1−1(1 − k/t)η−γ−1−1 (3.25)

where B(z; α, β) refers to a β-distribution over variable z. We can generate different

distributions by varying the value of γ in equation 3.25. We can further compute Pk,t

(i.e. the cumulative degree distribution) using equations 3.1 and 3.25 together.

Recall that in section 3.3 we have found through simulations that the best fit

for the degree distribution emerges at γ = 14. Replacing µ by 21, t by 317, N by

541 and γ by 14 we obtain the degree distribution for the consonant nodes Pk,t of

PlaNettheo. The bold line in Figure 3.5 illustrates the plot for this distribution in

doubly-logarithmic scale. The figure indicates that the theoretical curve (i.e., the

degree distribution of PlaNettheo) matches quite well with the empirical data (i.e.,

the degree distribution of PlaNet). In fact, the mean error between the two curves in

this case is as small as 0.03. It is worthwhile to mention here that since the degree

distribution obtained from the simulation as well as the theoretical analysis of the

model matches the real data for a very high value of γ there is a considerable amount

of preferential attachment that goes on in shaping the emergent structure of PlaNet.

3.5 Dynamics of the Language Families

In this section, we investigate the dynamics within and across the consonant inven-

tories of some of the major language families of the world. More specifically, for our

investigation, we choose five different families namely the Indo-European, the Afro-

Asiatic, the Niger-Congo, the Austronesian and the Sino-Tibetan. We manually sort

the languages of these five groups from the data available in UPSID. Note that we

have included a language in any group if and only if we could find a direct evidence of
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its presence in the corresponding family. We next present a brief description of each

of these groups4 and list the languages from UPSID that are found within them.

Indo-European: This family includes most of the major languages of Europe and

south, central and south-west Asia. Currently, it has around 3 billion native speakers,

which is largest among all the recognized families of languages in the world. The total

number of languages appearing in this family is 449. The earliest evidences of the

Indo-European languages have been found to date 4000 years back.

Languages: Albanian, Bengali, Breton, Bulgarian, Farsi, French, German, Greek,

Hindi/Urdu, Irish, Kashmiri, Kurdish, Lithuanian, Norwegian, Pashto, Romanian,

Russian, Sinhalese, Spanish5.

Afro-Asiatic: Afro-Asiatic languages have about 200 million native speakers spread

over north, east, west, central and south-west Africa. This family is divided into five

subgroups with a total of 375 languages. The proto-language of this family began to

diverge into separate branches approximately 6000 years ago.

Languages: Amharic, Angas, Arabic, Awiya, Dera, Dizi, Hamer, Hausa, Iraqw,

Kanakuru, Kefa, Kullo, Margi, Ngizim, Shilha, Socotri, Somali.

Niger-Congo: Majority of the languages that belong to this family are found in the

sub-Saharan parts of Africa. The number of native speakers is around 300 million and

the total number of languages is 1514. This family descends from a proto-language,

which dates back 5000 years.

Languages: Akan, Amo, Bambara, Bariba, Beembe, Birom, Bisa, Cham, Dagbani,

Dan, Diola, Doayo, Efik, Ga, Gbeya, Igbo, Ik, Kadugli, Koma, Kpelle, Lelemi, Moro,

Senadi, Tampulma, Tarok, Teke, Temne, Wolof, Zande, Zulu.

4Most of the information has been collected from the Ethnologue: http://www.ethnologue.com/

and the World Atlas of Language Structures: http://wals.info/.
5Interestingly, while preparing this set of Indo-European languages from UPSID, we did not find

English.

http://www.ethnologue.com/
http://wals.info/
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Austronesian: The languages of the Austronesian family are widely dispersed

throughout the islands of south-east Asia and the Pacific. There are 1268 languages

in this family, which are spoken by a population of 6 million native speakers. Around

4000 years back it separated out from its ancestral branch.

Languages: Adzera, Batak, Chamorro, Hawaiian, Iai, Javanese, Kaliai, Malagasy,

Roro, Rukai, Tsou, Tagalog.

Sino-Tibetan: Most of the languages in this family are distributed over the entire

east Asia. With a population of around 2 billion native speakers it ranks second after

Indo-European. The total number of languages in this family is 403. Some of the

first evidences of this family can be traced 6000 years back.

Languages – Ao, Burmese, Dafla, Hakka, Jingpho, Karen, Lahu, Mandarin, Taishan.

We use the consonant inventories of the language families listed above to construct

five bipartite networks – IE-PlaNet (for Indo-European family), AA-PlaNet (for Afro-

Asiatic family), NC-PlaNet (for Niger-Congo family), AN-PlaNet (for Austronesian

family) and ST-PlaNet (for Sino-Tibetan family). The number of nodes and edges in

each of these networks are noted in Table 3.2.

Table 3.2: Number of nodes and edges in the four bipartite networks corresponding to the four

language families

Networks |VL| |VC | |Epl|
IE-PlaNet 19 148 534

AA-PlaNet 17 123 453

NC-PlaNet 30 135 692

AN-PlaNet 12 82 221

ST-PlaNet 9 71 201

We next attempt to fit the degree distribution of the five empirical networks with

the analytical expression derived for Pk,t in the previous section. For all the experi-

ments, we set N = 541, t = number of languages in the family under investigation and

µ = average degree of the language nodes in the PlaNet representing the family under
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Figure 3.7: The degree distribution of the different real networks (black dots) along with the best

fits obtained from the analytical expression for Pk,t (grey lines). For all the plots the y-axis is in

log-scale

investigation. Therefore, given the value of k we can compute pk,t and consequently,

Pk,t, if γ is known. We vary the value of γ such that the mean error between the de-

gree distribution of the real network and the equation is least. The best fits obtained

for each of the five networks are shown in Figure 3.7. The values of γ corresponding

to these fits are noted in Table 3.3.

The results indicate that the value of γ for PlaNet is lower than that of all the

individual networks corresponding to the language families. Therefore, it may be

argued that the preferential component within a language family is stronger than

across families. Note that this is true only for real linguistic families and not for any

arbitrary group of languages. In fact, if one randomly selects a set of inventories to

represent a family then for a large number of such sets the average value of γ is 14.7
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Table 3.3: The values of γ obtained for the best fits for each family together with the age of the

families

Families γ Age (in years)

Austronesian 33.3 4000

Niger-Congo 28.6 5000

Sino-Tibetan 28.6 6000

Afro-Asiatic 26.0 6000

Indo-European 18.0 4000 (or 8000)

which is close to that of PlaNet.

We further observe a very interesting positive correlation between the approximate

age of the language family and the values of γ obtained in each case (see Table 3.3).

The only anomaly is the Indo-European branch, which possibly indicates that this

might be much older than it is believed to be. In fact, a recent study [12] has shown

that the age of this family dates back to 8000 years. If this last argument is assumed to

be true then the values of γ have a one-to-one correspondence with the approximate

period of existence of the language families. As a matter of fact, this correlation

can be intuitively justified – higher is the period of existence of a family higher are

the chances of its diversification into smaller subgroups, which in turn increases the

randomness of the system and therefore, the values of γ are found to be less for the

older families.

3.6 Review on Bipartite Networks

A large number of real-world systems can be naturally modeled as a bipartite network.

One of the most important examples are the social collaboration networks that are

generally defined in terms of a set of people (known as actors in the social science

literature) and a set of collaboration acts. Consequently, the bipartite network in

this case is composed of two sets of vertices one corresponding to the actors and

the other to the acts of collaboration. In the following, we shall review some of the

well-studied collaboration networks namely the movie-actor network, the network of
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scientific collaborations and the network of company board directors sitting on the

same board.

Movie-Actor Network: The two partitions of a movie-actor network are com-

posed of the movies and the actors respectively and an edge signifies that a particular

actor acted in a particular movie cast. In [123, 130], the authors constructed the

movie-actor network from the Internet Movie Database (IMDB) and studied the de-

gree distributions of both the movie and the actor partition. The distribution of the

movie cast size (i.e., the number of actors in a movie) was found to exhibit an expo-

nential decay. On the other hand, the number of movies in which an actor has played

adjusted better to a power-law fit with an exponent close to 2.

Scientific Collaboration Network: In a scientific collaboration network, the two

partitions correspond to scientists and scientific articles while an edge denotes that

a particular scientist has (co)-authored a particular article. In [113,123], the authors

analyzed the collaboration networks of various scientific communities and showed that

the distribution of the number of authors in a given article is exponential in nature.

The distribution of the number of articles written by an author was found to roughly

exhibit a power-law behavior.

Board-Director Network: In a board-director network, the two respective parti-

tions are the boards of different companies and the directors while an edge signifies

that a particular director sits on the board of a particular company. The properties of

board-director networks have been extensively studied in [16, 130]. The results show

that the distribution of the number of boards on which a single director serves can

be adjusted by an exponentially decaying function.

The concept of collaboration has also been extended to model various other phe-

nomena such as the city-people network [49], the bank-company network [145] and the

word-meaning network [29]. A common observation is that these networks exhibit a

scale-free topology and in particular, the degree distribution of the actor nodes follow

a power-law behavior.
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In order to explain the emergence of the degree distribution of the actor nodes the

authors in [130] proposed a network growth model based on preferential attachment.

The model can be described using three simple rules – (i) at each time step t a new

movie with n actors (in the context of movie-actor network) is added; (ii) of the n

actors playing in a new movie, m actors are assumed to be new, without any previous

experience; (iii) the rest n−m actors are chosen from the pool of “old” actors with a

probability proportional to the number q of movies that they previously starred (i.e.,

the degree of the actor nodes at time t). Assuming n and m to be constants equal to

their average values n̂ and m̂ respectively the authors analytically solved the model

and showed that the degree distribution is proportional to q−λ where λ = 2 + m̂
n̂−m̂

.

Several variants of this model have also been proposed and analytically solved to

establish that the degree distribution of the actor nodes indeed follow a power-law

behavior.

It is important to note that in all the above networks both the partitions grow

unboundedly with time unlike the case of PlaNet where one of the partitions corre-

sponding to the consonants remains relatively fixed over time while the other partition

can grow undoundedly. Therefore, the asymptotics of the two models are different and

in particular one cannot make the steady state assumptions in the latter case because,

the average degree of the consonant nodes (i.e., µt/N) diverges with time. This fun-

damental difference in the two models also manifests as a difference in the emergent

degree distribution; while it is a power-law in the former case, it is a β-distribution

in the latter case.

There are also certain non-growing models of bipartite networks primarily based

on rewiring. For instance, one of the most popular rewiring based models has been

described by Evans and Plato in [50] (henceforth the EP Model). In this study, one

of the partitions, which the authors refer to as the set of artifacts, is fixed. The nodes

in the other partition are referred to as individuals, all of which have degree one. In

the EP model, there are fixed number of edges; at every time step, an artifact node

is selected following a distribution ΠR and an edge that is connected to the chosen

artifact is picked up at random. This edge is then rewired to another artifact node

which is chosen according to a distribution ΠA. During the rewiring process the other

end of the edge is always attached to the same individual node. The authors derive
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the exact analytical expressions for the degree distribution of the artifact nodes at all

times and for all values of the parameters for the following definitions of the removal

and attachment probabilities:

ΠR =
k

E
; ΠA = pr

1

N
+ pp

k

E

where E, N and k stands for the number of edges, the number of artifacts and

the degree of an artifact node respectively. Furthermore, pr and pp, which add up

to one, are positive constants (model parameters) that control the balance between

random and preferential attachment.

One of the most important differences between the EP model and our model is

that the total number of edges in the latter case diverges with time. Consequently, if

we rewrite the attachment probability for our model (equation 3.5) in a form similar

to that of ΠA, we obtain the following expressions for the parameters pr and pp.

pr =
1

1 + γt/N
; pp =

γt/N

1 + γt/N

Clearly, as t → ∞, pr → 0 and pp → 1, whereas in the EP model these parameters

are fixed. Thus, apart from the two extreme cases of pr = 0 and pr = 1, the two

models are fundamentally different.

3.7 Summary

In this chapter, we have introduced a computational framework in order to investigate

various interesting properties of the consonant inventories of human languages. We

have dedicated the preceding sections for the following.

(i) Propose a bipartite network representation of the consonant inventories, namely

PlaNet.
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(ii) Describe the data source and the construction procedure for the network.

(iii) Analyze the topological properties of PlaNet. We find that the degree distri-

bution of the consonant nodes in PlaNet is well-behaved with an exponential

cut-off towards the tail.

(iv) Propose a synthesis model based on preferential attachment coupled with a tun-

able parameter γ controlling the randomness of the system in order to explain

the emergence of the degree distribution of the consonant nodes in PlaNet.

(v) Analytically solve the synthesis model in order to find a closed form expression

for the degree distribution of the consonant nodes. In particular, we observe that

the degree distribution obtained from this theoretical analysis asymptotically

tends to a β-distribution with time. Further, a very high value of γ necessary

to fit the distribution with empirical data points to the fact that preferential

attachment plays a significant role in shaping the structure of the consonant

inventories.

(vi) Investigate the dynamics within and across the consonant inventories of five ma-

jor language families of the world namely, Indo-European, Afro-Asiatic, Niger-

Congo, Austronesian and Sino-Tibetan. We find that the preferential compo-

nent is stronger within a linguistic family than it is across the families.

Linguistic Significance of the Model

A possible reason behind the success of our model in explaining the distribution of

the occurrence of consonants is the fact that language is a constantly changing system

and preferential attachment plays a significant role in this change. The sociolinguist

Jennifer Coates remarked that this linguistic change occurs in the context of linguistic

heterogeneity. She explained that “. . . linguistic change can be said to have taken

place when a new linguistic form, used by some sub-group within a speech commu-

nity, is adopted by other members of that community and accepted as the norm.” [40].

In this process of language change, those consonants that belong to languages that

are more prevalent among the speakers of a generation have higher chances of be-

ing transmitted to the speakers of the subsequent generations [18]. An explanation
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based on this observation that assumes an initial disparity in the distribution of the

consonants across languages can be intuitively formulated as follows – let there be

a community of N speakers communicating among themselves by means of only two

consonants say /k/ and /g/. Let the number of /k/ speakers be m and that of /g/

speakers be n. If we assume that each speaker has l descendants and that language

inventories are transmitted with high fidelity, then after i generations, the number of

/k/ speakers should be mli and that of /g/ speakers should be nli. Now if m > n and

l > 1 then for sufficiently large values of i we have mli � nli. Stated differently, the

/k/ speakers by far outnumber the /g/ speakers after a few generations even though

the initial difference between them is quite small. This phenomenon is similar to that

of preferential attachment where language communities get attached to, i.e., select

consonants that are already highly preferred. The parameter γ in this case may be

thought of as modeling the randomness of the system that creeps in due to accidental

errors which might occur during language transmission.

Furthermore, the fact that the choice of consonants within the languages of a

family is far more preferential than it is across the families is possibly an outcome of

shared ancestry. In other words, the inventories of genetically related languages are

similar (i.e., they share a lot of consonants) because they have evolved from the same

parent language through a series of linguistic changes, and the chances that they use

a large number of consonants used by the parent language is naturally high.

Although the bipartite network formulation presented in this chapter faithfully cap-

tures the properties of occurrence of consonants across languages, it does not suitably

reflect such other advanced properties as the distribution of co-occurrence or patterns

of co-occurrence of consonants across languages. Consequently, the synthesis model

proposed here also does not employ sophisticated techniques to replicate these prop-

erties. These limitations bring us to the central objective of the next chapter where

we shall propose another novel complex network representation of the inventories,

derived from PlaNet, that can capture the co-occurrence likelihood of the consonants

over languages. In particular, we shall analyze this network to extract many other

interesting properties of the consonant inventories. We shall also attempt to develop

more involved network growth models in order to explain the emergence of these

properties.





Chapter 4

Analysis and Synthesis of the

Co-occurrence Network of

Consonants

In the previous chapter, we proposed a bipartite network representation of the con-

sonant inventories and investigated the topological properties of this network. We

also presented a preferential attachment based growth model that can explain, quite

successfully, the distribution of the occurrence of the consonants across the world’s

languages.

An immediate question that comes up is how do the consonants co-occur with

each other across different languages. In this chapter, therefore, we take a step fur-

ther and attempt to analyze in detail the co-occurrence properties of the consonants.

Such co-occurrence properties, in general, can be suitably captured from any bipartite

collaboration network by constructing a network of shared collaboration acts, the so

called one-mode projection onto the actor nodes alone. The links in this network rep-

resent the “intensity” of collaboration between a pair of actors. In order to determine

the co-occurrence properties of the consonants, we project PlaNet on the consonant

nodes and thereby, derive a new network called the Phoneme-Phoneme Network

or PhoNet which is a network of consonants where a pair of nodes are linked as

71
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many times as they are found to occur together across the inventories of different

languages. Therefore, PhoNet is a weighted unipartite network of consonants where

an edge between two nodes signifies their co-occurrence likelihood over the consonant

inventories.

In fact, there are a number of studies related to the one-mode projections of real-

world bipartite networks. For instance, it has been shown that for a movie-actor

collaboration network, the degree distribution of the actor nodes in the bipartite as

well as the one-mode network follow a power-law [123, 130]. Similarly, in case of a

scientific collaboration network, it has been observed that the degree distribution of

the author nodes shows a fat-tailed behavior in both the bipartite network as well as

the one-mode projection [130]. In case of board-director networks it has been found

that the degree distribution of the director nodes in the bipartite and the one-mode

network can be roughly fitted using exponential functions [16, 130]. Furthermore, it

has been also shown that all these real-world networks are characterized by a high

clustering coefficient [123,130]. Various models such as the one reviewed in section 3.6

of Chapter 3 and others like [67,123] have also been proposed and analytically solved

to explain the power-law degree distribution and the high clustering coefficient of the

one-mode projection.

The study of the one-mode network PhoNet can give us important insights into

the organization of the consonant inventories and therefore we dedicate this chapter

to analyze and synthesize the different topological properties of this network. In

particular, we investigate two of the most crucial properties of the network namely

the degree distribution and the clustering coefficient. We observe that the degree

distribution follows a well-behaved probability distribution (although not a power-

law) and the clustering coefficient of the network is quite high.

