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The Problem

@ An expression over {[,]} such that
(i) every left parenthesis has a matching right parenthesis,
(ii) the matched pairs are well nested.

o Examples: [[[]]], [J[{0111], (IOLLICI-

e Unbalanced: [[[]], []]]

e Grammar: S — [S]|SS]e.

e Derive [J[l: S — SS — [S]S — [IS — [IIS] — 1II-
e Derive [[]]: S — [S] — [[S]] — [l
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Necessary Conditions for Balance

@ L(x) := #|[(x) = the number of left parentheses in x.
@ R(x) := #](x) = the number of right parentheses in x.

@ Necessary conditions: A string x of parentheses is balanced iff:
(i) L(x) = R(x),
(ii) for all prefixes y of x, L(y) > R(y). - A right parenthesis
can only match to a left parenthesis to its left.



L(x) -R(x)

Sufficient Conditions for Balance

@ The above conditions are sufficient:
Look at the graph of L(x) — R(x) v x.
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Production S — [S]|SS|e

@ Need to show that the given grammar S — [S]|SS|e generates
exactly the set of strings satisfying the 2 balanced parantheses
conditions.

@ Proof:

(=) If S =% x then x satisfies (i) and (ii).

@ Induction on length of the derivation of x.

In fact, we show that for any o € (NUX)", if S =% «, then
« satisfies (i) and (ii).
In fact, induction on length of derivation of .
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@ Base case: S %% «, so & = S and the two conditions are
trivially satisfied.

o Induction step: S =% 8 —¢ .
e By IH, j3 satisfies (i) and (ii).
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e [ ch « can happen due to three types of productions:

@ S— e So B =p156 and a = B152: No change in order of
parentheses and « satisfies (i) and (ii) iff 5 satisfies them.

Similar argument for S — SS.

S — [S]: Then 5= 150> and oo = B1[S] /.
Condition (i): L(a) = L(B) +1

= R(B)+1 (IH on § and (i))

= R(@)



e Condition (ii): Want to show that for any prefix v of
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e Condition (ii): Want to show that for any prefix v of
a = $1[S]B2, L(7) = R(7).
o If v is a prefix of 31, then it is a prefix of 5 - so done by IH.

o If v is a prefix of 51[S but not /31, then
L(7) = L(B1) + 1
> R(51) + 1 (IH as /31 is a prefix of j3)
> R(B1)
= R(7)



Condition (ii): Want to show that for any prefix - of
a = $1[S]B2, L(7) = R(7).
If v is a prefix of 31, then it is a prefix of 5 - so done by IH.

If v is a prefix of 51[S but not S1, then
L(7) = L(Bh) + 1

> R(51) + 1 (IH as /31 is a prefix of j3)

> R(B1)

= R(7)
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> R($1S6) + 1 (IH and definition) = R(7)



Condition (ii): Want to show that for any prefix - of
a = $1[S]B2, L(7) = R(7).
If v is a prefix of 31, then it is a prefix of 5 - so done by IH.

If v is a prefix of 51[S but not S1, then

L(7) = L(B1) + 1

> R(51) + 1 (IH as /31 is a prefix of j3)

> R(b1)

= R(7).

If v = B1[S]6 where ¢ is a prefix of /32, then

L(v) = L(p156) + 1

> R(5150) + 1 (IH and definition) = R(7y)

Thus (ii) also holds for v and this concludes the proof of (=):
If S =% a, then « is balanced [In particular, when « is a
sentence x].
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o («) If x is balanced, then S = x.

@ Induction on |x|. By assumption, x satisfies (i) and (ii).

@ Base case: If [x| =0, then x =¢. Then S — ¢ is already a
production.

o IH: If [x| > 0, then
(a) Either there exists a proper prefix y of x satisfying (i), (ii)
(b) Or no such prefix exists.

o Case (a): x = yz where z # e.
If y and x satisfy (i) and (ii), then so does z. (Check for
yourself)

@ BylHS = yand S = z. Then
S =t SS =L yS =t yz = x.
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e If x satisfies (i) and (ii), then so does z:
z satisfies (i) from its definition (Check for yourself).

@ z satisfies (ii) because for all non-null prefixes u of z,
L(u) — R(u) = L([u) =1 — R([u) > 0.
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Case (b): No such y exists. Then it must be that x = [z].
If x satisfies (i) and (ii), then so does z:

z satisfies (i) from its definition (Check for yourself).

z satisfies (ii) because for all non-null prefixes u of z,

L(u) — R(u) = L([u) =1 — R([u) > 0.

(Case (b): L([u) — R([u) > 1, o/w [u is a proper prefix of x
satisfying (i) and (ii).)

By IHS —¢ z. Then

S =L [S] =% [2] = x.

Thus (<) is done: Every string satisfying (i) and (ii) can be
derived.

Thus, grammar S — [S]|SS|e generates exactly the set of
strings satisfying the 2 balanced parentheses conditions.