The theoretical predictions from the growth model presented in the previous chap-

ter, however, does not seem to match well with those observed for PhoNet. Neither

the degree distribution nor the clustering coefficient predicted by the model are found

to be good approximations of the real data. Therefore, we attempt to identify the

gap in our previous analysis and suitably refine it so as to accurately explain the

empirical properties of the network.
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More specifically, in the previous analysis, we assumed that the degree of the

nodes in the language partition of PlaNet (i.e., the size of the consonant inventories)

is equal to the average degree and therefore a constant. Although this assumption

does not affect the degree distribution of the bipartite network, it affects the degree

distribution of the one-mode projection. It is important to mention here that this

assumption has also been made in most of the earlier studies related to bipartite

networks [123,130]. Nevertheless, real-world systems present us with instances where

there is a necessity to relax this assumption for a more accurate analysis; for instance,

not all movies have the same cast size and not all languages have the same consonant

inventory size. In essence, one has to think of this size as a random variable that is

being sampled from a particular distribution and indeed it is possible to analytically

show that this distribution actually affects the emergent degree distribution of the

one-mode network.

The clustering coefficient, on the other hand, obtained from the analysis of our

model is found to be much lower than that of PhoNet. The reason for this deviation

is that the number of triangles present in the real network is significantly higher than

that generated by the model. We therefore, attempt to refine the model by incorpo-

rating triad (i.e., fully connected triplet) formation into it coupled with preferential

attachment. The motivation behind the triad formation process is the fact that such

a model for growing unipartite networks have been found to lead to increased clus-

tering [72]. We analytically show that the clustering coefficient can be indeed tuned

based on the probability of triad formation (a parameter in our revised model). Con-

sequently, for a certain range of this probability, the clustering coefficient predicted

by the revised model closely matches with the real data.

The rest of the chapter is organized as follows. In section 4.1, we present the

formal definition of PhoNet and outline its construction procedure. The topological

properties of the network are analyzed in section 4.2. In the next section, we ana-

lytically compute the degree distribution and the clustering coefficient for the model

presented in the previous chapter and show that they do not match with the real

data. In section 4.4, we extend the theoretical framework and show that the de-

gree distribution of the one-mode network is sensitive to the distribution of the node

degrees of the growing partition of a bipartite network like PlaNet. We refine the
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network growth model in section 4.5 by incorporating triad formation and show that

there is a significant increase in the clustering coefficient due to this refinement. In

section 4.6, we summarize our observations, propose certain linguistic interpretations

of our results and identify certain extensions of this study, which are mostly dealt

with in the next chapter.

4.1 Definition and Construction of PhoNet

PhoNet is the one-mode projection of PlaNet onto the consonant nodes, i.e., a net-

work of consonants in which two nodes are linked by an edge with weight as many

times as they co-occur across languages. Hence, it can be represented by a graph

G = 〈 VC , Eph 〉, where VC is the set of consonant nodes and Eph is the set of edges

connecting these nodes in G. There is an edge e ∈ Eph if the two nodes (read con-

sonants) that are connected by e co-occur in at least one language and the number

of languages they co-occur in defines the weight of the edge e. Figure 4.1 illustrates

the nodes and the edges of PhoNet through a hypothetical example. In the figure,

the numerical values against the edges of PhoNet denote their corresponding weights.

The numerical value against a particular node of PhoNet denotes its frequency of

occurrence across languages (or alternatively its degree in PlaNet).

We obtain PhoNet by taking the one-mode projection of PlaNet (constructed

from UPSID in the previous chapter) onto the VC nodes. Consequently, the number

of nodes in PhoNet (i.e., |VC |) is 541. In order to give the reader an idea of the

complex structure resulting from this construction we present a partial illustration of

PhoNet in Figure 4.2. All edges in this figure have an edge-weight greater than or

equal to 50. The number on each node corresponds to a particular consonant. For

instance, node number 508 corresponds to /g/ whereas node number 540 represents

/k/.

The actual number of edges (ignoring the weights on them) in PhoNet, that is

|Eph|, is 30412. The connection density of PhoNet (assuming that its edges are

unweighted) is
|Eph|

(|VC |
2

)
= 2×30412

541×540
= 0.2, and this is the probability with which two
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Figure 4.1: A hypothetical example illustrating the nodes and edges of PhoNet – the one-mode

projection of PlaNet

randomly chosen consonants co-occur in at least one of the languages. However, as

we shall see, this co-occurrence is not simply governed by a single probability; instead

it follows a well-behaved probability distribution.

4.2 Analysis of the Topological Properties of PhoNet

In this section, we shall analyze some of the topological properties of PhoNet. In

particular, we shall investigate two important properties of the network – the degree

distribution and the clustering coefficient.

4.2.1 Weighted Degree

For a weighted graph like PhoNet, the degree q of a node v is defined as the sum of

the weights of the edges that are incident on v. This is also sometimes referred to as

the weighted degree of the node v. The unweighted (or plain) degree k of the node v,
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Figure 4.2: A partial illustration of PhoNet constructed from UPSID

on the other hand, is the number of edges (ignoring the weights on them) that are

incident on v. In the rest of the chapter, we shall mainly refer to the weighted degree

unless otherwise mentioned.
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Figure 4.3: Degree distribution of the nodes in PhoNet. The x-axis is in logarithmic scale

4.2.2 Degree Distribution of PhoNet

Figure 4.3 shows the degree distribution plot for the nodes of PhoNet (x-axis is in

logarithmic scale). As we have observed in case of PlaNet, this distribution is not

exactly a power-law. We shall discuss in further detail about the properties of this

distribution in the forthcoming sections of this chapter.

4.2.3 Clustering Coefficient of PhoNet

The clustering coefficient for a node i is the proportion of links between the nodes

that are the neighbors of i divided by the number of links that could possibly exist

between them. For instance, in a friendship network it represents the probability

that two friends of the person i are also friends themselves. Therefore, the larger

the number of triangles formed by the neighbors of i, the higher is the clustering

coefficient (see [114] for further reference). For a weighted graph such as PhoNet,

this definition has been suitably modified in [15]. According to this definition, the
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clustering coefficient for a node i is,

ci =
1(∑

∀j wij

)
(ki − 1)

∑

∀j,l

(wij + wil)

2
aijailajl (4.1)

where j and l are neighbors of i; ki represents the plain degree of the node i; wij , wjl

and wil denote the weights of the edges connecting nodes i and j, j and l, and i and

l respectively; aij , ail, ajl are boolean variables, which are true iff there is an edge

between the nodes i and j, i and l, and j and l respectively. The formula for ci in this

equation essentially counts for each triplet formed in the neighborhood of the vertex

i, the weight of the two participating edges of the vertex i. The normalization factor(∑
∀j wij

)
(ki − 1) accounts for the weight of each edge times the maximum possible

number of triplets in which it may participate, and it ensures that 0 ≤ ci ≤ 1.

The clustering coefficient of the network (cav) is equal to the average clustering

coefficient of the nodes. The value of cav for PhoNet is 0.89, which is significantly

higher than that of a random graph with the same number of nodes and edges (0.08).

Note that similar characteristics are also observed in many other social networks [113,

130]. This in turn, indicates that the probability of co-occurrence of two consonants

that have a common neighbor in PhoNet is much greater than expected by random

chance.

4.3 Predictions from the Previous Model

In this section, we analytically derive the expression for the degree distribution as

well as the clustering coefficient of the theoretical model presented in section 3.4 and

show that the predictions do not match well with the real data.
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4.3.1 Expression for the Degree Distribution

It is easy to analytically calculate the degree of the VC nodes in the one-mode network

(henceforth PhoNettheo) if we assume the degree of each VL node is equal to a constant

µ (i.e., the average inventory size). Consider a node u ∈ VC that has degree k in the

bipartite network. Therefore, u is connected to k nodes in VL and each of these k

nodes are in turn connected to µ−1 other nodes in VC . Defining the degree of a node

as the number of edges attached to it, in the one-mode projection, u has a degree of

q = k(µ − 1). Consequently, the degree distribution pu(q) of the one-mode network

is given by

pu(q) =

{
pk if k = q/(µ − 1)

0 otherwise
(4.2)

Note that this mapping simply implies that pu(q = 0) = p0, pu(q = µ − 1) = p1,

pu(q = 2(µ − 1)) = p2, . . . , pu(q = j(µ − 1)) = pj. Figure 4.4 compares the degree

distribution predicted by the equation 4.2 with the empirical degree distribution of

PhoNet. The figure clearly indicates that the degree distribution of PhoNettheo largely

differs from that of PhoNet.

4.3.2 Expression for the Clustering Coefficient

Here we attempt to analytically calculate the clustering coefficient of PhoNettheo.

Each time a node u ∈ VC is selected for attachment, a neighborhood of µ-1 other

nodes is created in the one-mode projection. Therefore, the number of triangles

attached to u for a particular iteration is [(µ-1)(µ-2)]/2. Further, each iteration is

independent of the earlier ones and if there are k iterations (since the degree of u in

the bipartite network is k) then the total number of triangles attached to u should be

[k(µ-1)(µ-2)]/2. On the other hand, if the degree of the node u in the one-mode is q

then the total number of possible triangles should be [q(q-1)]/2. Thus, the clustering
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Figure 4.4: Comparison of the degree distribution of PhoNet and PhoNettheo. The x-axis is in the

logarithmic scale

coefficient [Cu]
PA (PA stands for preferential attachment) is

[Cu]
PA =

[k(µ − 1)(µ − 2)]/2

[q(q − 1)]/2
(4.3)

Since in this case q = k(µ-1) so

[Cu]
PA =

[k(µ − 1)(µ − 2)]/2

[k(µ − 1)(k(µ − 1) − 1)]/2
(4.4)

or,

[Cu]
PA =

(µ − 2)

k(µ − 1) − 1
(4.5)

It is interesting to note that for our model, the above formula can be also shown

to be equivalent to the equation 4.1. It is known that
∑

∀j wij = q = k(µ-1). ku,

which denotes the number of distinct neighbors, is also equal to k(µ-1) assuming that

the neighborhoods created for u each time are independent. Therefore, the weight of
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an edge (u, j) for any neighbor j of u is equal to 1. So, (wuj+wul)/2 = (1+1)/2 =

1. Since there are (µ-1) neighbors of u and we are picking a pair of neighbors at a

time (j and l), the number of times that the summation (wuj+wul)/2 takes place is

[(µ-1)(µ-2)]/2. Nevertheless, each neighbor is considered twice in the formula (j and

l) and (l and j), and thus the total number of times this summation takes place is

2[(µ-1)(µ-2)/2] = (µ-1)(µ-2). Further, this happens each of the k times the node u

is selected. In other words,
∑

∀j,l

(wuj+wul)

2
aujaulajl = k(µ-1)(µ-2). Putting the parts

together we have the clustering coefficient [Cu]
BAR (BAR refers to Barrat et al. [15])

as follows

[Cu]
BAR =

k(µ − 1)(µ − 2)

k(µ − 1) × (k(µ − 1) − 1)
(4.6)

or,

[Cu]
BAR = [Cu]

PA =
(µ − 2)

k(µ − 1) − 1
(4.7)

The clustering coefficient of the whole network is the average over all the nodes

u (i.e., ∀u) present in it. Using equation 4.7 we find that the clustering coefficient of

PhoNettheo is 0.37 which is close to that obtained from the simulation of the model

(0.35). However, we have already observed in section 4.2 that the clustering coefficient

of PhoNet is as high as 0.89 and therefore differs largely from the above result.

The primary reason for this deviation is that real networks like PhoNet indicate the

presence of a large number of triangles and this fact is not taken into account by our

model.

Therefore, it turns out that neither the degree distribution nor the clustering coeffi-

cient predicted by the model matches with that of PhoNet. In the rest of this chapter,

we shall attempt to suitably extend the analytical framework so as to accurately ex-

plain these topological properties of PhoNet.
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4.4 Extension of the Analytical Framework to Match

the Degree Distribution

In this section, we show that the node degrees in VL actually affect the emergent

degree distribution of the one-mode projection even though the degree distribution

of the bipartite network is not affected. In particular, we relax the assumption that

the node degrees in VL are equal to a constant µ; in contrast, we consider them as

random variables that are being sampled from a distribution. The degree q of u in the

one-mode projection is dependent on this sampling distribution while the degree k in

the bipartite network is not as long as the mean degree of the nodes in VL remains µ.

Note that under such an assumption, the equation 3.3 holds so that the denominator

of the equation 3.2 is again equal to µγt+N as in the earlier case and thus, k remains

unchanged.

4.4.1 Method for Computing pu(q)

Let us assume that the node degrees in VL are being sampled from a particular

distribution fd. Let us call the probability that the node u having degree k in the

bipartite network ends up as a node having degree q in the one-mode projection Fk(q).

If we now assume that the degrees of the k nodes in VL to which u is connected to

are d1, d2, . . . , dk then we can write

q =
∑

i=1...k

(di − 1) (4.8)

The probability that the node u is connected to a node in VL of degree: d1 is

d1fd1
, d2 is d2fd2

, . . . , dk is dkfdk
. One might apply the generating function (GF)

formalism introduced in [116] to calculate the degree distribution of the VC nodes in

the one-mode projection as follows. Let f(x) denote the GF for the distribution of

the node degrees in VL. In other words, f(x) =
∑

d fdx
d. Similarly, let p(x) denote

the GF for the degree distribution of the VC nodes in the bipartite network, i.e.,
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p(x) =
∑

k pkx
k. Further, let g(x) denote the GF for the degree distribution pu(q) of

the one-mode projection. Therefore, g(x) =
∑

q pu(q)x
q. The authors in [116] (see

equation 70) have shown that g(x) can be correctly expressed as

g(x) = p(f ′(x)/µ) (4.9)

If fd and pk are distributions for which a closed form is known for f(x) and p(x)

(e.g., if both fd and pk are Poisson-distributed) then it is easy to derive a closed form

solution for g(x). However, in our case, pk is β-distributed as shown in equation 3.25

and there is no known closed form expression for p(x). Therefore, it is difficult

to carry out the theoretical analysis any further using the GF formalism. Another

way to approach the problem would be to calculate a generic expression for pu(q)

from the first principles. We shall therefore attempt to obtain such an expression,

propose a suitable approximation for it and then check for its dependence on the

choice of fd. As we shall see, in many cases, it is even possible to obtain a closed form

solution for the expression of pu(q). The appropriately normalized probability that

the node u in the bipartite network is connected to nodes of degree d1, d2, . . . , dk in

VL is
(

d1fd1

µ

)(
d2fd2

µ

)
. . .
(

dkfdk

µ

)
(each such connection is independent of the others).

Under the constraints d1 + d2 + · · ·+ dk = q, we have

Fk(q) =
∑

d1+d2+···+dk=q

d1d2 . . . dk

µk
fd1

fd2
. . . fdk

(4.10)

We can now add up these probabilities for all values of k weighted by the proba-

bility of finding a node of degree k in the bipartite network. Thus we have,

pu(q) =
∑

k

pkFk(q) (4.11)

or,

pu(q) =
∑

k

pk

∑

d1+d2+···+dk=q

d1d2 . . . dk

µk
fd1

fd2
. . . fdk

(4.12)

For the rest of the analysis, we shall assume that d1d2 . . . dk is approximately equal
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to µk. In other words, we assume that the arithmetic mean of the distribution is close

to the geometric mean, which holds if the variance of the distribution is low. We shall

shortly discuss in further details the bounds of this approximation. However, prior

to that, let us investigate, how this approximation helps in advancing our analysis.

Under the assumption d1d2...dk

µk = 1, Fk(q) can be thought of as the distribution of

the sum of k random variables each sampled from fd. In other words, Fk(q) tells

us how the sum of the k random variables is distributed if each of these individual

random variables are drawn from the distribution fd. This distribution of the sum

can be obtained by the iterative convolution (see [64] for details) of fd for k times. If

the closed form expression for the convolution exists for a distribution, then we can

obtain an analytical expression for pu(q).

4.4.2 Effect of the Sampling Distribution fd

In the following, we shall attempt to analytically find an expression for pu(q) assuming

different forms of the distribution fd. As we shall see, Fk(q) is different for each of this

form, thereby, making the degree distribution of the nodes in the one-mode projection

sensitive to the choice of fd. Furthermore, we shall show that the degree distribution

of PhoNet can be indeed matched better if one assumes the actual distribution of the

consonant inventory sizes rather than fixing this size to a constant µ.

It is important to mention here that since in the expression for q (equation 4.8)

we need to subtract one from each of the di terms therefore the distribution Fk(q)

has to be shifted accordingly. We shall denote the approximate and shifted version

of Fk(q) by F̊k(q).

(i) Normal distribution: If fd is a normal distribution of the form N(µ, σ2) then

the sum of k random variables sampled from fd is again distributed as a normal

distribution of the form N(kµ, kσ2). Therefore, F̊k(q) is given by

F̊k(q) = N(kµ − k, kσ2) = N(k(µ − 1), kσ2) (4.13)
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If we substitute the density function for N we have

F̊k(q) =
1

σ
√

2πk
exp

(
−(q − k(µ − 1))2

2kσ2

)
(4.14)

Hence, pu(q) is given by

pu(q) =
1

σ
√

2π

∑

k

pkk
−0.5 exp

(
−(q − k(µ − 1))2

2kσ2

)
(4.15)

(ii) Delta function: Let fd be a delta function of the form

δ(d, µ) =

{
1 if d = µ

0 otherwise
(4.16)

Note that this boils down to the case where the degree of each VL node is a

constant µ and therefore d1d2...dk

µk is exactly equal to 1. If this delta function is

convoluted k times then the sum should be distributed as

F̊k(q) = δ(q, kµ − k) =

{
1 if q = kµ − k

0 otherwise
(4.17)

Therefore, pu(q) exists only when q = k(µ − 1) or k = q/(µ − 1) and we have

pu(q) =

{
pk if k = q/(µ − 1)

0 otherwise
(4.18)

Note that this is the only case that we had dealt with earlier (see equation 4.2).

(iii) Exponential distribution: If fd is an exponential distribution of the form E(λ)

where λ = 1/µ then the sum of the k random variables sampled from fd is known

to be distributed as a gamma distribution of the form Γ(q; k, µ). Therefore, we

have

F̊k(q) = Γ(q; k, µ − 1) (4.19)
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Substituting the density function we have

F̊k(q) =
λ

′
exp (−λ

′
q)(λ

′
q)k−1

(k − 1)!
(4.20)

where λ
′
= 1/(µ − 1). Hence, pu(q) is given by

pu(q) = λ
′
∑

k

pk

exp (−λ
′
q)(λ

′
q)k−1

(k − 1)!
(4.21)

(iv) Power-law distribution: There is no known exact solution for the sum of k ran-

dom variables each of which is sampled from fd that is power-law distributed

with exponent λi. However, as noted in [162,163], asymptotically the tail of the

distribution obtained from the convolution is dominated by the smallest expo-

nent (i.e., minimum(λ1, λ2, . . . , λk)). Note that due to this approximation the

resultant degree distribution should indicate a better match with the stochastic

simulations towards the tail. We have

F̊k(q) ≈ kq−minimum(λ1,λ2,...,λk) (4.22)

However, since we are sampling from the same distribution each time so λ1 =

λ2 = · · · = λk = λ and

F̊k(q) ≈ kq−λ (4.23)

Consequently, pu(q) can be expressed as

pu(q) =
∑

k

pkkq−λ (4.24)

Figure 4.5(a) shows the degree distribution of the VC nodes in the bipartite net-

work assuming that fd is a (i) normal, (ii) delta, (iii) exponential and (iv) power-law

distribution each having the same mean (µ = 22). Note that although we carried out

our analysis using continuous functions the numerical simulations that we present in

Figure 4.5 are performed using their discrete counterparts (i.e., we use probability
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mass functions rather than probability density functions for our simulations). In all

cases, N = 1000, t = 1000 and γ = 2. For stochastic simulations, the results are aver-

aged over 100 runs. All the results are appropriately normalized. Figure 4.5(a) shows

the degree distributions of VC nodes of the bipartite networks generated through sim-

ulations when fd is a (i) normal distribution (µ = 22, σ = 13), (ii) delta function

(µ = 22), (iii) exponential distribution (µ = 1
λ

= 22) and (iv) power-law distribu-

tion (λ = 1.16, mean µ = 22); Figure 4.5(b) shows the degree distributions of the

one-mode projections of the bipartite networks in (a); Figure 4.5(c) compares the

simulations (blue dots) and equation 4.15 (pink dots) for µ = 22, σ = 13; green dots

indicate the case where VL nodes have a constant degree µ = 22; brown dots show

how the result deteriorates when σ = 1300; Figure 4.5(d) compares the simulations

(blue dots) and equation 4.18 (pink dots) for µ = 22; Figure 4.5(e) compares the

simulations (blue dots) and equation 4.21 (pink dots) for 1
λ

= 22; yellow dots show

the plot of equation 4.27; green dots indicate the case where VL nodes have a constant

degree µ = 22 (given as a reference to show that even the approximate equation 4.27 is

better than it); Figure 4.5(f) compares the simulations (blue dots) and equation 4.24

(pink dots) for γ = 1.16, µ = 22; yellow dots show the plot of equation 4.28; green

dots indicate the case where VL nodes have a constant degree µ = 22 (again given as

a reference to show that it is worse than the equation 4.28).

Figures 4.5(a) and (b) together imply that the degree distribution of the one-mode

projection varies depending on fd although the degree distribution remains unaffected

for all the bipartite networks generated as long as the means of the different fd chosen

are the same. Figures 4.5(c)–(f) show that the analytically obtained expressions are

in good agreement with the simulations. Note that in case of power-law, while the

heavy tail matches perfectly, the low degree zone deviates slightly which is a direct

consequence of the approximation used in the convolution theory for power-law.

In many cases it is possible to derive a closed form expression for pu(q). One can

think of pkF̊k(q) as a function F in q and k, i.e., pkF̊k(q) = F (q, k). If F (q, k) can be
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exactly (or approximately) factored into a form like F̂ (q)F̃ (k) then pu(q) becomes

pu(q) = F̂ (q)
∑

k

F̃ (k) (4.25)

Changing the sum in equation 4.25 to its continuous form we have

pu(q) = F̂ (q)

∫ ∞

0

F̃ (k)dk = AF̂ (q) (4.26)

where A is a constant. In other words, the nature of the resulting distribution is

dominated by the function F̂ (q). For instance, in case of exponentially distributed

fd, with some algebraic manipulations and certain approximations one can show that

(see the yellow dots in Figure 4.5(e))

pu(q) ≈ A exp

(
q

µ − 1

)
(4.27)

Similarly, in case of power-law one can show that (see the yellow dots in Fig-

ure 4.5(f))

pu(q) ≈ Aq−λ (4.28)

Therefore, it turns out that when this factorization is possible, the resulting degree

distribution of the one-mode projection is largely dominated by that part of the

convolution which is only dependent on q.

Matching the Degree Distribution of PhoNet

In the previous chapter, we have observed in section 3.2 that the size of the consonant

inventories (i.e., the degrees of the VL nodes in PlaNet) are β-distributed with parame-

ters α and β equal to 7.06 and 47.64. It is hard to obtain a closed form solution for the



4.4 Extension of the Analytical Framework to Match the Degree Distribution 89

Figure 4.5: Degree distributions of bipartite networks and corresponding one-mode projections in

doubly-logarithmic scale

convolution of different families of β-distributions and, thereby, derive an analytical

expression for the degree distribution of the consonant nodes in the one-mode projec-

tion. However, one can apply numerical methods to convolve a β-distribution and use

the result of this numerical simulation to predict the degree distribution of the one-

mode projection. In fact, the degree distribution of the synthesized version of PhoNet

(henceforth PhoNetsyn) which is actually the one-mode projection of PlaNetsyn that
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Figure 4.6: Comparison between the degree distribution of PhoNet and PhoNetsyn. The inset

compares the degree distribution of the consonant nodes in PlaNet and PlaNetsyn obtained assuming

the actual consonant inventory sizes. The x-axis is in the logarithmic scale

is obtained assuming the inventory sizes to be β-distributed (see Figure 4.6) matches

the real data better than if the sizes are assumed to be a constant. Furthermore, if

the actual distribution of the inventory sizes is used for the stochastic simulations

(rather than using the β-distribution) then the degree distribution of PhoNetsyn (see

in Figure 4.6) becomes almost same as the empirical one. The mismatch that still

remains results out of the mismatch occurring at the bipartite level (see the inset of

the Figure 4.6).

4.4.3 Approximation Bounds

In the previous section we carried out our analysis assuming that the geometric mean

of degrees of the VL nodes is approximately equal to the arithmetic mean. Here

we shall investigate in details the bounds of this approximation. We shall employ

the GF formalism to find the necessary condition (in the asymptotic limits) for our

approximation to hold. More precisely, we shall attempt to estimate the difference in
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the means (or the first moments) of the exact and the approximate expressions for

pu(q) and discuss when this difference is negligible which in turn serves as a necessary

condition for the approximation to be valid. Let us denote the generating function

for the approximate expression of pu(q) as gapp(x). In this case, the GF encoding the

probability that the node u ∈ VC is connected to a node in VL of degree d is simply

f(x)/x and consequently, F̊k(q) is given by (f(x)/x)k. Therefore,

gapp(x) =
∑

k

pk

[
f(x)

x

]k

= p(f(x)/x) (4.29)

Now we can calculate the first moments for the approximate and the exact pu(q)

by evaluating the derivatives of gapp(x) and g(x) respectively at x = 1. We have

g′
app(1) =

d

dx
p(f(x)/x)|x=1

= p′(f(x)/x)(f ′(x)/x − f(x)/x2)|x=1

= p′(1)(µ/1 − 1/1)

= (t/N)µ(µ − 1) (4.30)

Note that p′(1) is the mean degree of the VC nodes which is µt/N , f ′(1) is the

mean degree of the VL nodes and hence equal to µ, and f(1) = p(1) = g(1) = 1.

Similarly,

g′(1) =
d

dx
p(f ′(x)/µ)|x=1

= p′(f ′(x)/µ)f ′′(x)/µ|x=1

= p′(1)f ′′(1)/µ

= (t/N)f ′′(1)

= (t/N)µ(µ − 1) + t/Nσ2 (4.31)
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Thus, the mean of the approximate pu(q) is smaller than the actual mean by

(t/N)σ2. Clearly, for σ = 0, the approximation gives us the exact solution, which is

indeed the case for delta functions. Also, in the asymptotic limits, if σ2 � N (with a

scaling of 1/t), the approximation holds good. As the value of σ increases, the results

deteriorate (see the brown dots in Figure 4.5(c)) because, the approximation does not

hold any longer.

4.5 Refinement of the Model to Match the Clus-

tering Coefficient

Real-world networks (mostly the socially rooted ones) exhibit the presence of a large

number of triangles or mutually linked triples of nodes [113]. In other words, a

commonly observed characteristic of many real networks is that if a node is linked to

either node of a connected pair of vertices, then it is highly likely that it is also linked

to the other node of the pair. The local clustering coefficient actually measures this

connectedness of a node’s neighbors with each other. The coefficient for the given

node changes only when a new node gets linked to both to it and to one of its

neighbors. Therefore, it turns out that if one can tune the number of triangles in a

network growth model, it is possible to actually tune the local clustering of a node

and consequently, the clustering coefficient of the whole network.

In order to generate networks with tunable clustering the concept of triad (i.e.,

fully connected triplet) formation was introduced in [72]. By regulating the triad

formation step through a parameter of the model the authors showed that it is indeed

possible to tune the amount of clustering in the growing network. They further

establish that the emergent degree distribution of the network follows a power-law

behavior. In the following, we refine our model in order to incorporate triad formation

and, thereby, explain the clustering coefficient of PhoNet. For the specific case of our

model, we also analytically show that this process leads to increased clustering.
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4.5.1 The Triad Formation Model

A triad refers to a set of fully connected triplet (i.e., a triangle) of nodes. The

triad model builds upon the concept of neighborhood formation. Two consonant

nodes u1 and u2 become neighbors if a language node at any step of the synthesis

process attaches itself to both u1 and u2. Let the probability of triad formation be

denoted by pt. At each time step a language node Lj ∈ VL makes the first connection

preferentially to a consonant node ui ∈ VC to which Lj is not already connected using

the kernel defined in equation 3.2. For the rest of the (µ-1) connections Lj attaches

itself preferentially to only the neighbors of ui to which Lj is not yet connected with

a probability pt. Consequently, Lj connects itself preferentially to the non-neighbors

of ui to which Lj is not yet connected with a probability (1-pt). The neighbor set of

ui gets updated accordingly. In essence, each step of network growth is dependent

on the history of the connections made (i.e., the neighborhood formed) in the earlier

steps. This phenomenon leads to the formation of a large number of triangles in

the one-mode projection thereby increasing the clustering coefficient of the resultant

network. A step of the synthesis process illustrating the concept of triad formation

is outlined in Figure 4.7. In the figure, if the language node L4 (which has degree 3)

has the initial connection a1 (due to preferential attachment) then according to the

revised model the following connections would be a2 and a3 respectively in that order.

This series of connections increases the co-occurrence by allowing the formation of a

triad in the one-mode projection. The bold line in the figure indicates the edge that

completes the triad.

4.5.2 Analysis of the Clustering Coefficient for the Triad

Model

The triad model is different from the previous model because, it reduces the number

of distinct neighbors of a node u formed in each step. Note that comparing the

earlier (EAR) and the current (CUR) cases (see Figure 4.8) everything in the formula

for [Cu]
BAR (equation 4.1) effectively remains same except for the term ku which

represents the number of the distinct neighbors of u. Therefore, in order to estimate
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Figure 4.7: A partial step of the synthesis process illustrating the concept of triad formation

the new clustering coefficient we need to only estimate ku. The expected number of

distinct neighbors of u that are being formed now at each time step are (those that

are entering from the non-neighbor to the neighbor set of u)

Step 1: (µ-1);

Step 2: (µ-1)+(µ-1)(1-pt) = (µ-1)(2-pt);

Step 3: (µ-1)(2-pt)+(µ-1)(1-pt) = (µ-1)(3-2pt);

...

Step k: (µ-1)[k-(k-1)pt].

Thus, we can write

[[Cu]
BAR]EAR =

α

(ku − 1)
=

α

k(µ − 1) − 1
(4.32)

and,

[[Cu]
BAR]CUR =

α

(ku − 1)
=

α

(µ − 1)[k − (k − 1)pt] − 1
(4.33)
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where α is the non-changing part. Hence,

[[Cu]
BAR]CUR

[[Cu]BAR]EAR

=
k(µ − 1) − 1

(µ − 1)[k − (k − 1)pt] − 1
(4.34)

We have already shown that [Cu]
BAR]EAR = [Cu]

PA (equation 4.7) and so

[[Cu]
BAR]CUR =

[k(µ − 1) − 1](µ − 2)

{(µ − 1)[k − (k − 1)pt] − 1}[k(µ − 1) − 1]
(4.35)

or,

[[Cu]
BAR]CUR =

(µ − 2)

(µ − 1)[k − (k − 1)pt] − 1
(4.36)

Note that for pt = 1, the same neighbor set gets chosen every time and so

[[Cu]
BAR]CUR =

(µ − 2)

(µ − 1) − 1
= 1 (4.37)

On the other hand, when pt = 0, and there is no neighborhood formation,

[[Cu]
BAR]CUR =

(µ − 2)

k(µ − 1) − 1
= [Cu]

PA (4.38)

For 0 < pt < 1, we have

[[Cu]
BAR]CUR > [Cu]

PA (4.39)

Therefore, it turns out that the clustering coefficient of the network indeed in-

creases if the triad formation step is incorporated into our preferential attachment

based model.

It is important to mention here that the introduction of the parameter pt into

the model also affects the degree distribution of the VC nodes in the bipartite net-

work. However, all other model parameters remaining same, for a particular range
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Figure 4.8: Comparison of the formation of new triangles in the simple preferential attachment based

model (earlier model) and the model based on triad formation (current model)

of values of pt the mean error between the degree distribution obtained in case of

the simple preferential attachment based model and the triad model is quite low (see

Figure 4.9(a)). Stochastic simulations show that the clustering coefficient is also quite

high in this range of pt values (see Figure 4.9(b)). Beyond this range, although the

clustering coefficient increases, the mean error between the degree distributions rises.

In other words, there exists a range of pt values in which the degree distribution does

not deteriorate much while the clustering coefficient increases significantly, that is,

both the objectives are satisfied.

In fact, for the specific case of PhoNet, without affecting the degree distribution

much (see Figure 4.10), the clustering coefficient that one can achieve with the triad

model is 0.85 (within 3.5% of the empirical network) for pt ∈ [0.8, 0.9].

4.6 Summary

In this chapter, we analyzed and synthesized certain topological properties of the co-

occurrence network of consonants which is the one-mode projection of the bipartite

network that we defined in the previous chapter to represent the consonant invento-

ries. Some of our important observations are
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Figure 4.9: The effect of pt on the degree distribution of the VC nodes in the bipartite network and

on the clustering coefficient of the corresponding one-mode projection. The model parameters are:

N = 500, t = 500, µ = 22 and γ = 10. (a) The mean error between the degree distribution of the

VC nodes in the bipartite network generated using the simple preferential attachment model and

that using the triad model for various values of pt; (b) the clustering coefficients of the one-mode

projections of the bipartite networks generated in (a) versus pt

(i) Although the emergent degree distribution of the consonant nodes in PlaNet is

not sensitive to distribution of the size of the consonant inventories, the degree

distribution of PhoNet is affected by this distribution.

(ii) The clustering coefficient of PhoNet is quite high like many other social networks

indicating the presence of a large number of triangles in the network.

(iii) One can successfully explain the high clustering coefficient of PhoNet by having
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Figure 4.10: Degree distribution of PlaNetsyn and PhoNetsyn obtained from the triad model along

with their corresponding real counterparts. For PlaNetsyn the degree distribution is in doubly-

logarithmic scale and for PhoNetsyn the x-axis is in logarithmic scale

a sophisticated network growth model based on preferential attachment coupled

with triad formation.
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Linguistic Significance of the Refined Model

One can again find a possible association of the triad model with the phenomenon

of language change. If a group of consonants largely co-occur in the languages of a

generation of speakers then it is very likely that all of them get transmitted together

in the subsequent generations [18]. The process of triad formation in our model is

actually a reflection of this fact. Since the value of pt that we obtain is quite high, it

may be argued that such transmissions in groups are largely prevalent in nature.

It is interesting to note that whereas triad formation among consonants takes place

in a top-down fashion as a consequence of language change over linguistic generations,

the same happens in a social network in a bottom-up fashion where actors come to

know one another through other actors and, thereby, slowly shape the structure of

the whole network. Moreover, unlike in a social network where a pair of actors can

regulate (break or acquire) their relationship bonds, if the co-occurrence bond between

two consonants breaks due to pressures of language change it can be never acquired

again1. Such a bond breaks only if one or both of the consonants are completely lost

in the process of language change and is never formed in future since the consonants

that are lost do not reappear again. In this context, Darwin in his book, The Descent

of Man [43], writes “A language, like a species, when once extinct never reappears.”

Although the direction of growth in a social network is different from the network

discussed here, both of them target to achieve the same configuration. It is mainly

due to this reason that the principle of preferential attachment along with that of

triad formation is able to capture to a large extent the self-organizing behavior of the

consonant inventories.

In the next chapter, we shall delve deeper into the co-occurrence properties of the

consonants. In particular, we shall attempt to capture the “patterns of co-occurrence”

of the consonants by finding groups/communities in which they tend to occur highly

across the language inventories. We shall also figure out the precise reason for such

pattern formation and quantitatively justify our argument.

1There is a very little chance of reformation of the bond if by coincidence the speakers learn a

foreign language which has in its inventory one of the consonants lost due to language change.





Chapter 5

Patterns of Co-occurrence across

the Consonant Inventories

An important observation that has been repeatedly made about the consonant inven-

tories is that consonants tend to occur in pairs which show strong correlation in terms

of their articulatory/acoustic features. In other words, consonants have a tendency

to form groups or communities that effectively reflect their patterns of co-occurrence

across the languages of the world. As we had already pointed out in Chapter 2, it was

in order to explain these trends that feature economy was proposed as the basic or-

ganizing principle of the consonant inventories. In this chapter, we present a method

to automatically discover the patterns of co-occurrence of the consonants across lan-

guages and also introduce an information theoretic measure for feature economy in

order to establish that it is actually the driving force that leads to the emergence of

these patterns. More specifically, for the purpose of capturing these patterns, we an-

alyze PhoNet from the perspective of a social network where consonants are thought

to exhibit community structures. Note that unlike in Chapters 3 and 4, here we

assume that the consonant nodes are labeled, i.e., they are marked by the features

that characterize them. Interestingly, the consonants forming the communities reflect

strong correlations in terms of their features, which points to the fact that feature

economy binds these communities. Another important observation is that if we treat

each individual consonant inventory as a community in itself, then the amount of

101
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redundancy present across them (in terms of the features) is found to be (almost)

constant irrespective of the inventory size.

This chapter is organized as follows. In section 5.1, we present a brief review on

community analysis of complex networks. In the same section, we modify the commu-

nity identification algorithm proposed by Radicchi et al. [129] for weighted networks

like PhoNet and thereby, identify the consonant communities. In section 5.2, we test

the goodness of the communities detected by our algorithm and observe that the

constituent consonants forming these communities frequently occur is similar groups

in real languages also. We present a mathematical formulation for the concept of

feature economy in section 5.3 and suitably employ this formula to show that indeed

the consonant communities obtained from PhoNet are significantly more economic

than the case where the consonant inventories are assumed to have been generated

randomly. In the next section, we extend our formula for feature economy to mathe-

matically express the redundancy across the consonant inventories and show that it

remains fixed irrespective of the consonant inventory size thereby, unfolding an uni-

versal structural property of these inventories. Finally, in section 5.5, we summarize

the contributions of this chapter and point out some of the linguistic implications of

our results.

5.1 Identification of Community Structures

There is a large volume of literature suggested by computer scientists, physicists as

well as sociologists that describe various methods for identifying communities in a

network [54, 60, 71, 81, 115, 126,129]. This is mainly because, the ability to find com-

munities within large networks in some automated fashion can provide a considerable

insight into the organization of the network. Communities in a web graph, for in-

stance, might correspond to sets of web sites dealing with related topics [54], while

communities in a biochemical network might correspond to functional units of some

kind [71]. In the following, we review a few community-finding algorithms proposed in

the areas of computer science, sociology and more recently in complex networks (for

an extensive survey on community structure analysis see [57]). We further describe
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the Radicchi et al. [129] algorithm and its extension for the community analysis of

PhoNet.

5.1.1 Review of Community-Finding Algorithms

Clustering or community-finding deals with the detection of intrinsic groups present

in a network. A loose definition of clustering therefore could be “the process of orga-

nizing vertices into groups whose members are similar in some way”. Consequently,

a cluster/community is a collection of vertices which are “similar” among them and

“different” from vertices belonging to the other clusters. Most of the clustering al-

gorithms assume that the number of edges among the vertices within a group (i.e.,

similar vertices) by far outnumber the edges between vertices from different groups.

This problem of clustering turns out to be extremely important in various disciplines

including computer science, sociology and network theory. Some of the popular algo-

rithms that have been devised by the researchers in each of the above disciplines to

tackle this problem are presented below.

Algorithms in Computer Science

In computer science, community-finding corresponds to the graph partitioning prob-

lem that involves dividing a graph into pieces such that the pieces are of about the

same size and there are only a few connections in between the pieces. Various ap-

proaches have been proposed in the literature including those based on (i) different

optimization techniques as in [81, 100], (ii) spectral bisection [139] and (iii) message

passing [58].

Optimization: One of the classic examples of graph bisection using optimization

techniques is the Kernighan-Lin algorithm [81]. This is a greedy optimization method

that assigns a benefit function Q to divisions of the network and then attempts to

optimize this benefit over possible divisions. The benefit function is equal to the

number of edges that are present within the two groups minus the number of edges
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that run between them. As an initial condition, one has to specify the size of the two

groups into which the network is to be divided and the start configuration for the

groups (may be random). The algorithm proceeds in two stages. In the first stage,

a vertex is chosen from each of the groups and the change in the benefit function is

calculated if these two vertices are swapped. The pair that maximizes this change

is chosen and swapped. This process is repeated however, with a limitation that a

vertex that has been swapped once is locked and is never swapped again. Once all the

vertices in a group have been locked this stage of the algorithm ends. In the second

stage, the sequence of swaps made are revisited so as to find out the point where Q

was maximum. The corresponding configuration is chosen to be the bisection of the

graph.

Another popular method based on optimization is the k-means clustering [100].

Here the number of clusters is preassigned to a value, say k. Each vertex is embedded

as a point (xi) in a metric space and a distance measure is defined between the points

in this space. The distance measure indicates the dissimilarity between the pairs of

vertices. The goal is to partition the points into k sets (S = {S1, S2, . . . , Sk}) so as

to minimize a cost function. The cost function takes the following form

argmin
S

k∑

i=1

∑

xj∈Si

|| xj − c1 ||2

where c1 is the centroid (i.e., the center) of the points in Si. The k-means clustering

problem can be solved using the Lloyd’s algorithm [97]. The algorithm begins with

an initial distribution of centroids that are as far as possible from each other. In

the first iteration, each vertex is assigned to a centroid. The centers of mass of the

k clusters formed are then computed and this new set of centroids allows for a new

classification of the vertices in the second iteration, and so on. Within a few iterations

the centroids become stable and the clusters do not change any more.

Spectral Bisection: Given an adjacency matrix A of a graph G, one can construct

the Laplacian matrix L where L = D - A and D is the diagonal matrix of node degrees.
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In other words, each diagonal entry of the matrix D is dii =
∑

j aij where aij are the

entries of the matrix A. All the other entries of matrix D are zero. Spectral clustering

techniques make use of the spectrum of the matrix L to perform dimensionality

reduction for clustering in fewer dimensions. One such technique is the Shi-Malik

algorithm [139], commonly used for image segmentation. The algorithm partitions

based on the eigenvector v corresponding to the second smallest eigenvalue of the

matrix L. This partitioning can be done in various ways, such as by taking the median

m of the components of the vector v, and placing all nodes whose component in v is

greater than m in one partition, and the rest in the other partition. The algorithm

can be used for hierarchical clustering by repeatedly partitioning the subsets in this

fashion.

Message Passing: A set of data points can be clustered via passing certain mes-

sages between the points. The key idea is to construct a similarity network with

nodes representing the data points and the weights on the edges representing some

similarity between the data points and then iteratively propagating messages from a

node to its neighbors finally resulting into to the emergence of the clusters. A popular

algorithm in this category is the one suggested by Frey and Dueck [58] that is based

on finding data centers or “exemplars” through a method which they call “affinity

propagation”. In this algorithm, each node in the similarity network is assumed to

be a potential exemplar and real-valued messages are exchanged between nodes until

a high-quality set of exemplars and corresponding clusters gradually emerges. There

are two kinds of messages that are exchanged between the nodes, namely “responsibil-

ities” and “availabilities”. Responsibilities r(i, k) indicate the accumulated evidence

for how well-suited the node k is to serve as the exemplar for the node i, taking into

account other potential exemplars for the node i. Responsibilities are sent from node

i to the candidate exemplar k. On the other hand, availability a(i, k) indicates the

accumulated evidence for how appropriate it would be for the node i to choose node k

as its exemplar, taking into account the support from other nodes that node k should

be an exemplar. Availabilities are sent from candidate exemplar k to the node i.

The algorithm consists of some simple update rules and messages are exchanged

only between node pairs connected by an edge. There are three steps in which it pro-
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ceeds – (i) update responsibilities given availabilities, (ii) update availabilities given

the responsibilities, and (iii) monitor exemplar decisions by combining availabilities

and responsibilities. Terminate if the local decisions stay (almost) unchanged over

successive iterations.

Algorithms in Sociology

Sociologists concerned with the analysis of social networks have developed a large

volume of literature that deals with the problem of community identification. The

primary technique adopted is known as hierarchical clustering [135]. A hierarchical

clustering on a network of n nodes produces a series of partitions of the network, Pn,

Pn−1, . . . , P1. The first partition Pn consists of n single-node clusters, while the last

partition P1, consists of a single cluster containing all the n nodes. At each particular

stage the method joins together the two clusters which are closest (or most similar)

to each other. Note that at the first stage, this amounts to joining together the two

nodes that are most similar to each other.

Differences between methods arise because of the different ways of defining the

distance (or similarity) between clusters. The most popular similarity measure in

the sociology literature is called structural equivalence. Two nodes in the network are

said to be structurally equivalent if they have exactly the same set of neighbors (other

than each other, if they are connected). In most cases, exact structural equivalence

is rare and therefore one needs to define the degree of equivalence between node pairs

which, may be done in several ways. One of them, known as Euclidian distance [160],

is defined as

distij =

√∑

k 6=j,i

(aik − ajk)2

where aik and ajk are entries of the adjacency matrix. The more structurally similar

the nodes i and j are, the lower is the value of distij. Another commonly used

similarity metric is the Pearson’s correlation between rows (or columns) corresponding
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to the nodes i and j in the adjacency matrix [160].

There are also several techniques of joining the clusters such as the

(i) Single linkage clustering: One of the simplest form of hierarchical clustering

method is single linkage, also known as the nearest-neighbor technique. The

fundamental characteristic of this method is that distance between the clusters

is defined as the distance between the closest pair of nodes, where only pairs

consisting of one node from each cluster are considered.

(ii) Complete linkage clustering: The complete linkage, also known as the farthest-

neighbor, clustering method is the opposite of single linkage. Distance between

clusters is defined here as the distance between the most distant pair of nodes,

one chosen from each cluster.

(iii) Average linkage clustering: In this case, the distance between two clusters is

defined as the average of distances between all pairs of nodes, where each pair

is made up of one node from each cluster.

Algorithms in Network Theory

Clustering or community analysis is also a very well-researched area in the field of

complex networks. Various algorithms have been proposed in order to detect “natu-

ral” divisions of the vertices in the network. In the following, we shall outline a few

of these techniques that have become quite popular in the recent times.

Spin Model based Algorithm: One of the very popular models in the field of

statistical mechanics, usually applied to study various properties of ferromagnets, is

the Potts model [166]. The model describes a system of spin interactions where a

spin can be in n different states. If the interactions are ferromagnetic then at the

ground state all the spins have the same value (i.e., they are aligned). However, if the

interactions are anti-ferromagnetic then in the ground state of the system there are

different spin values co-existing in homogeneous clusters. If the Potts spin variables
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are assigned to the vertices of a network where the interactions are between the

neighboring spins then the communities can be recovered from the like-valued spin

clusters in the system. In [133], the authors propose a method to detect communities

where the network is mapped onto a n-Potts model with nearest neighbor interactions.

The Hamiltonian (i.e., the total energy) of the model can be expressed as

H = −J
∑

i,j

aijδ(σi, σj) + κ
n∑

s=1

ns(ns − 1)

2

where aij is an element of the adjacency matrix, δ is the Kronecker delta function [74],

σi and σj stand for the spin values, ns is the number of spins in the state s and J

and κ are the coupling parameters. H is a sum of two competing terms: one is the

classical ferromagnetic Potts model energy that favors spin alignment while the other

peaks when the spins get homogeneously distributed. The ratio κ/J controls the

relative importance of these two terms. H is minimized via the process of simulated

annealing (see [83]) that starts from an initial configuration where spins are randomly

assigned to the vertices and the number of states n is kept very high. The authors

in [133] show that the procedure is quite fast and the results do not depend on n (as

long as n is sufficiently high).

Random Walk based Algorithm: Random walks [74] on a graph can be very

useful for detecting communities. The basic idea is that if the graph has strong

community structures then a random walker spends a long time inside a community

due to the high density of the internal edges and the number of paths that could

be followed. In [167], the author uses random walks to define the distance between

pairs of vertices. The distance distij between vertices i and j is defined as the average

number of edges that a random walker has to cross to reach j starting from i. Vertices

that are close to each other are likely to belong to the same community. The author

defines a “global attractor” of a vertex i to be a vertex closest to i, that is, any vertex

which is at a smallest distance from i. On the other hand, the “local attractor” of

i are its nearest neighbors (i.e., vertices directly sharing an edge with i). Two types

of communities are defined based on the local and the global attractors: i has to
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be put into the community of its attractor and also into the community of all other

vertices for which i is an attractor. Communities have to be minimal subgraphs i.e.,

they cannot have smaller subgraphs that are also communities as per the previously

mentioned definition. Other variants of random walk based clustering algorithms may

be found in [73, 90, 168].

Clique Percolation based Algorithm: In certain real-world graphs a particular

vertex may belong to more than one community. For instance, a polysemous word in

a semantic network (see Chapter 1) can belong to each different community of words

that corresponds to a particular sense of that polysemous word. In such cases, one

needs to detect overlapping communities and the term “cover” is more appropriate

than partition. The most popular technique to detect overlapping communities is

the clique percolation method [120]. This method is based on the concept that the

internal edges of a community together form a clique while inter-community edges

do not form such cliques. If it were possible for a k-clique (i.e., a clique composed

of k nodes) to move on a network then it would probably get trapped within its

original community as it would not be able to cross the bottleneck formed by the

inter-community edges. The authors define a few terms so as to realize this idea – (i)

two k-cliques are adjacent if they share k− 1 nodes, (ii) the union of adjacent cliques

is a k-clique chain, (iii) two k-cliques are connected if they are a part of a k-clique

chain and (iv) a k-clique community is the largest connected subgraph formed by the

union of a k-clique and of all k-cliques that are connected to it. The identification of a

k-clique community is carried out by making a k-clique “roll” over adjacent k-cliques,

where rolling means rotating a k-clique about the k − 1 vertices it shares with any of

the adjacent k-cliques (see [51] for a method outlining the computation of k-cliques

and their overlaps). Since, by construction, k-clique communities can share vertices

therefore they can be overlapping.

The Girvan-Newman Algorithm: The Girvan-Newman algorithm [60] focuses

on those edges in the network that are least “central”, that is the edges which are

most “between” the communities. The “edge betweenness” of an edge is defined as the

number of shortest paths between pairs of nodes that run along it. If there are more
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than one shortest paths between a pair of nodes then each of these paths is assigned

equal weight such that the total weight of all of the paths sums to unity. If a network

contains communities that are only loosely connected by a very few inter-community

edges, then all the shortest paths between different communities must go along one

of these few edges. Thus, the edges connecting communities should have high edge

betweenness (at least one of them). By removing these edges, the communities can

be separated from one another thereby, revealing the underlying community structure

of the network.

In short, the steps in which the algorithm proceeds are – (i) calculate the edge

betweenness of all existing edges in the network, (ii) remove the edge with the highest

betweenness, (iii) recalculate the betweenness of all edges affected by the removal, and

(iv) repeat steps 2 and 3 until no edges remain.

The Radicchi et al. Algorithm: The algorithm of Radicchi et al. [129] counts,

for each edge, the number of loops of length three it is a part of and declares the edges

with very low counts as inter-community edges. The basic idea is that the edges that

run between communities are unlikely to belong to many short loops, because, to

complete a loop containing such an edge there needs to be another edge that runs

between the same two communities, and such other edges are rare. Therefore, it

should be possible to spot the between-community edges by looking for the ones that

belong to an unusually small number of loops. Such edges can be iteratively removed

to decompose the network into disjoint communities.

5.1.2 Community Analysis of PhoNet

We modify the Radicchi et al. [129] algorithm (henceforth termed as MRad) to make

it suitable for weighted networks and subsequently use it to conduct the community

structure analysis of PhoNet. There are mainly two reasons for choosing this algo-

rithm – (a) it is fast, and (b) it can be easily modified to work for the case of weighted

networks. The basis and the modification of the algorithm are as follows.
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Basis: Edges that run between communities should not belong to many triangles,

because, to complete the triangle containing such an edge there needs to be another

edge that runs between the same two communities, and such other inter-community

edges are, by definition, rare.

Modification for a Weighted Network: Nevertheless, for weighted networks,

rather than considering simply the triangles (loops of length three) we need to con-

sider the weights on the edges forming these triangles. The basic idea is that if

the weights on the edges forming a triangle are comparable then the group of con-

sonants represented by this triangle highly occur together rendering a pattern of

co-occurrence, while if these weights are not comparable then there is no such pat-

tern. In order to capture this property, we define the edge-strength S for each edge

of PhoNet as follows. Let the weight of the edge (u, v), where u, v ∈ VC , be denoted

by wuv. S can be expressed as a ratio of the form,

S =
wuv√∑

i∈VC−{u,v} (wui − wvi)
2

(5.1)

if
√∑

i∈VC−{u,v} (wui − wvi)
2 > 0 else S = ∞. The expression for S indicates that the

strength of connection between two nodes u and v depends on (i) the weight of the

edge (u, v) and (ii) the degree to which the weights on the edges forming triangles

with (u, v) are comparable. If the weights are not comparable then the denominator

will be high, thus reducing the overall value of S. PhoNet can be then decomposed

into communities by removing edges that have S less than a specified threshold (say

η). The entire idea is summarized in Algorithm 5.1. Figure 5.1 illustrates the process

of community formation.

It is important to mention here that while employing the above algorithm for

community detection, we have neglected those nodes in PhoNet that correspond to

consonants which occur in less than 5 languages1 in UPSID. Since the frequency

of occurrence of each such consonant is extremely low therefore, the communities

they form can be assumed to be statistically insignificant. Furthermore, we have also

1This number has been decided through the manual inspection of the data.



112 Chapter 5 Patterns of Co-occurrence across the Consonant Inventories

Algorithm 5.1: The MRad algorithm

Input: PhoNet

for each edge (u, v) do

Compute

S = wuv√∑
i∈VC−{u,v} (wui−wvi)

2

if
√∑

i∈VC−{u,v} (wui − wvi)
2 > 0 else S = ∞;

end

Redefine the edge-weight for each edge (u, v) by S;

Remove edges with edge-weights less than or equal to a threshold η;

Call this new version of PhoNet, PhoNetη;

Find the connected components in PhoNetη;

Figure 5.1: The process of community formation

removed those nodes that correspond to consonants which have a very high frequency

of occurrence. Since such consonants co-occur with almost every other consonant (by

virtue of their high frequency) the edge-strength S is likely to be high for the edges

that connect pairs of nodes corresponding to these high frequency consonants. The

value of S for these edges is much higher than η and as they do not get removed from

the network therefore, they can pull in the nodes of two clearly disjoint communities
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Figure 5.2: The dendrogram illustrates how the retroflex community of /ã/, /ú/, /ï/, /í/ and /õ/ is

formed with the change in the value of η

into a single community. For instance, we have observed that since the consonants

/m/ and /k/ are very frequent, the edge connecting the nodes corresponding to them

has a high edge-strength. The strong link between /m/ and /k/ forces the sets of

bilabial and velar consonants which should ideally form two different communities to

merge into a single community. Hence, we have removed nodes which correspond to

consonants that occur in more than 130 languages2 in UPSID (a total of 13 nodes).

Note that even these 13 nodes which form a hub-like structure also indicate a high

correlation among the features that characterize them thus attesting the presence of

feature economy.

We can obtain different sets of communities by varying the threshold η. As the

value of η decreases, new nodes keep joining the communities and the process be-

comes similar to hierarchical clustering [135]. Figure 5.2 shows a dendrogram, which

illustrates the formation of the community of the consonants /ã/, /ú/, /ï/, /í/ and

/õ/ with the change in the value of η.

Some of the example communities obtained from our algorithm are noted in Ta-

ble 5.1. In this table, the consonants in the first community are dentals, those in the

second community are retroflexes, while the ones in the third are all laryngealized.

2This number has again been decided through the manual inspection of the data.
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Table 5.1: Consonant communities

Community Features in Common

/t/, /d/, /n/ dental

/ã/, /ú/, /ï/, /í/, /õ/ retroflex

/w
˜

/, /j
˜
/, /m

˜
/ laryngealized

5.2 Evaluation of the Communities based on their

Occurrence in Languages

In this section, we inspect whether the consonant communities detected from PhoNet

by the MRad algorithm are actually found to occur significant number of times in

such groups across the languages of UPSID.

For this purpose, we first arrange the consonants forming a community COM , of

size N , in an ascending order of their frequency of occurrence in UPSID. We associate

a rank R with each of the consonants in COM where the least frequent consonant

(frequency calculated from UPSID) gets a rank R = 1, the second least gets a rank

R = 2 and so on. Starting from rank R = 1, we count how many of the consonants

in COM , occur in a language L ∈ UPSID. Let the number of such consonants be M .

We define the occurrence ratio OL of the community COM for the language L to be

OL =
M

N − (Rtop − 1)
(5.2)

where Rtop is the rank of the highest ranking consonant that is found in L. The

denominator of this ratio is N − (Rtop − 1) instead of N since it is not mandatory for

a language to have a low frequency member of a community if it has the high frequency

member; nevertheless, if the language already has the low frequency member of the

community then it is highly expected to also have the high frequency member. For

instance, let the community COM be formed of three consonants /kw/, /kh/ and /k/

(arranged in ascending order of their frequencies). When we inspect a language L, it

is not necessary for it to have /kw/ or /kh/ if it has /k/ in its inventory; nevertheless
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Figure 5.3: Calculation of occurrence ratio. A “X” indicates the absence of a particular consonant

in a language

it is highly expected that if it already has /kw/, it should also have /k/ and /kh/ in

its inventory (see [39] for further discussions about this linguistic phenomena). The

idea is illustrated in Figure 5.3 through three example scenarios.

The average occurrence ratio Oav for the community COM can be obtained as

follows,

Oav =

∑
L∈UPSID OL

Loccur

(5.3)

where Loccur is the number of languages in UPSID that have at least one or more of the

consonants occurring in COM . Figure 5.4 shows the average Oav of the communities

obtained at a particular threshold η versus the threshold η. The curve clearly shows

that the average Oav of the communities obtained from our algorithm for η > 0.3

is always more than 0.8. This in turn implies that, on an average, the communities

obtained at thresholds above 0.3 occur in more than 80%3 of the languages in UPSID.

3The expectation that a randomly chosen set of consonants representing a community of size
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Figure 5.4: Average Oav of the communities obtained at a particular threshold η versus the threshold

η

At thresholds below 0.3 the average Oav is found to fall gradually. This is because,

very large size communities start emerging and the probability that all the constituent

consonants of such a large community occur together across languages is very low.

Thus, the value of M and consequently, OL drops, thereby, reducing the overall value

of the average Oav. In short, the communities obtained from our algorithm can be

assumed to be true representatives of the patterns of co-occurrence of the consonants

across languages.

between 2 to 5, occurs in a language, is 70% whereas the same is 89% for the communities obtained

from PhoNet.
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5.3 Feature Economy: The Binding Force of the

Communities

In the earlier sections, we have mainly focused on the detection and evaluation of the

communities emerging from PhoNet. In this section, we attempt to quantitatively

show that feature economy (see Chapter 2 for definition) is the driving force that

leads to the emergence of these communities.

The central idea behind this quantification is to determine the extent to which

the features contribute to discriminate the consonants in a community. The less

discriminative the features are on an average, the more close are the consonants and

higher is the feature economy. In the following, we shall show how the discriminative

capacity of the features in a community of consonants can be quantified through an

information theoretic approach. We shall first state our assumptions and then outline

the quantification process.

5.3.1 Assumptions

Let us assume that for a community COM of size N each consonant Cx (1 ≤ x ≤ N)

can be characterized by a set of features F . Further, let each feature fi ∈ F be

independent (as in [39]) and binary-valued (as in [88, 101, 102, 103]). It is important

to note that the assumption that the features are independent and binary is not always

true. In the words of Ladefoged and Maddieson [88] “. . . the tongue has no clearly

defined regions, and neither does the roof of the mouth; and there are, of course,

similar problems in dividing the continua which underlie other phonetic parameters.”

However, they also state that “. . . it is very striking that languages often cut the

continua in similar ways so that it is possible to equate a sound in one language

with a similar sound in another.” Along these lines, we assume that (a) the value

of fi is not dependent on the value of any other feature fj 6=i ∈ F and, (b) fi = 1

if it is present in a consonant and 0 otherwise. Therefore, every consonant Cx in

COM can be encoded as a binary vector such that Cx = [f1 f2 . . . f|F |−1 f|F |],
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where f1≤i≤|F | = {0, 1}. In other words, for our analysis, each feature has a 1/0

value depending on whether a consonant uses it or not. Note that the assumption

that the features are independent does not lead us to impossible configurations that

is, a consonant, for instance, cannot have two primary places of articulation (e.g.,

both labial and velar). Since such configurations are never encountered in our data

set, while one of the place-features would take up the value 1, the others shall take

up the value 0. Stated differently, if there are n place-features and any one of them

has the value 1, then it automatically implies that all the others have the value 0.

It is not difficult to extend the idea to multi-valued features where a single discrete

variable taking up different values would correspond to different places of articulation

(we shall provide one representative result based on this multi-valued assumption in

section 5.4 to show that the inferences that we draw still remain valid under this

assumption). However, as the binary representation is easy to interpret and as there

are no known standards for assigning values to a particular feature on a multi-valued

scale, we shall continue our analysis with the binary representation.

5.3.2 The Quantification Process

Since each consonant is encoded as a binary vector therefore, the community COM

is essentially a set of binary vectors as indicated by the example in Figure 5.5. If

a feature takes the value 1 (or 0) for all the consonants in COM (such as fn in

Figure 5.5) then it does not contribute to differentiate the consonants and hence

its discriminative capacity (henceforth DC) should be 0. On the other hand, if the

feature takes up the value 1 for one half of the consonants in COM and the value 0 for

the other half (such as fm in Figure 5.5) then its contribution towards differentiating

the consonants is maximum and hence, its DC should be 1. This observation leads us

to the following information-theoretic definition of the DC of a feature in a particular

community.

Let there be pfi
consonants in COM in which the feature fi is present (i.e., fi = 1)

and qfi
consonants in which fi is absent (i.e., fi = 0). Given that the size of COM

is N , the probability that fi = 1 for a particular consonant chosen uniformly at
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Figure 5.5: A hypothetical community of eight consonants

random from COM is
pfi

N
. Consequently, the probability that fi = 0 is

qfi

N
. Note that

pfi

N
+

qfi

N
= 1. Stated differently, fi is an independent random variable, which can

take values 1 and 0, and
pfi

N
and

qfi

N
define the probability distribution of fi. Clearly,

the discriminative capacity of the feature fi in COM is dependent on the above

probability distribution and the functional form that can appropriately quantify DC

is the binary entropy Hfi
defined as [138]

Hfi
= −pfi

N
log2

pfi

N
− qfi

N
log2

qfi

N
(5.4)

It is easy to show that Hfi
always produces the desired value of the DC of feature

fi in COM . For instance, if fi = 1 for all the consonants in COM (like fn in

Figure 5.5) then pfi
= N and qfi

= 0. Therefore, DC = Hfi
= 0, which should

ideally be the case. The same argument also holds if fi = 0 for all the consonants.

In that case, pfi
= 0 and qfi

= N , which results in DC = Hfi
= 0. On the other

hand, if fi = 1 for one half of the consonants and 0 zero for the other half then

pfi
= N

2
as well as qfi

= N
2

and consequently, DC = 1 as per the requirement. For
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Table 5.2: The process of computing the value of FE for the two hypothetical communities COM1

(FE = 2.75) and COM2 (FE = 4.58)

COM1 voiced dental bilabial velar plosive

/b/ 1 0 1 0 1

/d/ 1 1 0 0 1

/g/ 1 0 0 1 1

pf/N 1 0.33 0.33 0.33 1

qf/N 0 0.67 0.67 0.67 0

COM2 voiced dental bilabial nasal retroflex plosive

/b/ 1 0 1 0 0 1

/n/ 1 1 0 1 0 0

/ã/ 1 1 0 0 1 0

pf/N 1 0.67 0.33 0.33 0.33 0.33

qf/N 0 0.33 0.67 0.67 0.67 0.67

any other combination of the values of pfi
and qfi

, the corresponding value of DC

can be calculated using equation 5.4 and is bounded within the continuous range of

[0, 1].

The total discriminative capacity of all the features in COM , which we shall call

feature entropy (FE) can be therefore, expressed as

FE =
∑

fi∈F

Hfi
=
∑

fi∈F

(−pfi

N
log2

pfi

N
− qfi

N
log2

qfi

N
) (5.5)

Since each feature fi is assumed to be an independent random variable, FE is

essentially the joint entropy of the system. FE can be thought of as an upper bound

on the measure of the minimum number of distinctions that are important for a

learner to pick up during the acquisition of the consonants in COM . Note that the

lower the feature entropy the higher is the feature economy. The idea is illustrated in

Table 5.2 through an example where FE exhibited by the community COM1 is lower

than that of the community COM2 because, in COM1 the combinatorial possibilities

of the features are better utilized by the consonants than in COM2 (i.e., COM1 is

more economic than COM2).

5.3.3 Experiments and Results

In order to establish the fact that feature economy is the key factor that drives the

co-occurrence patterns of the consonants it is necessary to show that the communi-

ties obtained from PhoNet exhibit a significantly lower feature entropy than the case
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where the consonant inventories are assumed to have been generated randomly. For

this purpose, we construct a random version of PhoNet (henceforth PhoNetrand) and

compare the communities obtained from it with those obtained from PhoNet in terms

of feature entropy. We construct PhoNetrand as follows. Let the frequency of occur-

rence for each consonant C in UPSID be denoted by fC . Let there be 317 bins each

corresponding to a language in UPSID. fC bins are then chosen uniformly at random

and the consonant C is packed into these bins. Thus the consonant inventories of

the 317 languages corresponding to the bins are generated4. Note that in such ran-

domly constructed inventories the effect of feature economy should not be prevalent

as there is no strict co-occurrence principle that plays a role in the process of inven-

tory construction. Therefore, feature entropy in this case should be no better than

what is expected by random chance. One can build PhoNetrand from these randomly

generated consonant inventories in a procedure similar to that used for constructing

PhoNet. The entire idea of constructing PhoNetrand is summarized in Algorithm 5.2.

Algorithm 5.2: Algorithm to construct PhoNetrand

for each consonant C do

for i = 1 to fC do

Choose, uniformly at random, one of the 317 bins each of which

corresponds to a language in UPSID;

Pack the consonant C into the bin so chosen if it has not been

already packed into this bin earlier;

end

end

Construct PhoNetrand, similarly as PhoNet, from the new consonant

inventories (each bin corresponds to a new inventory) ;

We can apply the MRad algorithm to extract the communities from PhoNetrand

similarly as in the case of PhoNet. Figure 5.6 illustrates, for all the communities

obtained from PhoNet and PhoNetrand, the average feature entropy exhibited by the

communities of a particular size (y-axis) versus the community size (x-axis). The

“average feature entropy exhibited by the communities of a particular size” can be

4This random model preserves the frequency of occurrence of the consonants across languages.
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Figure 5.6: Average feature entropy of the communities of a particular size versus the community

size for PhoNet as well as PhoNetrand

calculated as follows. Let there be n communities of a particular size s obtained at all

the different values of η. The average feature entropy of the communities of size s is
1
n

∑n
i=1 FEi

where FEi
signifies the feature entropy of the ith community of size s. The

curves in the figure make it quite clear that the average feature entropy exhibited by

the communities of PhoNet are substantially lower than that of PhoNetrand (especially

for a community size ≤ 20). As the community size increases, the difference in the

average feature entropy of the communities of PhoNet and PhoNetrand gradually

diminishes. This is mainly because of the formation of a giant community, which is

similar for both PhoNet as well as PhoNetrand. The above result indicates that the

consonant communities in PhoNet are far more economic than what is expected by

random chance. Note that if in contrast, the communities exhibit a feature entropy

that is higher than that reflected by the randomly generated inventories then one

can argue that on an average the features are more discriminative than expected by

chance pointing to the prevalence of high perceptual contrast among the constituent

nodes in the community (this shall become apparent from the analysis of the vowel

communities presented in the next chapter).

In order to further strengthen the above argument one can inspect whether the
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Figure 5.7: Average occurrence ratio (Oav) versus the feature entropy of the communities

consonants forming communities in PhoNet occur in real languages in such groups

so as to minimize feature entropy. Figure 5.7 shows the scatter plot of the average

occurrence ratio of the communities obtained from PhoNet (y-axis) versus the feature

entropy of these communities (x-axis). Each point in this plot corresponds to a single

community. The plot clearly indicates that the communities exhibiting lower feature

entropy have a higher average occurrence ratio. For communities having feature

entropy less than or equal to 3 the average occurrence ratio is never less than 0.7

which means that the consonants forming these communities occur together on an

average in 70% or more of the world’s languages. As feature entropy increases this

ratio gradually decreases until it is almost close to 0 when feature entropy is around

10. Once again, this result fosters the fact that the driving force for the community

formation is the principle of feature economy and languages indeed tend to choose

consonants in order to maximize the combinatorial possibilities of the distinctive

features, which are already available in the inventory.
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5.4 The Redundancy across the Consonant Inven-

tories

In this section, we shall treat each individual consonant inventory in UPSID as a

community in itself and show that the redundancy (in terms of features) that exists

in the representation of these inventories is fixed irrespective of the inventory size.

Note that in an artificially engineered system, one has the liberty to introduce

redundancy by duplicating some of the critical components. However, this is not

possible in case of phonological systems because, one cannot include arbitrary features

in order to describe the system; in contrast, the description is thoroughly guided by

the articulatory and perceptual constraints of the speakers. For an artificial system,

it is quite easy to capture the notion of redundancy through different quantitative

methods [138]. For a natural system (e.g., a phonological system), on the other hand,

no such quantitative formulation exists and therefore there is a need to formally

describe the redundancy across such systems. There have been a few attempts in this

direction to measure the disorderedness (i.e., the entropy) of natural coding systems

and, thereby, investigate their structural characteristics. In fact, the presence of

redundancy has been attested at every level of a biological system such as in the

codons [91], in the genes [165], and in the proteins [59]. For instance, [34] demonstrates

how the concepts of information theory can be applied to genome analysis. This

work specifically shows that the amount of disorderedness that exists in the genome

sequence of E. coli is much less than that of a randomly constructed sequence of the

same length. In [159] the authors measure the binary entropy of various tissue classes

obtained from MRI scans in order to construct a probabilistic human anatomical atlas

that can quite accurately describe anatomical variability.

Here we shall attempt to mathematically formulate the concept of redundancy us-

ing the definition of feature entropy introduced in the earlier section. This is followed

by the experiments performed using this formulation and the results obtained from

them.
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5.4.1 Formulation of Redundancy

The feature entropy for a language inventory L can be easily calculated using the

equation 5.5 with the exception that N now stands for the size of the inventory

(instead of the size of a community). Note that for an optimal encoding (i.e., one

that has no redundancy) of the consonants in L, the number of bits required should

be dlog2(N)e. For instance, in the example shown in Figure 5.5 the number of bits

required to optimally encode the N = 8 consonants should be dlog2(8)e = 3 = |F |.
For such an encoding, every feature fi takes the value 1 for one half of the consonants

and 0 for the other half assuming that all the code words are exhaustively used.

Therefore, we have DC = 1 for each feature, whereby, the value of FE is dlog2(N)e.

However, if the encoding is redundant, which is usually the case for many naturally

occurring systems, then FE > dlog2(N)e. Normalizing FE by log2 N gives us the

fraction of bits that are required in excess to encode all the consonants in L. We call

this fraction redundancy ratio (RR) and formally define it as follows,

RR =
FE

log2 N
(5.6)

5.4.2 Experiments and Results

We measure the values of RR for different sets of consonant inventories chosen from

the collection of 317 inventories available from UPSID. Set100, Set200, and Set250

respectively denote sets of 100, 200, and 250 consonant inventories chosen uniformly

at random from the 317 real inventories. We have randomly constructed each set 10

different times and averaged the results over them. Set317 denotes the full collection

of 317 inventories present in UPSID. The results are summarized in Figure 5.8 and

Table 5.3.

One of the most important observations is that the scatter-plots for all the four

different sets shown in Figure 5.8 indicate a Zipfian distribution [169] of the form:

y = Ax−λ, where x is the inventory size and y is the corresponding value of RR.
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Figure 5.8: Inventory size versus RR in doubly-logarithmic scale for different sets of real inventories.

The bold lines indicate the fits for the distributions

The approximate values of A and λ for all the plots are 3.60 and 0.12 respectively.

In fact, the Pearson’s correlation (r) is quite high between the actual values of RR

and the values of y produced by replacing x with the size of the inventories in the

equation y = Ax−λ for all the four sets (r ≈ 0.6). Furthermore, it is interesting

to note that the value of the Zipfian exponent λ is always close to zero indicating

that RR is almost a constant irrespective of the inventory size. The low mean square

error5 (MSE ≈ 0.033) around the line predicted by the power-law (y = Ax−λ) further

confirms this fact because, a high square error would actually mean that RR values

are strongly dependent on the inventory size. The value of the standard deviation

(σ = 0.22) also indicates that the variance of the distribution around the mean

5MSE between two distributions measures the average of the square of the “error”. The error

is the amount difference between a pair of ordinates (say y and y
′

), where the abscissas are equal.

In other words, if there are N such ordinate pairs then MSE can be expressed as
∑

(y−y
′

)2

N
.
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Table 5.3: Different statistical properties of the distributions of RR values (with respect to the

size of the consonant inventories) presented in Figure 5.8. (A, λ): The fit parameters for a Zipfian

distribution, where y = Ax−λ is the equation of the fit (denoted by the bold lines in Figure 5.8); µ:

Mean value of RR in a distribution; σ: The standard deviation of a distribution; MSE: The mean

square error around the line predicted by the power-law (y = Ax−λ); r: The Pearson’s correlation

between the actual values of RR and the values of y produced by replacing x with the size of the

inventories in the power-law equation

Fit parameters (A, λ) µ σ MSE r

Set100 (3.60, 0.12) 2.50 0.22 0.033 0.61

Set200 (3.70, 0.12) 2.50 0.22 0.031 0.62

Set250 (3.60, 0.12) 2.49 0.23 0.032 0.60

Set317 (3.60, 0.12) 2.49 0.23 0.033 0.62

is quite low. The consistency of the results for any arbitrary subset of inventories

possibly points to the robustness of UPSID. In conclusion, the feature-based encoding

of the consonants generates a nearly constant redundancy across the inventories of

the world’s languages.

In fact, even if we slightly modify the phoneme representation assuming the place

of articulation and the phonation features (see Table 3.1) to be multi-valued, the

above inferences remain unaffected. Figure 5.9 shows the distribution of the RR

values for this modified representation. The scatter-plot again indicates a Zipfian

distribution where A = 3.30 and λ = 0.09. The value of λ is close to zero, thereby,

attesting our earlier inference that the redundancy across the consonant inventories

is constant with respect to the inventory size.

Note that if we compute the values of RR for the randomly generated inventories

obtained from Algorithm 5.2 then the Zipfian exponent λ in this case is found to be

0.22. Therefore, there is an 83% (approx.) increase in the value of λ with respect

to the real inventories. Thus, we can conclude that this universal property of fixed

redundancy found across the consonant inventories of the world’s languages is not a

consequence by chance.
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Figure 5.9: Inventory size versus RR in doubly-logarithmic scale for modified phoneme representa-

tion. The bold line indicates the fit for the distribution

5.5 Summary

In this chapter, we have explored the co-occurrence principles of the consonants across

the inventories of the world’s languages. In particular, we have shown the following.

(i) The patterns of co-occurrence of the consonants, reflected through communities

in PhoNet, are observed in 80% or more of the world’s languages.

(ii) The communities obtained are far more economic in terms of the constituent

features than expected by random chance.

(iii) Those communities that maximize feature economy tend to occur more fre-

quently (70% or higher number of times) across languages.

(iv) Redundancy ratio is almost an invariant property of the consonant inventories

with respect to the inventory size.
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Linguistic Implications

There are a number of linguistic implications of the work presented in this chapter.

First of all, the automatic procedure for community detection provides an algorithmic

definition of natural classes [35] of phonemes (Table 2.2 of Chapter 2 shows a natural

class of plosives). This is significant because, there is no single satisfactory definition

of such natural classes in literature [56]. The communities that we obtained from

PhoNet are such natural classes and can be derived simply by regulating the threshold

of the MRad algorithm.

Secondly, the discriminative capacity that we introduced for quantifying feature

economy may be thought to imply the importance of learning to perceive the distinc-

tion between the presence and the absence of a feature fi in an inventory L when it

is transmitted from the speaker (e.g., the parent) to the learner (e.g., the child) dur-

ing language acquisition. If L has equal number of example consonants with fi = 0

and fi = 1 (i.e., DC = 1) then it becomes more important to learn to perceive

this distinction in order to successfully discriminate all the consonants present in

the speaker’s inventory than in the case where the distribution of examples is highly

skewed (DC = 0). For instance, while an English speaker can discriminate between

the interdental sound in the word “that” (i.e., the sound made by the part “th”) and

the alveolar sound in the word “doctor” (i.e., the sound made by the part “d”) a

Spanish speaker cannot. A Spanish speaker interprets both these sounds as dental.

This is possibly because the alveolar feature is a non-discriminative one in Spanish

(see [75] for an elaborate discussion on this topic).

The next important question is related to the origin and the general implication

of feature economy observed across the consonant inventories. One possible way to

answer this question would be to argue that it is the ease of learnability associated

with an inventory that manifests as feature economy. Since the consonant inventories

are usually large in size therefore, there are a lot of consonants to be learnt by a

speaker in order to pick up the inventory. However, if the number of features that the

speaker has to learn is small then even with the large size inventory the learnability

effort is not very high. This is a probable reason for the consonant inventories to be
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economic. In this context, Lindblom [95] points out that learning a new form that

overlaps with old patterns should involve storing less information in memory than

acquiring one with nothing in common with old items, since part of the new motor

score associated with the phoneme is already in storage.

The “fixed redundancy” indicates that although languages with larger inventory

size tend to use more features, yet there is a bound on the rate at which the number

of features increases. The power-law exponent, in this context, may be thought of as

an indicator of how fast the redundancy ratio decays with respect to the inventory

size. Since the value of this exponent is very low for consonant inventories, we argued

that the ratio is independent of the inventory size.

In the next chapter, we shall show how the computational framework developed in

Chapters 3, 4 and 5 can be successfully applied to investigate the structure and

dynamics of the vowel inventories. Wherever necessary, we shall compare the results

and thereby, point out the similarities as well as the differences with the consonant

inventories. We shall also attempt to explain the reasons for these similarities and

differences in the light of various linguistic theories.



Chapter 6

Network Methods applied to Vowel

Inventories

In the last three chapters, we have shown how complex networks can be successfully

used in modeling the structure and dynamics of the consonant inventories of the

world’s languages. In this chapter, we shall show that the mathematical framework

developed is quite generic and can be easily employed to study the properties of the

vowel inventories. We shall report some of the important results for the vowel inven-

tories and compare the observations wherever required with those for the consonant

inventories.

In order to represent the inventory structure, we define a bipartite network as in

the case of the consonant inventories and call it the Vowel-Language Network or

VlaNet. Once again, the nodes in the two partitions of VlaNet are labeled by the

languages and the vowels while an edge signifies that a particular vowel occurs in the

vowel inventory of a particular language. Subsequently, we analyze and synthesize

the distribution of the frequency of occurrence of the vowels across the language

inventories. As a following step, we construct the one-mode projection of VlaNet

onto the vowel nodes and call it the Vowel-Vowel Network or VoNet. Clearly,

VoNet is a network of vowels where a pair of nodes are connected as many times as

the corresponding vowels are found to occur together across the inventories of different

131
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languages. We next investigate the topological properties of VoNet and attempt to

explain the distribution of the co-occurrence of the vowels across the inventories.

Apart from the study of the topological properties, we also perform a detailed

community structure analysis of VoNet. Interestingly, this investigation leads us to

certain new observations about the organization of the vowel inventories apart from

validating different results reported by the earlier researchers.

A general finding is that the topological properties of VlaNet as well as VoNet

where the nodes are assumed to be unlabeled (i.e., they are not marked by the ar-

ticulatory/acoustic features) are quite similar to that in the case of the consonants.

However, community structure analysis of VoNet where the nodes are assumed to be

labeled reveal certain interesting differences between these two basic types of human

speech sound inventories. Differences also manifest in the study of the redundancy

ratio of the vowel inventories.

The rest of the chapter is organized as follows. In section 6.1, we investigate the

topological properties of the bipartite network VlaNet. The next section outlines the

topological properties of the one-mode projection VoNet. In section 6.3, we perform

community analysis of VoNet and make interesting inferences about the patterns of

co-occurrence across the vowel inventories primarily through the application of the

feature entropy metric defined in the previous chapter. We estimate the redundancy

ratio of the vowel inventories and compare them with those of the consonant inven-

tories in the next section. Finally, in section 6.5, we summarize the contributions of

this chapter as well as outline certain linguistic implications of the results.

6.1 Topological Properties of VlaNet

VlaNet is a bipartite graph G = 〈 VL, VV , Evl 〉 with two sets of nodes VL and VV

representing the languages and the vowels respectively. An edge between a pair of

nodes vl ∈ VL and vv ∈ VV implies that the vowel v occurs in the inventory of the

language l. For the purpose of our analysis, we have constructed VlaNet using UPSID
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Figure 6.1: Degree distribution of (a) the language and (b) the vowel nodes in VlaNet, VlaNetsyn

and VlaNettheo. The plots in (b) are in doubly-logarithmic scale

similarly as in the case of consonants. Consequently, the total number of nodes in VL

is 317 and that in VV is 151. The total number of edges in the network so constructed

is 2349.

Degree Distribution of the Language Nodes

Figure 6.1(a) shows the degree distribution of the language nodes where the x-axis

denotes the degree of each language node expressed as a fraction of the maximum

degree and the y-axis denotes the fraction of nodes having a given degree. The plot

immediately shows that the size of the vowel inventories (i.e., the number of vowels in

different languages) again follow roughly a β-distribution like the case of consonant

inventories. However, the distribution in this case peaks at 4 (in contrast to 21 for

consonants) indicating that a majority of the world’s languages have 4 vowels in their

inventories. Consequently, it may be stated that in most cases consonants present in

a language by far outnumber the vowels.
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Degree Distribution of the Vowel Nodes and its Synthesis

Figure 6.1(b) illustrates the degree distribution plot for the vowel nodes in VV in

doubly-logarithmic scale. We employ the model introduced in section 3.3 of Chap-

ter 3 to synthesize the distribution of the occurrence of vowels across languages. We

simulate the model to obtain VlaNetsyn (i.e., the synthesized version of VlaNet) for

100 different runs and average the results over all of them. Good fits (in terms of

mean error) emerge for γ ∈ [14.1,18.5] with the best being at 14.4 (see Figure 6.1(b)).

The mean error in this case is approximately 0.05. Figure 6.1(b) further shows the

degree distribution of VlaNettheo (i.e., the theoretical version of VlaNet) obtained

using the equations 3.1 and 3.25 for γ = 14.4. The low mean error (≈ 0.06) between

the degree distribution of the vowel nodes in VlaNet and VlaNettheo indicates that

the distribution of occurrence of vowels across languages can be well-approximated

by a β-distribution.

The high value of γ clearly indicates that preferential attachment, similarly as

in the case of consonants, plays a very crucial role in shaping the emergent degree

distribution of the vowel nodes in VlaNet.

6.2 Topological Properties of VoNet

VoNet is the one-mode projection (G = 〈 VV , Evo 〉) of VlaNet onto the vowel nodes

in VV . Consequently, the total number of nodes in VoNet is |VV | = 151. There is an

edge e ∈ Evo if the two nodes in VV (read vowels) that are connected by e co-occur

in at least one language inventory. The number of inventories that they co-occur in

defines the weight of e. The total number of edges in VoNet (ignoring weights) is

2730.
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Figure 6.2: Comparison between the degree distribution of VoNet and VoNetsyn. The x-axis is in

the logarithmic scale

Degree Distribution of VoNet and its Synthesis

Figure 6.2 shows the degree distribution of the nodes in VoNet. The distribution of the

size of the vowel inventories is again found to affect the emergent degree distribution

of VoNetsyn as observed for the case of consonants. Figure 6.2 compares the degree

distribution of VoNet with VoNetsyn obtained by assuming (a) the inventory sizes to

be fixed to a constant equal to the average size and (b) the actual distribution of the

inventory sizes. The result indicates that the latter assumption (i.e., (b)) produces

better match with the empirical data than the former one (i.e., (a)).

Clustering Coefficient of VoNet and its Synthesis

We compute the clustering coefficient of VoNet using the equation 4.1. The value of

cav is 0.86 which is significantly higher than a random graph with the same number

of nodes and edges (0.09). This immediately points to the fact that a large number

of triangles are also prevalent in VoNet similarly as in the case of the consonants. In
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Figure 6.3: Degree distribution of VlaNetsyn and VoNetsyn obtained from the triad model along with

their corresponding real counterparts. For VlaNetsyn the degree distribution is in doubly-logarithmic

scale and for VoNetsyn the x-axis is in logarithmic scale

other words, on an average, there is a high probability that two vowel nodes having

a common neighbor in VoNet themselves also co-occur frequently.

The triad model (see section 4.5 of Chapter 4), on the other hand, can be once

again applied to explain the high clustering coefficient of VoNet as in the case of

consonants. For values of pt in the range [0.8, 0.9], without affecting the degree

distribution much (see Figure 6.3), it is possible to achieve a clustering coefficient of

0.83 for VoNetsyn which is within 3.5% of VoNet.

Therefore, it turns out that both the consonant as well as the vowel networks reflect

largely similar topological characteristics with preferential attachment playing the

most crucial role in their emergent structure. However, as we shall see in the next

section, community structure analysis of VoNet reveals certain interesting differences

between the two basic types of human speech sound inventories (i.e., consonants and

vowels). In fact, differences are also apparent from the study of the redundancy ratio

of the vowel inventories.
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6.3 Community Analysis of VoNet

One of the central observations in the study of the vowel inventories has been that they

are organized primarily based on the principle of maximal perceptual contrast [158].

In fact, a number of numerical studies based on this principle have been reported

in literature [92, 94, 134]. Of late, there have been some attempts to explain the

vowel inventories through multi-agent simulations [44] and genetic algorithms [80];

all of these experiments also use the principle of perceptual contrast for optimization

purposes.

An exception to the above trend is a school of linguists [20, 39] who argue that

perceptual contrast-based theories fail to account for certain fundamental aspects

such as the patterns of co-occurrence of vowels based on similarity of features observed

across the vowel inventories. Instead, they posit that the observed patterns, especially

found in larger size inventories [20], can be explained only through the principle of

feature economy.

We hypothesize the following organization of the vowel inventories based on the

two orthogonal views stated above and systematically corroborate the hypothesis

through the community analysis of VoNet.

6.3.1 The Hypothetical Organization of the Vowel Invento-

ries

According to our hypothesis, the two orthogonal views can be possibly linked together

through the example illustrated by Figure 6.4. As shown in the figure, the bottom

plane P constitutes of a set of three very frequently occurring vowels /i/, /a/ and

/u/, which usually make up the smaller inventories and do not have any single feature

in common. Thus, smaller inventories are quite likely to have vowels that exhibit a

large extent of contrast in their constituent features. However, in bigger inventories,

members from the higher planes (P ′ and P ′′) are also present and they in turn exhibit

feature economy. For instance, in the plane P ′ consisting of the set of vowels /̃i/, /ã/,
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Figure 6.4: The organization of the vowels (in decreasing frequency of occurrence) across the inven-

tories indicated through different hypothetical planes

/ũ/, we find a nasal modification applied equally on all the three members of the

set. This is actually indicative of an economic behavior of the larger inventories

during the introduction of a new feature possibly for the reduction in the learnability

effort of the speakers. The third plane P ′′ reinforces this idea by showing that the

larger the size of the inventories the greater is the urge for this economy in the

choice of new features. The figure also illustrates another interesting relationship

that exists between the vowels across the planes (indicated by the broken lines). All

these relations are representative of a common linguistic concept of markedness [39] in

which the presence of a less frequently occurring vowel (say /̃i/) implies the presence

of another frequently occurring vowel (say /i/) in a language inventory (and not vice

versa). In this co-occurring pair (/i/ and /̃i/), the frequently occurring vowel (i.e., /i/)

is usually referred to as the unmarked member, while the less frequent one (i.e., /̃i/) is

called the marked member. Note that these cross-planar relations are also indicative of

feature economy because, all the features present in the frequent vowel are also shared

by the less frequent one. In summary, while the basis of organization of the vowel
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inventories is perceptual contrast as indicated by the plane P in Figure 6.4, economic

modifications of the perceptually distinct vowels takes place with the increase in the

inventory size (as indicated by the planes P ′ and P ′′ in Figure 6.4).

In the following, we attempt to automatically capture the patterns of co-occurrence

that are prevalent in and across the planes illustrated in Figure 6.4 through the com-

munity structure analysis of VoNet. We further employ the metric of feature entropy

to estimate the extent of feature economy for a given set of vowels in a community.

We observe that while the vowel communities within a plane exhibit lower feature

economy, the communities across the planes display much higher feature economy.

These findings, in turn, imply that the bigger vowel inventories are formed on the

basis of feature economy, while the smaller ones are governed by the principle of max-

imal perceptual contrast. We also compare the extent of feature economy observed in

real inventories to that in randomly generated inventories, which further corroborates

the above findings.

6.3.2 Identification of the Communities and the Metric for

Evaluation

We apply the MRad algorithm developed in Chapter 5 to extract the vowel commu-

nities from VoNet. Note that a community of vowels (as in the case of consonants)

actually refers to a set of vowels, which occur together in the language inventories

very frequently. For instance, if /i/, /a/ and /u/ form a vowel community and if /i/

and /a/ are present in any inventory then there is a very high chance that the third

member /u/ is also present in the inventory.

After extracting the vowel communities from VoNet, we next investigate the driv-

ing force that leads to the emergence of these communities. According to our hypoth-

esis, the principle of perceptual contrast as well as feature economy together shape

the structure of the vowel inventories and in turn act as the driving forces for com-

munity formation. In order to establish this fact, one needs to define a quantitative

measure to capture these two forces. We have already shown in the previous chapter
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Table 6.1: FE for the two different communities COM1 (FE = 4) and COM2 (FE = 1). The letters

h, f, b, r, u, and n stand for the features high, front, back, rounded, unrounded, and nasalized

respectively

COM1 h f b r u

/i/ 1 1 0 0 1

/u/ 1 0 1 1 0

pf/N 1 0.5 0.5 0.5 0.5

qf/N 0 0.5 0.5 0.5 0.5

COM2 h f u n

/i/ 1 1 1 0

/̃i/ 1 1 1 1

pf/N 1 1 1 0.5

qf/N 0 0 0 0.5

that the feature entropy metric faithfully captures the idea of feature economy. It is

easy to show that this same metric can also be employed to capture the concept of

perceptual contrast. Let a community COM consist of a set of perceptually distinct

vowels, then larger number of bits should be required to represent the information

in COM since in this case the set of features that constitute the vowels are more

in number. Therefore, the higher the perceptual contrast, the higher is the feature

entropy. The idea is illustrated through the example in Table 6.1. In the table, FE

exhibited by the community COM1 is higher than that of the community COM2,

since the set of vowels in COM1 are perceptually more distinct than those in COM2.

In general, if the feature entropy of a community is higher than what is expected

by chance then it may be argued that the constituent vowels of the community are

highly perceptually distinct from each other.

6.3.3 Experiments and Results

In this section, we describe the experiments performed and the results obtained from

the community analysis of VoNet. In order to find the co-occurrence patterns in and

across the planes of Figure 6.4 we define three versions of VoNet namely VoNethub,

VoNetrest and VoNetrest′. The construction procedure for each of these versions are

presented below.
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Figure 6.5: The construction procedure of VoNethub from VoNet

Construction of VoNethub: VoNethub consists of the hubs, i.e. the nodes corre-

sponding to those vowels having a very high occurrence frequency in UPSID1.

We define a node as hub if the frequency of occurrence of the corresponding

vowel in UPSID is greater than 120. Thus VoNethub is a subgraph of VoNet

composed of the hubs and the edges inter-connecting them. The rest of the

nodes (having frequency less than 120) and the associated edges are removed

from the network. We make a choice of this value (i.e., 120) for classifying the

hubs from the non-hubs through an inspection of the distribution of the occur-

rence frequencies of the vowels in UPSID. Figure 6.5 illustrates how VoNethub is

constructed from VoNet. The number of nodes in VoNethub is 9 corresponding

to the vowels: /i/, /a/, /u/, /O/, /E/, /o/, /e/, /ŏ/ and /ĕ/.

1Hubs are nodes that have a very high degree. In VoNet, nodes having very high frequency of

occurrence also have a very high degree. In particular, all the nodes included in VoNethub has a

degree > 950 in VoNet, while the average degree of a node in VoNet is only 180 (approx.).
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Figure 6.6: The construction procedure of VoNetrest from VoNet

Construction of VoNetrest: VoNetrest consists of all the nodes as that of VoNet2.

It also has all the edges of VoNet except for those edges that inter-connect the

hubs. Figure 6.6 shows how VoNetrest can be constructed from VoNet.

Construction of VoNetrest′ : VoNetrest′ again consists of all the nodes as that

of VoNet. It consists of only the edges that connect a hub with a non-hub if

the non-hub co-occurs more than ninety five percent of times with the hub.

The basic idea behind such a construction is to capture the co-occurrence pat-

terns based on markedness [39] (discussed earlier) that actually defines the

cross-planar relationships in Figure 6.4. Figure 6.7 shows how VoNetrest′ can be

constructed from VoNet3. Note that since VoNetrest′ has edges running between

the frequent (i.e., unmarked) and the infrequent (i.e., marked) vowels, a com-

2We have neglected nodes corresponding to those vowels that occur in less than 3 languages in

UPSID because, the communities they form do not reflect significant results. The number 3 has

been decided arbitrarily based on the manual inspection of the data.
3The network does not get disconnected due to this construction since there is always a small

fraction of edges that run between a hub and low frequency non-hubs.
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Figure 6.7: The construction procedure of VoNetrest′ from VoNet

Table 6.2: Some of the vowel communities obtained from VoNethub. The contrastive features sepa-

rated by slashes (/) are shown within parentheses. Comma-separated entries (2nd column) represent

the features that are in use from the three respective classes namely the height, the backness, and

the roundedness

Community Features in Contrast

/i/, /a/, /u/ (low/high), (front/central/back), (unrounded/rounded)

/e/, /o/ (higher-mid/mid), (front/back), (unrounded/rounded)

munity structure analysis of this network is expected to reveal the relationship

between the marked and the unmarked pairs of vowels that co-occur frequently.

We separately apply the MRad algorithm on each of VoNethub, VoNetrest and

VoNetrest′ in order to obtain the respective vowel communities. Representative com-

munities from Vonethub, VoNetrest and VoNetrest′ are noted in Tables 6.2, 6.3 and 6.4

respectively.
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Table 6.3: Some of the vowel communities obtained from VoNetrest

Community Features in Common

/̃i/, /ã/, /ũ/ nasalized

/̃i:/, /ã:/, /ũ:/ long, nasalized

/i:/, /u:/, /a:/, /o:/, /e:/ long

Table 6.4: Some of the vowel communities obtained from VoNetrest′ . Comma-separated entries (2nd

column) represent the features that are in use from the three respective classes namely the height,

the backness, and the roundedness

Community Features in Common

/i/, /̃i/ high, front, unrounded

/a/, /ã/ low, central, unrounded

/u/, /ũ/ high, back, rounded

Tables 6.2, 6.3 and 6.4 indicate that the communities in VoNethub are formed based

on the principle of perceptual contrast, whereas the formation of the communities in

VoNetrest as well as VoNetrest′ is largely governed by feature economy. We dedicate

the rest of this section mainly to verify the above argument. For this reason, we

present a detailed study of the co-occurrence principles of the communities obtained

from VoNethub, VoNetrest, and VoNetrest′ primarily through the application of the

feature entropy metric. In each case we compare the results with the random version

of VoNet namely, VoNetrand constructed using the Algorithm 5.2 as in the case of

consonants. Note that if the feature entropy for the communities obtained from the

real language inventories is significantly higher than that of the random inventories

then the prevalence of maximal perceptual contrast is attested; however, if the same

is significantly lower then the prevalence of feature economy is attested.

Co-occurrence Principles of the Communities of VoNethub

The random counterpart of VoNethub (henceforth VoNetRhub) is constructed from

VoNetrand following the steps that were used to construct VoNethub from VoNet. Fig-

ure 6.8 illustrates, for all the communities obtained from the clustering of VoNethub
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Figure 6.8: Average feature entropy of the communities of a particular size versus the community

size for the case of VoNethub as well as VoNetRhub

and VoNetRhub, the average feature entropy exhibited by the communities of a par-

ticular size (y-axis) versus the community size (x-axis).

A closer inspection of Figure 6.8 immediately reveals that the feature entropy

exhibited by the communities of VoNethub is higher as compared to that of VoNetRhub.

The two curves intersect because, eventually for a low value of η, all the nodes in

VoNethub and VoNetRhub form a single connected component, i.e., a single cluster.

Since the set of hubs, which are defined solely in terms of occurrence frequency, is

identical for VoNet and VoNetrand, the feature entropy of the cluster formed of all

the hubs together is also identical in both the cases.

Nevertheless, the number of data points in Figure 6.8 are fairly less and hence, it

might not be alone sufficient to establish the fact that the communities in VoNethub

are formed based on the principle of perceptual contrast. Another possible way to in-

vestigate the problem would be to look into the co-occurrence principles of the smaller

vowel inventories (of size ≤ 4) since they are mostly formed of the hubs. Table 6.5,
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Table 6.5: Percentage frequency of occurrence of the members of the community /i/, /a/, and /u/,

as compared to the percentage occurrence of other vowels, in smaller inventories. The last column

indicates the average number of times that a vowel other than /i/, /a/, and /u/ occurs in the

inventories of size 3 and 4

Inv. Size % Occ. /i/ % Occ. /a/ % Occ. /u/ Avg. % Occ. other vowels

3 65 91 52 13

4 76 96 44 12

for instance, shows the percentage occurrences of the members of the community

formed by /i/, /a/, and /u/, as compared to the average occurrence percentage of

other vowels, in the inventories of sizes 3 and 4. The figures in the table points to

the fact that the smaller inventories can be assumed to be good representatives of

the communities obtained from VoNethub. We therefore compare the average feature

entropy of these inventories as a whole with their random counterparts. Figure 6.9

illustrates the result of this comparison. The figure clearly shows that the average

feature entropy of the vowel inventories of UPSID is substantially higher for inventory

sizes 3 and 4 than that of those constructed randomly.

The results presented in Figures 6.8 and 6.9 together confirm that the communities

in VoNethub are formed based on the principle of maximal perceptual contrast.

Co-occurrence Principles of the Communities of VoNetrest

Here we investigate whether the communities obtained from VoNetrest have a lower

feature entropy than in case of the randomly generated vowel inventories. We con-

struct the random version of VoNetrest (henceforth VoNetRrest) from VoNetrand and

apply the MRad algorithm on it so as to obtain the communities. Figure 6.10 il-

lustrates, for all the communities obtained from the clustering of VoNetrest and

VoNetRrest, the average feature entropy exhibited by the communities of a partic-

ular size (y-axis) versus the community size (x-axis). The figure makes it quite clear

that the average feature entropy exhibited by the communities of VoNetrest are sub-

stantially lower than that of VoNetRrest (especially for a community size ≤ 7). As the

community size increases, the difference in the average feature entropy of the commu-
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Figure 6.9: Average feature entropy of the real as well as the randomly generated vowel inventories

of a particular size versus the inventory size

nities of VoNetrest and VoNetRrest gradually diminishes. This is mainly because of the

formation of a giant cluster, which is similar for both VoNetrest as well as VoNetRrest.

The above result indicates that the driving force behind the formation of the com-

munities of VoNetrest is the principle of feature economy. It is important to mention

here that the larger vowel inventories, which are usually composed of the communities

of VoNetrest, also exhibit feature economy to a large extent. This is reflected through

Figure 6.9 where all the real inventories of size ≥ 5 have a substantially lower average

feature entropy than that of the randomly generated ones.

Co-occurrence Principles of the Communities of VoNetrest′

In this subsection, we compare the feature entropy of the communities obtained

from VoNetrest′ with that of its random counterpart VoNetRrest′ (constructed from

VoNetrand). Figure 6.11 shows the average feature entropy exhibited by the communi-
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Figure 6.10: Average feature entropy of the communities of a particular size versus the community

size for the case of VoNetrest as well as VoNetRrest

ties of a particular size (y-axis) versus the community size (x-axis) for both VoNetrest′

and VoNetRrest′ . The figure indicates that the average feature entropy exhibited by

the communities of VoNetrest′ are significantly lower than that of VoNetRrest′ . This

result immediately reveals that it is again feature economy that plays a key role in

the emergence of the communities of VoNetrest′.

6.4 Redundancy Ratio of the Vowel Inventories

In this section, we report the redundancy ratio of the vowel inventories and compare

the results obtained with those of the consonant inventories. Figure 6.12 and Ta-

ble 6.6 together summarize the results of the experiments with the vowel inventories.

An important observation is that in this case the Zipfian exponent λ is more than

three times what is obtained for the consonant inventories. The mean square error

around the power-law line is also significantly high (0.110 compared to 0.033). Fur-
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Figure 6.11: Average feature entropy of the communities of a particular size versus the community

size for the case of VoNetrest′ as well as VoNetRrest′

Table 6.6: Different statistical properties of the distributions of RR values for the vowel inventories.

All the notations bear the same meaning as in Table 5.3

(A, λ) MSE µ σ

Vowel Inv. (full set) (7.20, 0.40) 0.110 3.43 0.71

Vowel Inv. (Inv. size > 12) (4.17, 0.17) 0.037 2.65 0.21

thermore, the standard deviation has increased from 0.22 to 0.71. This observation

immediately points to the fact that the collection of vowel inventories, in general,

lack the universal structural property of constant redundancy unlike the consonant

inventories. However, if we inspect only the larger size vowel inventories then the re-

sults are quite similar to those obtained for the consonant inventories. For instance,

if we consider only the vowel inventories with size > 12 then the Zipfian exponent λ

drops to 0.17 while the mean square error and the standard deviation drop to 0.037

and 0.21 respectively. Therefore, for the vowel inventories, the range of inventory size

that the data set covers, influences the nature of the distribution of the RR values.
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Figure 6.12: Inventory size versus RR in doubly-logarithmic scale for the full set of vowel inventories

as well as for those that have inventory size > 12. The bold lines indicate the fits for the distributions

The above observation is possibly related to the fact that compositionality is a use-

ful characteristic of larger sign systems while it is not so for the smaller sign systems

(see [82] for reference). For smaller sign systems, non-compositionality provides bet-

ter distinctiveness, but for larger systems, it is better to divide the system into a set

of independent components that can be combined compositionally. Since consonant

inventories are examples of large sign systems they seem to be organized into a small

number of groups that could be arranged as matrices, e.g., Sanskrit, with plosives at

five points of articulation by five manners of articulation. On the other hand, smaller

vowel inventories e.g., /i/, /a/, /u/, are actually representatives of small sign systems

and cannot be arranged as matrices like the consonant inventories. In general, for

consonant inventories, we always observe the inherent three-dimensional composition-

ality of place of articulation, manner of articulation and phonation. For vowels, we

observe non-compositionality in the smaller inventories while compositionality seems

to prevail in the larger inventories.

6.5 Summary

In this chapter, we have shown how the computational framework developed in the

previous chapters can be suitably applied to study the occurrence as well as the co-

occurrence principles of the vowels across the inventories of the world’s languages.
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Some of our important findings from this work are,

(i) The topological properties of the vowel networks (where the nodes are assumed

to be unlabeled) are to a large extent similar to the consonant networks. In

principle, preferential attachment plays the most crucial role in the emergence

of these properties.

(ii) The smaller vowel inventories (corresponding to the communities of VoNethub)

tend to be organized based on the principle of maximal perceptual contrast.

(iii) On the other hand, the larger vowel inventories (mainly composed of the com-

munities of VoNetrest) reflect a considerable extent of feature economy;

(iv) Co-occurrences based on markedness (captured through the communities of

VoNetrest′) also reflect the presence of feature economy.

(v) Vowel inventories, in general, do not exhibit a constant redundancy ratio; how-

ever, if only the larger size inventories are considered then one can again observe

that the redundancy ratio is almost fixed.

Linguistic Implications

The principles of feature economy and maximal perceptual contrast operate at a cer-

tain level of cognition, where speech sounds are assumed to be encoded in terms of

relatively abstract elements (features) within a linguistic system. While feature econ-

omy tends to organize the linguistic data into a small number of groups, perceptual

contrast tends to increase this number so as to minimize the level of confusion. If U

be the set of linguistic units and C the categories that characterize these units then

feature economy may be expressed as ‘maximize U/C’ (as suggested in [38]) while

perceptual contrast as ‘minimize U/C’. It is the interplay of these two optimization

principles that shapes the structure of the vowel inventories. The speakers of smaller

inventories can afford to choose perceptually distinct vowels because, there are a very

few vowels to be learnt and hence the learnability effort is low. On the other hand,

the larger inventories tend to be economic so that the effort of learnability does not
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increase considerably [95]. This is because, even though there are many vowels to

be learnt yet due to the prevalence of feature economy the number of features that

are actually to be learnt are less. In short, the difference in the average size of the

consonant and the vowel inventories seems to be an important factor regulating the

difference in their behavior as well as the overall organization.

It is important to mention here that all the results that we have presented through-

out the thesis heavily depend on the assumptions in our models as well as on the data

source. Consequently, the inferences (both statistical as well as purely linguistic) that

we draw needs to be interpreted with caution. This, in fact, is a general drawback of

any computational model. None of our inferences, therefore, should be assumed to

be sacrosanct; in contrast, they are only indicative and meant to act as pointers for

further research in computational phonology.
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Conclusion

One of the most fundamental problems in linguistics is the characterization and ex-

planation of the universal patterns that are observed across human languages. In

other words, the amount of variation across languages is constrained by these uni-

versal patterns. Such patterns embody a kind of ordered complexity similar to that

found in the natural world of living systems and its other artifacts. Of late, sophis-

ticated computational models have enabled researchers to explain the emergence of

these patterns that manifest at different levels of linguistic structure (e.g., phonology,

morphology, syntax and semantics).

In this thesis, we set out to identify as well as explain the emergence of the univer-

sal patterns found across the sound inventories of the world’s languages. As we had

already pointed out in Chapter 2, various computational models have been proposed

by the past researchers to investigate these patterns and many interesting outcomes

have been reported. Nevertheless, we also observed that it becomes increasingly diffi-

cult to model the structure of the inventories of mainly the complex utterances such

as consonants and syllables. Therefore, in the last four chapters, we tried to develop

a new computational model that can serve as a unified framework for studying the

self-organization of the sound inventories which, in turn, explains the emergent sound

patterns. In this context, we postulate that

153
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complex networks can be suitably employed not only to represent the structure

of the sound inventories but also to detect the universal patterns across them

and explain the self-organizing process that leads to the emergence of these pat-

terns. We believe that our thesis is reasonable because, such a computational

framework actually allowed us to make a number of interesting inferences about

the patterns across the sound inventories most of which were outlined in the

previous chapters.

In this chapter, we shall mainly attempt to summarize our contributions (sec-

tion 7.1) and wrap up by pointing out some of the possible future directions of research

that have been opened up by this thesis (section 7.2).

7.1 Summary of our Contributions

The objectives that we had laid out in the introduction of this thesis have been

fulfilled. The first objective was to formulate a representation of the structure of the

inventories. Towards this end, we proposed a bipartite network representation of the

inventories. We further deduced the one-mode projection of this network which may

be thought of as a more compact representation of the inventory structure.

The second objective was to devise suitable methods of analysis that would bring

forth prevalent patterns across the sound inventories. In order to meet this objec-

tive, we investigated various topological properties of the bipartite network and its

one-mode projection. We found from this analysis that (a) the average size of the

vowel inventories is smaller than that of the consonant inventories, (b) the occurrence

and co-occurrence of the consonants and the vowels across the language inventories

follow well-behaved probability distributions, (c) the co-occurrence networks (i.e.,

the one-mode projections) of both consonants as well as vowels are characterized by

high clustering coefficients which is an outcome of the presence of a large number

of triangles in these networks, and (d) these triangles or the “tightly-knit communi-

ties” are formed on the basis of two functional principles – perceptual contrast and

feature economy; while the consonant communities display mainly the presence of
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feature economy, vowel communities, depending on the frequency of occurrence of

the constituent vowels, exhibit either perceptual contrast or feature economy.

The third and the last objective was to formulate growth models to synthesize the

topological properties of the networks. Towards this end, we presented a preferential

attachment based model for the bipartite network and showed that it can reproduce

the distribution of occurrence of the consonants/vowels quite accurately. A theo-

retical analysis of the model revealed that actually this distribution asymptotically

approaches a β-distribution. We further identified that the distribution of the size

of the inventories affects the co-occurrence distribution of the consonant/vowels even

though it does not affect the occurrence distribution. Subsequently, we incorporated

this factor into our model so as to match the emergent co-occurrence distribution

with the real data to a close approximation. Finally, we refined our preferential

attachment based model to include the process of triad formation and, thereby, ex-

plained analytically as well as through simulations, the high clustering exhibited by

the co-occurrence networks.

7.2 Future Directions

In this final section, we outline a few out of the many possible directions of future

research that have been opened up by this thesis. Some of the specific problems

that one might focus on could be the design of computationally tractable microscopic

models from explaining the emergence of the consonant inventories or modeling of

the structure and the dynamics of other types of inventories such as the syllable

inventories. However, a more general aim could center around the development of a

full-fledged computational framework (possibly) based on complex networks to study

self-organized phonology. The primary objective would be to propose and validate

theoretical models of speech sound self-organization covering different phonological

phenomena including typology, markedness, learnability, phonotactics and various

other processes.

Another line of research could progress in the direction of more sophisticated an-
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alytical treatment of the network growth models mainly by relaxing the different

assumptions that we made for solving them. One might also attempt to theoreti-

cally derive other important topological properties and, in particular, the spectral

properties (i.e., the eigenvalues and the eigenvectors) of the emergent networks.

Finally, network representations like those discussed in the thesis may be employed

to tackle certain application-specific tasks in the areas of Natural Language Processing

(NLP) and Information Retrieval (IR). One can construct various types of linguistic

networks of words and use their different topological properties for the purpose of

language modeling which is a very important problem in NLP. Furthermore, clustering

of these networks can help in the identification of the word categories (either syntactic

or semantic) in a completely unsupervised manner. Large amount of annotated data

is a prime requirement for enhancing the performance of any NLP application. It is

usually hard to avail such annotated data especially, for the resource poor languages.

In such a scenario, unsupervised methods based on clustering of linguistic networks

can be useful in the automatic creation of annotated data from raw corpus. This

annotated data may be in turn used for bootstrapping supervised NLP algorithms.

There have been already some initial work in this direction reported in [17]. Hyperlink

structure analysis, analysis of blogs as well as analysis of query-logs are some of the

areas in IR that can also benefit from the application of complex network based

methods.

In summary, computational modeling seems to be a very fruitful way of doing re-

search in evolutionary linguistics and as we have observed in this thesis the process of

modeling and the associated analysis might turn out to be difficult, but it is certainly

not impossible.
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[15] A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani. The archi-

tecture of complex weighted networks. PNAS, 101:3747–3752, 2004.

[16] S. Battiston and M. Catanzaro. Statistical properties of corporate board and

director networks. Eur. Phys. J. B, 38:345–352, 2004.

[17] C. Biemann. Unsupervised part-of-speech tagging employing efficient graph

clustering. In Proceedings of COLING/ACL 2006 Student Research Workshop,

pages 7–12, 2006.

[18] J. Blevins. Evolutionary Phonology: The Emergence of Sound Patterns. Cam-

bridge University Press, 2004.

[19] J. Blevins. The importance of typology in explaining recurrent sound patterns.

Linguistic Typology, 11:107–113, 2007.

[20] P. Boersma. Functional Phonology. The Hague: Holland Academic Graphics,

1998.

[21] D. Bu, Y. Zhao, L. Cai, H. Xue, X. Zhu, H. Lu, J. Zhang, S. Sun,

L. Ling, N. Zhang, G. Li, and R. Chen. Topological structure analysis of the

protein–protein interaction network in budding yeast. Nucleic Acids Research,

31(9):2443–2450, 2003.



BIBLIOGRAPHY 159

[22] M. G. Bulmer. Principles of Statistics. Dover Publications, 1979.

[23] J. L. Bybee. Diachronic and typological properties of morphology and their im-

plications for representation. In L. B. Feldman, editor, Morphological Aspects of

Language Processing, pages 225–246. Lawrence Erlbaum Associates, Hillsdale,

1995.

[24] G. Caldarelli and M. Catanzaro. The corporate boards networks. Physica A,

338:98–106, 2004.

[25] R. Ferrer-i-Cancho and R. V. Solé. The small world of human language.
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de robots parlants. In Actes de la Conférence de Rochebrune 1996 : du Collectif

au social. Ecole Nationale Supérieure des Télécommunications, Paris, 1996.
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Appendix C

Glossary of the Standard

Statistical Properties of

Complex Networks

Adjacency Matrix: Let G be a graph with n vertices. The n × n matrix A in

which each entry aij = 1 if there is an edge between the vertices vi and vj in G and

rest all entries are 0 is called the adjacency matrix of G.

Assortativity: Assortativity refers to the preference of the nodes in a network to

be connected to other nodes that are similar or different in some way.

Assortativity coefficient: The assortativity coefficient is usually expressed in

terms of the Pearson’s correlation coefficient r between pairs of node degrees. Hence,

positive values of r indicate a correlation between nodes of similar degree, while neg-

ative values indicate relationships between nodes of different degree.

Betweenness Centrality: Betweenness centrality of a node v is defined as the sum

of the ratios of the number of shortest paths between vertices s and t through v to
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the total number of shortest paths between s and t. The betweenness centrality g(v)

of v is given by

g(v) = Σs 6=v 6=t

σst(v)

σst

Centrality: The centrality of a node in a network is a measure of the structural

importance of the node.

Clustering Coefficient: The clustering coefficient for a vertex v in a network is

defined as the ratio between the total number of connections among the neighbors of

v to the total number of possible connections among the neighbors. For a vertex i

with a neighbor set Ni, the clustering coefficient is given by

Ci =
|ejk|

ki(ki − 1)
: vj , vk ∈ Ni, ejk ∈ E

Community: A community is a sub-graph, where in some reasonable sense the

nodes in the sub-graph have more to do with each other than with the nodes which

are outside the sub-graph.

Degree Centrality: Degree centrality is defined as the number of links incident

upon a node.

Degree Distribution: The degree distribution of a network is defined as the prob-

ability distribution of the degree of a random node in the network.

Diameter: The diameter of a graph is defined as the maximum of all the shortest

distances between any two nodes in the graph.

Eigenvector Centrality: Eigenvector centrality is a measure of the importance of

a node in a network. It assigns relative scores to all nodes in the network based on the
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principle that connections to high-scoring nodes contribute more to the score of the

node in question than equal connections to low-scoring nodes. Thus, the centrality

of a node is proportional to the centrality of the nodes it is connected to and the

definition turns out to be recursive.

Euclidean Distance: The Euclidean distance between two vectors a and b is de-

fined as

ED(a, b) =
∑

i

√
(ai − bi)

2

Pearson’s Correlation Coefficient: Pearson’s correlation coefficient between two

vectors x and y can be measured as

r =
Σxy − ΣxΣy

n√
(Σx2 − (Σx)2

n
)(Σy2 − (Σy)2

n
)

Preferential Attachment: Preferential attachment refers to the fact that the more

connected a node is, the more likely it is to receive new links. In other words, nodes

with higher degree have stronger ability to grab links added to the network.

Random Graph: A random graph is a graph that is generated by some random

process. The most common model used to generate such a graph is the Erdös-Rényi

(E-R) model. In this model, each pair of n vertices is connected by an edge with

some probability p. The probability of a vertex having degree k is given by

pk =

(
n

k

)
pk(1 − p)n−k ' zke−z

k!

where z = np.

Scale-Free Network: The defining characteristic of the scale-free networks is that

their degree distribution follows the Yule-Simon distribution - a power-law relation-
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ship defined by pk ∼ k−λ.

Small-World Network: A small-world network is a network in which most nodes

are not neighbors of one another, but most nodes can be reached from every other

node by a small number of hops or steps. These networks show large clustering

coefficient and a small average shortest path distance.

Zipf’s Law: Zipf’s law states that given some corpus of natural language utter-

ances, the frequency of any word is inversely proportional to its rank in the frequency

table.



Appendix D

International Phonetic Alphabet

Chart

The International Phonetic Alphabet (IPA) is a system of phonetic notations based on

the Latin alphabet that has been designed by the International Phonetic Association

for a standardized representation of the sounds of spoken language. The IPA repre-

sents only those qualities of speech that are distinctive in spoken language such as

phonemes, intonation and the separation of words and syllables. The latest version of

the IPA was published in 2005 (see http://www.langsci.ucl.ac.uk/ipa/fullchart.html)

and a snapshot of it is presented in the next page.
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              THE INTERNATIONAL PHONETIC ALPHABET (revised to 2005)

CONSONANTS (PULMONIC)

´

A Å

i y È Ë ¨ u

Pe e Ø o

E { ‰ ø O

a ”
å

I Y U

� Front�                        Central                           � Back

Close

Close-mid

Open-mid

Open

Where symbols appear in pairs, the one 
to the right represents a rounded vowel.

œ
ò

Bilabial Labiodental Dental Alveolar Postalveolar Retroflex Palatal Velar Uvular Pharyngeal Glottal

Plosive p  b t  d Ê c  Ô k  g q  G /
Nasal m µ n = N –
Trill ı r R
Tap or Flap v | «
Fricative F  B f v T  D s z S  Z ß ç  J x  V X  Â ©  ? h  H
Lateral
fricative Ò L
Approximant ® ’ j ˜
Lateral
approximant l ¥ K

Where symbols appear in pairs, the one to the right represents a voiced consonant. Shaded areas denote articulations judged impossible.

CONSONANTS (NON-PULMONIC)

SUPRASEGMENTALS

VOWELS

OTHER SYMBOLS

Clicks Voiced implosives Ejectives

> Bilabial Bilabial ’ Examples:

˘ Dental Î Dental/alveolar p’ Bilabial

! (Post)alveolar ˙ Palatal t’ Dental/alveolar

¯ Palatoalveolar ƒ Velar k’ Velar

Alveolar lateral Ï Uvular s’ Alveolar fricative

" Primary stress

 Æ Secondary stress

ÆfoUn´"tIS´n
 … Long e…
 Ú Half-long eÚ
* Extra-short e*
˘ Minor (foot) group

Major (intonation) group

 . Syllable break ®i.œkt

 Linking (absence of a break)

          TONES AND WORD ACCENTS
       LEVEL CONTOUR

e _or â Extra
high e

ˆ

�or ä Rising

e! ê High e$ ë Falling

e@ î Mid e% ü High
rising

e~ ô Low efi ï Low
rising

e— û Extra
low e&  ñ$ Rising-

falling

Õ Downstep ã Global rise

õ Upstep Ã Global fall

© 2005 IPA

 DIACRITICS     Diacritics may be placed above a symbol with a descender, e.g. N(
9 Voiceless n9 d9 ª Breathy voiced bª  aª 1 Dental t 1 d1
3 Voiced s3  t 3 0 Creaky voiced b0  a0 ¡ Apical t ¡ d¡
Ó Aspirated tÓ dÓ £ Linguolabial t £ d£ 4 Laminal t 4 d4
7 More rounded O7  W Labialized tW dW ) Nasalized e)
¶ Less rounded O¶ Palatalized t   d  ˆ Nasal release dˆ
™ Advanced u™ Velarized t d ¬ Lateral release d¬
2 Retracted e2 Pharyngealized t d } No audible release d}
· Centralized e·  ù Velarized or pharyngealized :
+ Mid-centralized e+ 6 Raised e6 ( ®6    = voiced alveolar fricative)

` Syllabic n` § Lowered e§ ( B§  = voiced bilabial approximant)

8 Non-syllabic e8 5 Advanced Tongue Root e5
 ± Rhoticity ´± a± Retracted Tongue Root e

Voiceless labial-velar fricative Ç Û Alveolo-palatal fricatives

w Voiced labial-velar approximant » Voiced alveolar lateral flap

Á Voiced labial-palatal approximant Í Simultaneous S  and x
Ì Voiceless epiglottal fricative

¿ Voiced epiglottal fricative
Affricates and double articulations

can be represented by two symbols

÷ Epiglottal plosive
 joined by a tie bar if necessary.

kp  ts

(
(
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β-distribution, 14, 47, 60, 66, 83, 88,
90, 133, 134, 155

ADIOS, 9
Afro-Asiatic, 61
alveolar, 22
ambiguous phoneme, 45
anomalous phoneme, 45
antonymy, 6
articulator, 21
Austronesian, 62

bilabial, 22
bipartite network, 14, 16, 39, 62, 64,

131
blog, 156

carl, 32
centroid, 104
chromosome, 35
clique percolation, 109
clustering coefficient, 15, 72, 75, 78, 81,

93, 96
codon, 17
collocate, 8
community structure, 15, 101

degree distribution, 8, 14, 46, 55, 75,
81, 86, 95

dental, 22
distinctive features, 22, 25
distinctive region, 29
dynamics, 4, 60

ease of articulation, 11
ease of learnability, 11
economy index, 26

edge betweenness, 110
eigenvalues, 156
eigenvectors, 156
emergence, 4, 14, 17, 20, 24, 25, 31, 34,

36, 37, 153
evolutionary optimization, 35

feature economy, 15, 26, 102, 113, 120,
155

feature entropy, 120, 121, 123, 125, 132,
140, 145, 147

ferromagnet, 108
food-web, 2
functional optimization, 31

gene, 17
generating function, 82
generative phonology, 24
glottal, 22
glottis, 21

holonymy, 6
hypernymy, 6
hyponymy, 6

IMDB, 65
Indo-European, 61
information retrieval, 156
Internet, 2
inventory

consonant, 12–16, 26, 31, 37, 39,
40, 46, 49, 53, 62, 67, 72, 84,
88, 99, 101, 121, 124, 127, 131,
132, 148, 150

modal, 44
phoneme, 20, 23–26, 28–30, 36
sound, 19, 27, 36, 37
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vowel, 11, 13, 16, 30–32, 34–37, 131,
132, 136, 139, 145, 148, 150

IPA, 19
convolution, 84

jaw, 21

Kronecker delta function, 54, 108

labio-dental, 22
language family, 62
Laplacian matrix, 105
larynx, 21
lip, 21

macroscopic, 2
manner of articulation, 21, 24, 26, 43
maximal perceptual contrast, 11, 31,

137, 139, 144
mental lexicon, 4
meronymy, 6
mesoscopic, 2
microscopic, 2
minimal pair, 19
motif, 9
multi-agent simulation, 32

nasal cavity, 21
natural language processing, 156
network

airlines, 2
article-author, 40
bank-company, 40, 65
biological, 2
board-director, 40, 65
city-people, 40, 65
donor-acceptor, 40
ecological, 2
epidemic, 2
friendship, 2
gene regulatory, 2
lexical, 5
metabolic, 2
movie-actor, 2, 39, 65
p2p, 2

phonological, 5
phonological neighborhood, 6
protein interaction, 2
restricted, 8
scientific collaboration, 2, 65
signalling, 2
social, 2
unrestricted, 8
word co-occurrence, 5
word collocation, 8
word-meaning, 65
word-sentence, 40

Nifer-Congo, 61
non-compositionality, 150

occurrence ratio, 114, 123
one-mode projection, 72, 74, 82, 84, 89,

96, 154
optimality theory, 27
oral cavity, 21

palatal, 22
pharynx, 21
phonation, 21, 43
place of articulation, 21, 24, 26, 43
polysemy, 6
Potts model, 108
power grid, 2
power-law, 8, 9, 65, 72, 126
preferential attachment, 8, 14, 15, 50,

67

quantal theory, 27
query-log, 156

random walk, 108
redundancy ratio, 125, 148
regularity, 20, 23, 24, 26, 36, 37
rewiring, 66

self-organization, 1, 11, 12, 17, 37, 99,
155

self-regulation, 1
Sino-Tibetan, 62
spin, 108
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stimulus, 6
Stirling’s formula, 59
structural equivalence, 106
syllable, 10, 34
synergetic linguistics, 1
synset, 6
system

classificatory, 44
complex, 4, 5

adaptive, 1
discrete combinatorial, 16
linguistic, 2, 5, 8
physical, 2
speech production, 21
thermodynamic, 2
vocal, 20

tightly-knit community, 154
token frequency, 50
tongue, 21
triad, 15, 92
type frequency, 50

Universal Grammar, 9
UPSID, 43–45, 47, 61, 74, 111, 114,

115, 121, 124, 127, 132, 141,
142, 146

utterance, 2, 34, 37, 153

velar, 22
velum, 21
vocal

cords, 21
tract, 21, 23, 27, 29, 30

WWW, 2

Zipfian distribution, 127
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